International Journal of Circuits, Systems and Signal Processing

   
E-ISSN: 1998-4464
Volume 15, 2021

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of NAUN Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Main Page

Submit a paper | Submission terms | Paper format

 


Volume 15, 2021


Title of the Paper: Circuit Coupling Model Containing Equivalent Eddy Current Loss Impedance for Wireless Power Transfer in Seawater

 

Authors: Wangqiang Niu, Chen Ye, Wei Gu

Pages: 410-416 

DOI: 10.46300/9106.2021.15.45     XML

Certificate

Abstract: Nowadays, as the whole world put more emphasis on ocean resource exploration, the use of automatic underwater vehicles (UAVs) comes to be increasingly frequent. Inductive wireless power transfer (IWPT), as a power transfer solution with high safety and exibility, is quite promising applied in UAV power supply. However, when applied underwater, IWPT efficiency decreases due to eddy current loss (ECL) caused by high conductivity of water medium. In order to analyze IWPT output characteristics in seawater, this paper proposes a coupling cir- cuit model involving equivalent eddy current loss impedance (EECLI), which is derived via three- coil model. On the one hand, it is found that splitting frequency still exists in IWPT under seawater. On the other hand, EECLI is inde- pendent to coil distance, but proportional to op- eration frequency. The validity of the proposed model for IWPT system with coils in small size (coil outer diameter 12 cm, system resonant fre- quency 570 kHz) is verified by experiment, which means it is available for IWPT system design and analysis.