International Journal of Circuits, Systems and Signal Processing

E-ISSN: 1998-4464
Volume 15, 2021

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of NAUN Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Main Page

Submit a paper | Submission terms | Paper format


Volume 15, 2021

Title of the Paper: A Novel Control Method and Mathematical Model for Intelligent Robot


Authors:  Nianxiang Wu

Pages: 486-493 

DOI: 10.46300/9106.2021.15.53     XML


Abstract: Hamiltonian method based on action micro-control is widely used in the control of mechanical arm synchronous motor. In order to realize the combination of robot dynamics and drive motor control, Hamiltonian control method is used in this paper to exploit a novel controller for robot, which can be used for better steady-state characteristics in the system. However, dynamic response of port-controlled Hamiltonian (PCH) of control system is slower, so the related control method is exploited and coordinated with the proportional-derivative (PD) plus gravity compensation. At this time, the system has both the fast dynamic response of the PD and the steady state of the PCH. The reverse motor method is used and the two controllers are combined by current conversion to realize the overall control of the robot and the drive motor. The robot drive motor is controlled, and the robot joint position control is combined with the drive motor current control by current conversion. It can be seen from the simulation results that the coordinately controlling the end position of robot can reach the desired position quickly and accurately. Moreover, compared with the separate control of PD plus gravity compensation and PCH control method, it is proved that this scheme has both a fast dynamic process and better performance and ability to resist load torque disturbance. So control method proposed in this paper has a good application prospect.