International Journal of Circuits, Systems and Signal Processing

E-ISSN: 1998-4464
Volume 15, 2021

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of NAUN Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Main Page

Submit a paper | Submission terms | Paper format


Volume 15, 2021

Title of the Paper: Design of Broadband Dual-Polarized Rectenna Array for WPT Applications


Authors: Guan-Pu Pan, Kuan-Chih Chiu, Tsung-Lin Li, Jwo-Shiun Sun

Pages: 377-382 

DOI: 10.46300/9106.2021.15.41     XML


Abstract: A broadband dual-polarized microstrip array antenna designed is proposed. To achieve wide 10 dB bandwidth for broadband operation, the technique of applying a ladder-shaped monopole antenna type with a rectangular slot insertion in the ground plane is implemented. The proposed design showed wide impedance bandwidth of the 1702-2755 MHz (47.2%). In addition, adding an open slot into the rectangular radiating element with an asymmetric ground plane was used and resulted in a slightly displacement of the radiation pattern. The 1 × 2 array type for two ladder-shaped patch array elements are arranged in symmetric feed network. By meticulously arrangement the two array antennas’ positions to achieved good ports isolation, with 10 dB bandwidth for the operating bands in free-space can be achieved. This antenna is used as a rectenna (rectifying antenna), which receives the RF energy of vertical and horizontal polarization wave in free space for 2.4 GHz wireless power transmission. The rectifier circuit setup using two zero biased rectifier and voltage doubler circuit. A matching network designed with small size chip components have a significant improvement in impedance matching and eliminate high order harmonics between the antenna and rectifying circuit. The proposed dual-polarized rectenna provided the RF-to-DC conversion efficiency as high as 78.8% when 14 dBm microwave power was received at 2.4 GHz with a 1 KΩ load