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Abstract— In this paper, fractal theory and wavelet 

transform are combined to detect and classify self-

extinguishing and fugitive scenarios of power quality 

disturbances (PQDs). After deciding whether the 

disturbance is simple or complex, the additional voltage 

is denoised through Discrete Wavelet Transform 

(DWT); the denoising process is adapted according to 

whether the distorted voltage contains oscillatory 

transients or not. At the detection stage, the grille fractal 

dimension of the DWT decomposition detail is 

computed. Then, a threshold is deduced to detect the 

start and end moments of the disturbance. The results 

reveal that the proposed detection scheme yields 

accurate location of PQDs even in the presence of high 

oscillatory transients. An algorithm based on geometric 

and statistical approaches is developed at the 

classification stage to recognize PQDs automatically. 

The geometric classification is based on Continuous 

Wavelet Transform (CWT), whereas the statistical 

classification is based on Multifractal Detrended 

Fluctuations Analysis (MFDFA) and an energy metric. 

The results prove that the combination of geometric and 

statistical classification can serve as an effective 

discrimination tool for PQDs.  The major strength of the 

proposed approach is its ability to interpret the impact 

of each disturbance on the multifractal behavior of the 

nominal voltage, thus giving the possibility to draw the 

necessary generalizations for real-time applications. 

 

Keywords—Grille fractal dimension, Multifractal 
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I. INTRODUCTION 

n recent years, power quality concerns have attracted 
considerable attention in the power industry. The 
deployment of smart grid technologies and the extensive 

penetration of decentralized energy resources have made 
power systems more vulnerable to perturbations. Poor 
power quality can lead to innumerable disturbances in 
electrical networks. Thus, to meet the requirements of the 
energy market, there is a persistent need for a powerful 
technique to detect and classify power quality 
disturbances, such a method should be of high precision, 
meaning that the detection algorithm must be able to 
differentiate between the transients produced by electrical 

disturbances and those caused by switching events. For 
example, the switching of loads or capacitors should not 
trigger the protection devices of the electrical system 
because such a situation will generate untimely 
interruptions and thus affect the continuity of the power 
supply. On the other hand, the proposed schema should 
reveal the main features of the distorted signal so that the 
pattern recognition module could be able to distinguish one 
disturbance from another. Such an asset will be valuable 
for engineers, especially during the development of the 
monitoring equipment.  
The literature addressing the issues of PQDs can be 
divided into detection and recognition approaches. In the 
first category, several techniques have been put forward to 
detect PQDs. An adaptive threshold was proposed in [1] to 
detect single and combined PQDs. In reference [2], 
wavelet packet, Tsallis entropy, and singular value 
decomposition are combined to detect PQDs. A high 
decomposition level has been adopted for all the 
disturbances, which may lead to considerable loss of 
information in the case of simple disturbances. 

Owing to the evolution of signal processing techniques, 
the fractal theory has emerged as an alternative for 
recognizing PQDs [3]-[7]. With this method, the abrupt 
changes in the distorted voltages are rapidly identified 
through a fast calculation process. Its main strength lies in 
is its ability to detect singularities and self-similarities that 
may differ from one signal to another. The simplicity of 
the calculation process has motivated the use of fractal 
theory in different fields of modern science, including in 
medicine, finance, and geology. However, in existing 
fractal detection methods, further analysis is performed on 
the calculated fractal dimension before defining the 
detection threshold. Such methodologies may become 
expansive in real-time applications [3], [6].  

In existing PQDs recognition methods, once a 
disturbance is detected, the distorted signal is processed by 
a feature extraction technique so that the most significant 
features are extracted. Regarding feature extraction 
techniques, various techniques have been proposed in the 
literature [8]. Fourier Transform (FT) and short-time 
Fourier transform (STFT) have been the subject of several 
studies. However, their application has been limited to the 
extraction of features from stationary signals. The fact that 
non-stationary signals vary with time made them 
unsuitable for determining the exact location of small 
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discontinuities and fast changes in the signal. With the 
emergence of wavelet transform (WT), the problems 
encountered with FT and STFT have been solved. The 
major strength of this approach is the flexibility of its 
windows, meaning that it uses wavelets with a short time 
window at high frequencies and long windows at low 
frequencies, thereby providing an excellent resolution for 
each scale of the signal [9]-[10]. However, the literature 
reports that the wavelet transform is highly sensitive to 
noise. This limitation has been overcome with Stockwell 
Transform (ST) [11] at the cost of a higher computational 
burden. EMD is an adaptive technique that decomposes the 
signal into multi-intrinsic modes functions [12]. However, 
the mixing mode problem still compromises the efficiency 
of this method. HHT [13] combines EMD and Hilbert 
Transform for analyzing non-stationary PQDs, but some 
issues such as the effect of EMD and cubic spline 
interpolation need to be addressed. 

The data resulting from the feature extraction technique 
serve as inputs to an intelligent classifier to recognize the 
PQD. In this context, the authors in [14] used Discrete 
Wavelet analysis with multi-resolution analysis MRA to 
extract features from the distorted signals; the optimal 
features have been delivered to the PNN classifier for PQD 
recognition. However, there is little evidence that a fixed 
number of features can lead to accurate results for all the 
disturbances encountered in real life. In article [15], a dual 
neural network-based method was proposed to detect and 
classify PQDs. However, the black-box nature of neural 
network classifiers makes the interpretation of results 
difficult. Interpretability is decisive for the proper 
recognition of PQDs. In [16], Tunable-Q wavelet 
transform and dual multiclass Support Vector Machine 
(SVM) for online automatic detection of power quality 
disturbances were proposed. However, the high 
computational burden of this technique makes it 
inappropriate for real-time applications.  

In the approaches recently proposed in the literature, the 
parameters such as the signal energy, maximum deviation, 
and kurtosis are calculated. Then, an original feature set is 
built to be fed to the classification system [17-19]. In the 
paper by [19], statistical features are used to define 
decision rules for classification. The proposed Decision 
Tree (DT) classifier has 5 layers structure which may cause 
delay for real-time analysis. On the other hand, DT 
classifiers have poor generalization ability. 

Depending on its duration, the PQD is: 
Self-extinguishing: if the disturbance is so short that it 

does not trigger the protection devices. The extinction 
transients appear on the voltage waveform during the 
disappearance of the disturbance. 

Fugitive: when removed after triggering and reclosing 
the protection devices. 

In all the papers cited above, only the fugitive scenarios 
of PQDs have been considered, the self-extinguishing ones 
haven't been involved. When self-extinguishing PQDs 
occurs, the extinction transients still affect the voltage 
waveform even after the end of the disturbance. In some 

cases, the voltage waveform is contaminated by strong 
harmonics that it becomes difficult to discriminate the fault 
oscillatory transients from those of extinction. This fact 
may complicate the detection of the end moment of the 
disturbance.  

Considering the above analysis, it can be concluded that 
the majority of existing methods cannot meet the 
requirements of a real-time application due to their 
complexity. In fact, they require a considerable amount of 
calculation without providing a meaningful interpretation 
of results. On the other hand, wavelet transform and fractal 
theory, each own some potential assets but does not 
perform well when used individually. In this paper, based 
on the idea that the combination of both techniques can 
lead to accurate detection of PQDs, the scanning ability of 
CWT is used to investigate the singularities of the distorted 
voltage, the high sensitivity of Discrete wavelet transform 
(DWT) to noise is used to prepare the data to be delivered 
to the detection module. Thereafter, the performance of the 
grille fractal dimension in detecting signal singularities is 
used to detect the start and end moments of the 
disturbance. 

In the power system field, the distorted voltage holds a 
considerable amount of singularities that -if properly 
interpreted-can tell a lot about the disturbance dynamics. 

Following an intuitive rezoning, the distorted signal may 
hide a similarity between its local and global properties. 
Self-similarity is one of the relevant properties of fractal 
sets that can serve as a tool for PQDs recognition. In this 
paper, the classification step is based on a geometric and 
statistical classification of self-similar features contained in 
PQDs signals. The geometric classification is based on 
CWT, whereas the statistical classification is based on 
(MFDFA) and an energy metric.  

The novelty in this paper is: 
• An algorithm for detecting and classifying PQDs 

is proposed not only for the fugitive scenario but also for 
self-extinguishing scenarios. 

• The denoising process is tailored to whether the 
disturbance is simple or complex. 

• At the classification stage, self-similarity is taken 
as a criterion for PQDs classification. The geometric 
classification is achieved by CWT, whereas the statistical 
classification is performed utilizing (MFDFA) and an 
energy metric. The combination of geometric and 
statistical classification is adopted to meet the requirements 
of real-time analysis. The proposed approach is easy to 
implement, allows a proper interpretation of the results, 
and possesses good generalization ability.  
The rest of the paper is organized as follows: in section 2, 
the theoretical basis of the wavelet transform, the grille 
fractal dimension, and the MFDFA approach are detailed. 
In section 3, the proposed algorithm is presented. The 
simulated system is described in section 4. The detection 
results are presented in section 5. The classification results 
are detailed in section 6. Discussion of the results is 
presented in section 7. The concluding remarks are given 
in section 8. 
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II. THEORY 

A. Wavelet transform 

The wavelet transform is a decomposition technique 
dedicated to the analysis of non-stationary signals. Two 
versions of WT exist: continuous and discrete. Continuous 
wavelet transform CWT is generally used to reveal scale-
invariant patterns and their location in time series. 
Mathematically, CWT is carried out according to the 
following equations: 
𝐶𝑊𝑇(𝑎, 𝑏) =

1

√𝑎
∫ 𝑥(𝑡)

+∞

−∞
𝜓 (

𝑡−𝑏

𝑎
) 𝑑𝑡  𝑎, 𝑏 𝜖 𝑅, 𝑎 ≠         (1) 

𝜓 is the mother wavelet, a and b are scaling and translating 
parameters. 
During the CWT process, the mother wavelet is translated 
over the whole signal and the correlation coefficients 
between the wavelet and the whole signal are calculated for 
all scales and positions. 
The calculation amount needed in CWT can be limited by 
choosing scales and positions based on the power of 2, this 
leads to Discrete Wavelet Transform DWT, which consists 
of dividing the signal 𝑠(𝑡) into approximations 𝐴𝑗 and 
details 𝐷𝑗  by means of high pass 𝑔(𝑛) and low pass 
ℎ(𝑛) filters [20]. The approximations result from the 
process of filtering the signal with high pass filters, whereas 
details are the results of the signal filtration by low pass 
filters [21]. The scaling function and wavelet function can 
be defined respectively by the following equations: 
                    𝜑(𝑡) = √2 ∑ ℎ(𝑛)𝜑(2𝑡 − 𝑛)                        (2) 

                    ψ(t) = √2 ∑ 𝑔(𝑛)𝜑(2𝑡 − 𝑛)                         

(3) 
                        𝑔(𝑛) = (−1)𝑛ℎ(1 − 𝑛)                             (4) 
𝑛 is the number of samples 
The approximations and details can be expressed by: 
 
                     𝐴𝑗+1(𝑡) = ∑ ℎ(𝑛 − 2𝑡) 𝐴𝑗(𝑛)                       (5) 
                     𝐷𝑗+1(𝑡) = ∑ 𝑔(𝑛 − 2𝑡)𝐴𝑗(𝑛)                        (6) 

 

B. The grille fractal dimension 

The grille fractal dimension 𝑁(𝛿) is defined as the number 
of squares of length δ required to cover the signal 𝑠. For a 
signal having (𝑛 + 1) sampling points (𝑠1, 𝑠2, … . . 𝑠𝑛+1) 
during the interval (𝑡, 𝑡 + ∆𝑡), 𝑁(𝛿) can be expressed as 
follows: 
                          𝑁(𝛿) =

1

𝛿
∑ |𝑠𝑖 − 𝑠𝑖+1|𝑛

𝑖=1                          (7) 
With δ is the time interval between two consecutive 
sampling points, it’s defined as: 
                                         𝛿 =

∆𝑡

𝑛
                                         (8) 

C. Multifractal Detrended Fluctuation Analysis  

Multifractal Detrended Fluctuation Analysis (MFDFA) is a 
strong technique introduced by [22] to investigate the 
multifractal behavior of time series. By means of this 
method, the parameters named: the singularity spectrum, the 
scale function, and other parameters are to be drawn to 
decide if the signal possesses multifractal properties. The 
steps needed in this method are as follows: 
Step 1: The profile of the time series {xi} of the length N is 
calculated according to: 
 
𝑌(𝑖) = ∑ (𝑥𝑗

𝑖
𝑗=1 − 〈𝑥〉)       𝑖 = 1 … … … … … … 𝑁               (9) 

〈𝑥〉 is the mean of the signal {𝑥𝑖} 
 
Step 2: the profile 𝑌(𝑖) is divided into 𝑁𝑠 = 𝑖𝑛𝑡(𝑁/𝑠) equal 
non-overlapping segments of size 𝑠. Since 𝑁 may not be a 
multiple of 𝑠 and the function 𝑖𝑛𝑡 takes the integer part 
of   𝑁𝑠. A short part at the end time of the signal could 
remain. In order to not miss this part of the time series, the 
same process is repeated but starting from the opposite end 
of the series. This leads to 2𝑁𝑠 for each value of 𝑠. 
Step 3: a polynomial is fitted to the data to reveal the local 
trend for each 2𝑁s. To this end, a first variance is calculated: 

𝐹2(𝑠, 𝜈) =
1

𝑠
∑ {𝑌[(𝜈 − 1)𝑠 + 𝑖] − 𝑦𝜈(𝑖)}𝑠

𝑖=1

2
                      

for  𝜈 = 1, … …  𝑁𝑠                                                            (10) 
And   
   𝐹2(𝑠, 𝜈) =

1

𝑠
∑ {𝑌[(𝑁 − (𝜈 −  𝑁𝑠)𝑠 + 𝑖] − 𝑦𝜈(𝑖)}𝑠

𝑖=1

2
     for  

𝜈 =  𝑁𝑠 + 1, … … 2 𝑁𝑠                                                      (11) 

𝑦𝜈(𝑖) is the fitting polynomial of the order 𝑚 representing 
the local trend in the segment 𝜈. 𝑚 is generally between 1 
and 3.  
Step 4: average all the segments to compute the order 𝑞 of 
the fluctuations function: 

    𝐹𝑞(𝑠) = [
1

2𝑁𝑠
∑   [𝐹2(𝜈, 𝑠)]

𝑞

2]2𝑁𝑠
𝜈=1

1

𝑞 for 𝜈 = 1 … 𝑁𝑠         (12) 

Step 5: Determine the scaling of the fluctuation function by 
analyzing the log-log plot of  𝐹𝑞(𝑠) versus 𝑠 for each value 
of 𝑞. The fluctuation function  𝐹𝑞(𝑠) exhibits the following 
power law: 
                                     𝐹𝑞(𝑠)~𝑠ℎ(𝑞)                                 (13) 
If a scaling behavior governs the time series {𝑥𝑖}. 
ℎ(𝑞) is the generalized Hurst exponent. Monofractal time 
series have the same value of ℎ for all the values of 𝑞  
whereas, in multifractal time series, the function  ℎ(𝑞) 
decreases with 𝑞. The order  𝑞 is generally between -5 and 
+5. 
Step 6: The generalized Hurst exponent is related to the 
Renyi exponent via the following equation: 
                                 𝜏(𝑞) = 𝑞ℎ(𝑞) − 1                           (14) 
This equation permits the confirmation of the signal 
multifractality. If 𝜏(𝑞) presents a non-linear curve, the time 
series is multifractal, otherwise, the time series exhibit 
monofractal behavior. The singularity spectrum 𝐷(ℎ) can be 
related to 𝜏(𝑞) by means of a Legendre transform:  
 
                               𝐷(ℎ) = 𝑞ℎ(𝑞) − 𝜏(𝑞)                       (15) 
The typical shape of the singularity spectrum for a 
multifractal set is shown in Fig. 1. The strength of 
multifractality is quantified by measuring the multifractal 
width ∆ℎ.  
                                 ∆ℎ = ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛                          (16) 
The width ∆ℎ quantifies the density of weak and strong 
singularities in a signal. A broader multifractal width ∆ℎ 
indicates that the signal under study is rich in self-similar 
patterns. ℎ0  reveals the dominant irregularity in a 
multifractal set. A high value of  ℎ0 informs that large 
fluctuations for which (q>0) dominate the signal dynamics, 
whereas a low value of  ℎ0 indicates that weak singularities 
with (q<0) are dominant. 
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Fig. 1. Typical shape of the singularity spectrum for 

multifractal set. 
 

III. THE PROPOSED ALGORITHM 

The main steps of the proposed algorithm are summarized in 
Fig. 2. When a disturbance occurs, the initial voltage 𝑉(𝑡) 
recorded at normal operation is contaminated with an 
additional signal 𝑉𝑑(𝑡). The contamination level depends on 
the nature of the disturbance being investigated. The 
distorted voltage 𝑉𝑓(𝑡) can be expressed as: 
 
                              𝑉𝑓(𝑡) = 𝑉(𝑡) + 𝑉𝑑(𝑡)                        (17) 

Where 𝑉𝑑(𝑡) is the signal that contains the fault information. 
In many cases, the PQD does not induce a noticeable 
distortion in the voltage waveform. In others, the frequency 
contents of distorted voltage are similar to those generated 
during switching events. In such situations, the disturbance 
may not be detected when analyzing 𝑉𝑓(𝑡). To cope with 
this problem, the fault information can be extracted by 
isolating 𝑉𝑑(𝑡) that holds the relevant information contained 
in the distorted voltage. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Fig. 2. Flowchart of the proposed detection and 
classification approach 

 

A. Denoising process 

After separating the additional signal from the distorted 
voltage, a decision should be made as to whether the 
disturbance is simple or complex. Since the self-
extinguishing scenario of PQDs is considered in this paper, 
two types of transients are to be differentiated: oscillatory 

transients that appear in the voltage waveform when a 
complex disturbance occurs and the extinction transients 
that encode the disturbance (simple or complex) 
extinguishing. In this paper, the transients nature is 
investigated using CWT, the technique possesses the ability 
to traduce the transients contained in a given signal into self-
similar shapes. For this purpose, CWT is conducted to 
reveal the self-similar features masked in the fault 
information Vd(t). Through CWT, the wavelet is translated 
over the entire signal and the correlation coefficients 
between the wavelet and the main signal are plotted to allow 
the visualization of all the signal characteristics. The choice 
of the mother wavelet is the key factor that decides the 
accuracy of PQD classification. In an attempt to reveal the 
self-similarities hidden in the signal Vd(t), a deep analysis of 
wavelet families has been carried out. After drawing 
comparisons between the coefficient plots of those wavelets, 
it was found that db10 led to the highest coefficients. 
Furthermore, due to its number of vanishing moments, db10 
has captured the smallest self-similar patterns that other 
wavelets have missed. 
 

B. Detection 

The detection schema is based on the fractal theory for its 
ability to reflect the singularities contained in complex 
signals. For this purpose, the fractal dimension is selected as 
a tool to detect the start and end moments of PQDs. In the 
field of power engineering protection, the rapidity of the 
detection process is highly required. Therefore, the grille 
fractal dimension is implemented for its fast computation 
process and its robustness in analyzing non-stationary 
signals. Once the signal 𝑉𝑑(𝑡) is processed, the grille fractal 
dimension of the decomposition detail is computed to locate 
the start and end times of the disturbance. To eliminate the 
transients between the start and end times of the disturbance 
or those due to the disturbance extinguishing, a threshold 
based on the second max of the grille fractal dimension is 
defined: 
                          𝑁(𝛿)𝑖 ≥ 𝑠𝑑 max( 𝑁(𝛿))                      (18) 

𝑇𝐻 = 1 
                                    𝐸𝑙𝑠𝑒  

𝑇𝐻 = 0 

C. Classification 

The classification stage is based on a combination of 
geometric and statistic classification. Geometric 
classification is based on CWT, whereas statistical 
classification is based on Multifractal Detrended Fluctuation 
Analysis (MFDFA) and an energy metric. 

D. Geometric classification 

The geometric classification is based on CWT. The aim is to 
investigate whether the distorted voltage contains self-
extinguishing transients or not. The disturbance is self-
extinguishing if CWT coefficient plots contain self-
extinguishing self-similarities. Otherwise, the disturbance is 
fugitive. 

E. Statistic classification by MFDFA 

Given the complexity and non-stationary nature of the 
distorted voltages, the associated time series exhibit a 
multifractal behavior; this implies that a single scaling 
exponent will not be sufficient to describe the behavior of 
these series. Non-stationary signals do not exhibit the same 
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singularity over time but they are characterized by local 
singularities that vary with time. The singularity spectrum is 
the parameter that measures the signal fluctuations during a 
time t. If the Holder exponent H defines the local singularity 
of a signal. The singularity spectrum 𝐷(ℎ) corresponds to 
the Hausdorff dimension of a set of points whose local 
holder exponent is H. Two methods are generally used to 
quantify the multifractality of a signal: Multifractal 
Detrended Fluctuation Analysis (MFDFA) [22] and Wavelet 
Transform Modulus Maxima (WTMM) [23]. In reference 
[24], it has been concluded that MFDFA leads to better 
detection of multifractality compared to WTMM that in 
some cases, may suggest a spurious multifractality. 
Furthermore, it has been mentioned that the performance of 
WTMM is strongly dependent on the chosen wavelet. In the 
paper [20], it has been stated that in addition to its 
simplicity, MFDFA leads to more significant results 
compared to WTMM. Taking this into consideration, the 
MFDFA method has been selected in this paper to estimate 
the singularity spectrum of PQD voltages. 

F. Statistic classification by energy metric 

Further to CWT and MFDFA, a metric is developed in this 
paper based on the energy of the grille fractal dimension; the 
proposed metric is defined as: 
 
                                𝐸𝑀 = 𝑛 ∗

𝐸𝑛(𝑁(𝛿))

𝐸𝑛(𝑁(𝛿)𝑉)
                          (19) 

 
𝐸𝑛(𝑁(𝛿)): The energy of the grille fractal dimension 𝑁(𝛿)  
obtained from the detection module. 
 𝐸𝑛(𝑁(𝛿)𝑉): The energy of the grille fractal dimension of 
the voltage 𝑉(𝑡). 
𝑛 is the number of the sampling points. The proposed metric 
is calculated for all PQDs under consideration. Then, the 
range of 𝐸𝑀 is defined for each disturbance. 

IV. THE SIMULATED SYSTEM 

In order to prove the efficiency of the proposed 
methodology, a total of 4 disturbances are simulated in 
Matlab Simulink Software. The investigation included: 
outage, sag, phase to phase fault, three-phase fault. For each 
PQD, self-extinguishing and fugitive scenarios are 
considered. All the disturbances start at t0=0.1s and end at 
t1= 0.14s. For each disturbance scenario, the distorted 
voltage recorded in the scope is logged in the workspace 
with 8001 samples. The sampling frequency is 20003.2 Hz 
and the rate frequency is 60Hz. In several publications, 
PQDs have been simulated based on mathematical models. 
This may be far from the reality where the distorted voltages 
are contaminated by strong oscillatory transients. In this 
paper, the power network considered in simulations is a 
three-phase 735 KV real compensated system supplying an 
equivalent load via 2 transmission lines [25].  The system 
(Fig. 3) transmits power from 6*350 MVA generators to an 
equivalent system via a 600 km transmission line. The 
equivalent system consists of a 300 MVA transformer 
feeding a load of 250 MW. The transmission line is divided 
into 2 lines of 300 Km; line 1 between buses B1 and B2 and 
line 2 between buses B2 and B3. CB1 and CB2 are the 
circuit breakers of line 1. To improve the transmission 
efficiency, series and shunt compensation are used. For that, 
a capacitor bank whose reactance represents 40% from the 

line reactance is connected to the end of each line (series 
compensation). For shunt compensation, a shunt reactance 
consisting of 330 MVAR is connected to both lines. The 
protection of the capacitor bank is carried out via metal oxid 
varistors (MOV1 and MOV2). 
 

 
Fig. 3. The three phase 735 KV real compensated system 

 

V. DETECTION RESULTS 

A. Outage 

In order to simulate the self-extinguishing scenario of the 
outage, a short circuit is created in phase A of line 1. The 
corresponding distorted signal Vf(t) is shown in Fig. 4; the 
transients appearing on its waveform are due to the 
extinction of the disturbance. These transients are gradually 
attenuated until they definitively disappear. To decide 
whether the disturbance is simple or complex, CWT is 
applied to the differential voltage utilizing the db10 wavelet 
(Fig.4). The coefficients denoting the correlation index 
between the signal and the wavelet are generated from the 
scale 1 to 220. The colour at each point of the scalogram 
encodes the coefficient magnitude; bright colours refer to 
high coefficients, whereas dim colours refer to low 
coefficients. The bright region depicted after the end of the 
disturbance corresponds to the extinction transients; it 
progressively disappears with the extinction of the 
disturbance. The branches appearing at the smallest scales 
are the modulus maxima of the wavelet transform; they 
encode the signal singularities. As can be seen from Fig. 4, 
the modulus maxima extend to high scales in a self-similar 
manner, thereby reflecting the self-similar behavior of the 
extinction transients. However, those self-similarities do not 
exist for all the scales; it can be seen in the figure that the 
self-similar patterns disappear beyond scale 140.  
 

 
Fig. 4: CWT applied to the differential voltage of self-

extinguishing outage 
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Fig.5: Detection results of self-extinguishing outage 

 

 
Fig. 6.  CWT applied to the differential voltage of fugitive 

outage  
 

 
Fig. 7. Detection results of fugitive outage 

 
As can be seen from Fig. 4, self-similar patterns do not 
appear during the disturbance, which means that we are 

dealing with a simple PQD. For this reason, the differential 
voltage is processed by means of db4 level 1 decomposition. 
The computed fractal dimension 𝑁(𝛿) and the threshold 𝑇𝐻 
are shown in Fig. 5. From this figure, it can be seen that the 
presence of the extinction transients does not influence the 
detection accuracy; the start and end moments of the 
disturbance are located efficiently. 
Similarly to the self-extinguisher outage, the fugitive outage 
is qualified as a simple disturbance since the corresponding 
additional voltage does not show self-similar patterns during 
the disturbance (Fig. 6). The fractal dimension 𝑁(𝛿) and the 
threshold 𝑇𝐻 are presented in Fig. 7. From the curve of 𝑇𝐻, 
it can be seen that the first peak depicts the start moment of 
the disturbance, whereas the second corresponds to its end. 
 

B. Voltage sag 

Following a self-extinguishing short circuit applied to line 1, 
the voltage on B3 dropped from its initial value. The 
corresponding coefficients are displayed in Fig. 8. Similarly 
to the self-extinguishing outage, self-similar patterns 
identifying the extinction transients are depicted. This self-
similarity is loosed after the scale 140.  
 

 
 

Fig. 8. CWT applied to the differential voltage of self-
extinguishing sag 

 

 
Fig. 9. Detection results of self-extinguishing sag 
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The differential voltage is processed through db4 level 1 
decomposition due to the absence of self-similar patterns 
during the disturbance. The detection results are drawn in 
Fig. 9. A drastic variation is depicted at the start moment of 
the disturbance. The second peak of the grille fractal 
dimension 𝑁(𝛿)  is followed by transients recording the 
extinction of the disturbance. The extinction transients have 
been eliminated by means of the threshold 𝑇𝐻 and the end 
moment of the disturbance was accurately detected. 
For the fugitive sag, the bright spots are centered on the start 
and end moments of the disturbance (Fig.10). The detection 
results in Fig. 11 reveal that the proposed algorithm can 
detect the disturbance accurately. 
 

 
   Fig. 10. CWT applied to the differential voltage of fugitive 

sag 

 
Fig. 11. Detection results of fugitive sag 

 
 

C. Phase to phase fault 

A double phase fault is simulated by short-circuiting phases 
A and B of line 1. The coefficients plot shown in Fig. 12 can 
be divided into two areas. The first area describes the 
disturbance period, whereas the second region denotes the 
end of the disturbance and the start of the extinction 
transients. The first area is characterized by bright self-
similarities that extend from small scales up to scale 80. The 
second region is distinguished by bright spots extending to 
large scales and dim self-similar patterns that disappear with 
the extinction of the disturbance. 

 
Fig. 12. CWT applied to the differential voltage of self-

extinguishing phase to phase fault. 
 

The self similarities depicted during the disturbance prove 
that we are facing a complex disturbance. For this reason, 
the differential voltage is processed using the db10 level one 
decomposition. After having tested several supports, it 
turned out that the db10 level one decomposition allowed an 
effective detection of the disturbance even in the presence of 
strong oscillatory transients. This result is clearly illustrated 
in the fractal dimension plot (Fig. 13) where a drastic 
change is depicted at the end of the disturbance. The 
proposed threshold 𝑇𝐻 eliminates the transients between the 
two strongest peaks of 𝑁(𝛿), allowing accurate detection of 
the start and end moments of the disturbance. 
 

Fig. 13. Detection results of self-extinguishing phase to 
phase fault 

 

 
Fig. 14. CWT applied to the differential voltage of fugitive 

phase to phase fault 
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Fig. 15. Detection results of fugitive phase to phase fault 

 
 
Similar coefficient plots are identified in the fugitive 
scenario of phase to phase fault; the only difference is that 
the part representing the extinction transients in the self-
extinguishing scenario has disappeared (Fig.14). The grille 
fractal dimension 𝑁(𝛿) is shown in (Fig. 15). The two peaks 
detect the disturbance well despite the presence of strong 
transients between them. These transients are eliminated by 
means of the proposed threshold 𝑇𝐻, and the occurrence 
moments of the disturbance are detected accurately. 

 
D. Three-phase fault 

Following a three-phase fault, voltage sag with harmonics 
was recorded on phase A. The coefficients drawn in Fig. 16 
refer to the self-extinguishing scenario of a three-phase 
fault.  Whereas bright self-similarities are identified during a 
two-phase fault, dim self-similarities are identified during a 
three-phase fault with a small bright region ranging from 
scale 30 to scale 40.  
 

 
Fig. 16. CWT applied to the differential voltage of self-

extinguishing three-phase fault. 
 
Given the presence of self-similar patterns during the 
disturbance, the differential voltage is processed through 
db10 level 1 decomposition. The grille fractal dimension 
shown in Fig. 17 proves the effectiveness of the proposed 
algorithm. The extinction transients are eliminated using the 
threshold 𝑇𝐻, and the occurrence times of the disturbance 
are detected.  

 
Fig. 17. Detection results of self-extinguishing three-phase 

fault. 
 

 

 
Fig. 18. CWT applied to the differential voltage of fugitive 

three-phase fault. 
 

 
Fig. 19. Detection results of fugitive three-phase fault. 
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As can be seen in Fig. 18, the self-similar patterns depicting 
the extinction transients disappear in the fugitive scenario. 
The detection results shown in Fig. 19 locate well the 
occurrence moments of the disturbance. 

VI. CLASSIFICATION RESULTS 

A.    Multifractal Detrended Fluctuation Analysis 

In this section, the MFDFA algorithm is applied to all 
distorted voltages and the multifractal behavior hidden in 
each disturbance is quantified. The singularity spectrums 
related to all the examined disturbances are shown in Fig. 
20. From Fig. 20.a, it can be seen that the self-extinguishing 
outage holds a broad range of multifractal patterns (∆ℎ =
2.29) with a dominance of small fluctuations (long right 
tail). In the fugitive outage, the disappearance of the 
extinction transients narrowed the right tail representing the 
small fluctuations; this led to (∆ℎ = 2.22) instead of 2.29 
for the self-extinguishing outage.  
The curve of the singularity spectrum is more concave for 
the self-extinguishing sag (Fig. 20.b) with a narrowing in the 
multifractal width (∆ℎ = 1.2); this can be explained by the 
fact that the voltage sag represents a drop of the fluctuations 
magnitudes (voltage waveform) whereas, during the outage, 
the voltage is completely loosed which is considered as an 
intense transformation from the fluctuation point of view. 
The multifractal width narrowed more in the fugitive 
scenario of sag (∆ℎ = 1.04) with a dominance of weak 
fluctuations at the expense of large ones (long right tail).  
In the self-extinguishing phase to phase fault, the 
multifractal width is richer than that of sag due to the strong 
oscillatory transients that appear in the voltage waveform 
(Fig. 20.c). In the fugitive scenario, the peak of the 
singularity spectrum shifts to the right, thereby reflecting the 
shrunk of the right tail representing the weak singularities. 
For self-extinguishing three-phase fault, the distorted 
voltage is rich in singularities which explain the wide width 
(∆ℎ = 1.35) of the singularity spectrum (Fig. 20.d). In the 
fugitive scenario, the multifractal width becomes (∆ℎ =
1.06).  
 

 

 
Fig. 20. Singularity spectrum of PQDs voltages (a- outage, 

b-sag, c-phase to phase fault, d- three-phase fault) 
 

B. Automatic classification of PQDs 

For an automatic classification of the studied PQDs, an 
algorithm is developed based on CWT coefficient plots, 
MFDFA singularity spectrum, and the proposed energy 
metric EM. For this reason, 150 samples of each disturbance 
have been created with different parameters. The voltage 
swell was also considered. The maximum and minimum 
values of EM and ∆h for all the studied PQDs are detailed in 
tables I and II. The proposed algorithm is given in figure 21. 
 

Table I: Range of EM for all the considered disturbances 
Disturbance The range of EM 

Self-extinguishing outage 145<EM<196 
Fugitive outage 1524< EM <2638 
Self-extinguishing sag    614 < EM <994 
Fugitive sag 992< EM<1706 
Self-extinguishing phase to phase fault 1205< EM <1783 
Fugitive phase to phase fault   2010< EM <3346 
Self-extinguishing three-phase fault 12 < EM <14 
Fugitive three-phase fault    147< EM <1087 
Self-extinguishing swell     239< EM <12064 
Fugitive swell 331< EM <607 

 
Table II: Range of ∆h for all the considered disturbances 
Disturbance The range of ∆h 

Self-extinguishing outage 1.85< ∆h < 2.30 
Fugitive outage 1.85< ∆h < 2.20 
Self-extinguishing sag 1.10< ∆h < 1.85 
Fugitive sag 1.10< ∆h < 1.70 
Self-extinguishing phase to phase fault 1.10< ∆h < 1.85 
Fugitive phase to phase fault 1.01< ∆h < 1.3 
Self-extinguishing three-phase fault 1.01< ∆h < 1.5 
Fugitive three-phase fault 1.01< ∆h < 1.35 
Self-extinguishing swell 0.8< ∆h < 1.01 
Fugitive swell 0.8< ∆h < 0.9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 21. Algorithm for automatic classification of self-
extinguishing and fugitive PQDs 

 
 
The proposed classification algorithm has been developed 
from the obtained results. For all the studied disturbances, 
the self-extinguishing and fugitive scenarios have close 
singularity spectrums. However, the extinction transients 
scanned in CWT plots can be used to discriminate between 
them. Swell, sag, and outage show similar CWT coefficient 
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plots, but they have different singularity spectrum ∆h. As for 
three-phase fault (sag + harmonics) and phase to phase fault 
(harmonics), they can be distinguished by the proposed 
energy metric EM. The proposed classification algorithm is 
easy to implement, provides a proper interpretation of the 
results, and shows good generalization ability. 
 
Table III: Comparison of the classification accuracy of the 
proposed approach with DT, PNN, PSO-ELM and ANN. 

Type of the 
disturbance 

Classification accuracy % 
DT PN

N 
PSO-
ELM 

ANN Proposed 
approach 

Self-
extinguishing 
outage 

    100 

Fugitive outage 99.9 100 100 100 100 
Self-
extinguishing 
sag 

    100 

Fugitive sag 99.9 98 98 99 98.66 
Self-
extinguishing 
phase to phase 
fault  

    100 

Fugitive phase 
to phase fault  

100 99 100 100 100 

Self-
extinguishing 3 
phase fault  

    99.33 

Fugitive 3 
phase fault  

99.9
9 

98 98 98 99.33 

Swell  100 99 100 96 100 
AVG 99.9

7 
99 98.75 98.84 99.29 

 
 

The classification accuracy of the proposed approach is 
compared with DT [19], PNN [14], PSO-ELM [26], and 
ANN [27]. The self-extinguishing scenario of each 
disturbance is considered even if it was not studied in the 
other methods. The results in (Table III) show that the 
recognition accuracy of the approach is 100% for several 
disturbances. For three-phase fault (sag + harmonic), the 
recognition rate reached is 99.33% which is higher than 
PNN, PSO-OLM, and ANN. The average accuracy of the 
method is 99.29% which demonstrates that the proposed 
algorithm can achieve an excellent classification for all the 
disturbances. 

VII. DISCUSSION 

Among the advantages of the proposed approach, the 
denoising process is tailored depending on whether the 
disturbance is simple or complex. As a result, accurate 
detection of PQDs was achieved even in the presence of 
high oscillatory transients. Some of the exiting approaches 
have used the same wavelet decomposition for simple and 
complex disturbances. However, experience has shown that 
a wavelet decomposition that may be appropriate for 
complex disturbance can lead to information loss if applied 
to a simple disturbance. Within simulations, we have found 
that db4 is suitable for simple disturbances, whereas db10 is 
appropriate for complex ones. 
Contrary to the existing fractal approaches, the proposed 
threshold is found to yield efficient detection results without 
a need for further analysis of the grille fractal dimension. 

This fact reduces the computation time and allows rapid 
detection of PQDs. 
The detection scheme demonstrates high robustness against 
self-extinguishing transients. As shown in detection results, 
the start and end moments of self-extinguishing PQDs have 
been accurately detected. In all the papers cited above, only 
the fugitive scenario has been considered. However, the 
self-extinguishing scenarios are frequent in real-life PQDs. 
Some references consider the noisy environment by adding 
the Gaussian white noise to the PQDs voltages [10]. 
However, in real-life disturbances, it's frequent to have 
different levels of distortion on the same distorted voltage. 
Consequently, adding one level of the Gaussian white noise 
cannot accurately simulate real disturbances. 
In the approaches proposed in [17-19], several parameters 
were calculated to define the feature set of the classification 
module. In the proposed approach, the classification of 
PQDs is based on 3 parameters: CWT coefficient plots, the 
singularity spectrum and the energy metric EM. The three 
parameters are used as inputs to the classification algorithm 
for automatically classifying PQDs.  This fact reduces the 
calculation burden and increases the generalization ability of 
the method. 
Compared to ST [11] and Gray image [18] approaches, the 
proposed recognition approach has the advantage of 
revealing and quantifying the self-similar patterns that 
discriminate one disturbance from the other. This property is 
of immense value, especially for real-time engineering 
applications in which fast and interpretable results can make 
a great difference. In fact, through CWT and MFDFA, an 
algorithm with low computational burden and high 
generalization ability has been built. The interpretation of 
CWT coefficients plots allows us to decide whether the 
disturbance is self-extinguishing or fugitive. As for the 
singularity spectrum, it permits the identification of the 
disturbance nature. The algorithm has been supplemented by 
the energy metric EM to recognize PQDs. 
In the paper [7], global and local fractal indexes of the 
wavelet coefficients were extracted and used to divide the 
disturbances into 3 groups according to their perturbation 
degree. However, as shown in this paper, disturbances such 
as sag and outage have similar fractal dimensions. As a 
result, the fractal dimension alone does not allow precise 
classification of PQDs. There is a need for a statistical 
approach to meet this need. 

VIII. CONCLUSION 

Fractal theory and wavelet transform are widely used in 
power network issues. In a previous paper, the fractal theory 
was used to study the dynamic behavior of the power 
network [28]. In this paper, the high sensitivity of wavelet 
transform to noise and the performance of the grille fractal 
dimension in detecting singularities have been combined to 
detect the start and end times of PQDs. In the classification 
stage, CWT was used to perform a geometric classification 
by scanning the self-similarities that distinguish one 
disturbance from another. Furthermore, the density of self-
similar features has been quantified through MFDFA and an 
energy metric was proposed to complete the statistic 
classification algorithm. 
The main contribution of this paper is: 
- The proposed recognition algorithm is efficient not only 
for fugitive PQDs but also for self-extinguishing ones. 
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- The denoising process is adapted according to whether the 
disturbance is simple or complex. 
- The proposed threshold yields efficient detection results 
without a need for further analysis of the grille fractal 
dimension. 
- The detection approach has good robustness against 
oscillatory and self-extinguishing transients. 
- The proposed approach is easy to implement, allows a 
proper interpretation of the results, and possesses good 
generalization ability.  
Our findings related to PQDs can be summarized as follows: 
- For all the studied PQDs: two and three-phase faults, each 
of them have its own signature on the CWT coefficients and 
the energy metric. However, outage, sag, and swell, their 
coefficient plots are images of each other, whereas their 
singularity spectra differ significantly. This proves the major 
importance of the singularity spectrum in quantifying the 
impact of each disturbance on the voltage dynamics. 
- For the same disturbance, the multifractal width varies 
from one scenario to another. Due to the extinction 
transients, it has been shown that the self-extinguishing 
scenario posses the broadest width compared to the fugitive 
scenario. 
- Strong oscillatory transients result in brilliant self-similar 
shapes, whereas weak transients result in dim self-
similarities.  
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