
 

 

 
Abstract— Perceiving the three-dimensional structure of the 

surrounding environment and analyzing it for autonomous 

movement is an indispensable element for robots to operate in 

scenes. Recovering depth information and the three-dimensional 

spatial structure from monocular images is a basic mission of 

computer vision. For the objects in the image, there are many 

scenes that may produce it. This paper proposes to use a 

supervised end-to-end network to perform depth estimation 

without relying on any subsequent processing operations, such as 

probabilistic graphic models and other extra fine steps. This 

paper uses an encoder-decoder structure with feature pyramid to 

complete the prediction of dense depth maps. The encoder adopts 

ResNeXt-50 network to achieve main features from the original 

image. The feature pyramid structure can merge high and low 

level information with each other, and the feature information is 

not lost. The decoder utilizes the transposed convolutional and 

the convolutional layer to connect as an up-sampling structure to 

expand the resolution of the output. The structure adopted in this 

paper is applied to the indoor dataset NYU Depth v2 to obtain 

better prediction results than other methods. The experimental 

results show that on the NYU Depth v2 dataset, our method 

achieves the best results on 5 indicators and the sub-optimal 

results on 1 indicator. 

 
Keywords—Three-dimensional structure, single image, 

convolutional neural networks, depth map.  

I. INTRODUCTION 
epth estimation provides help for understanding the 

three-dimensional relationship between objects in the 
image scene, thereby improving the accuracy of current 
recognition tasks [1] and can be applied to indoor scenes 
understanding, pose estimation, 3D reconstruction, robot 
navigation and virtual reality (VR) [2-9]. 

The main purpose of predicting the depth is to assign a 
one-to-one corresponding depth value to all pixels in a single 
image. Most of the methods for predicting depth are based on 
stereo vision [10,11] or motion, while there are fewer depth 
map prediction methods based on monocular vision. The 
reason is that the prediction method based on stereo vision can 

accurately restore depth information while providing accurate 
image correspondence and it can be achieved as long as the 
correspondence between image points is found through local 
appearance features. Monocular vision requires a global view 
of the scene to associate depth cues, and as far as a single 
image is concerned, there may be countless scenes that can 
produce it. As far as a single image is concerned, it mainly 
uses visual motion information [12], different shooting 
conditions [13,14], linear perspective and occlusion to 
complete the depth prediction. Since then, researchers have 
begun to study methods for estimating depth maps from 
monocular images. 

The traditional methods [15-19] mainly use the 
combination of hand-craft features and probabilistic graphic 
models to solve the problem of prediction depth map for 
monocular images. The traditional methods mainly establish 
geometric assumptions to predict the spatial contours of 
indoor or outdoor scenes. However, the traditional method of 
predicting depth maps has many problems: probabilistic 
graphic models are difficult to train, and approximate methods 
are often used for calculation; hand-craft features are not as 
accurate as extracted by convolutional neural networks; some 
assumptions need to be established to complete prediction and 
usually only applicable to specific scenarios. 

Recently, deep learning has demonstrated powerful 
feature representation capabilities in computer vision tasks. 
Deep learning methods are introduced into the task of depth 
estimation [20-25]. The convolutional neural network is fast in 
feature extraction, and the prediction results are more accurate. 
The supervised method is mainly divided into the use of 
improved convolutional neural network to extract features 
[25], the use of multi-scale feature fusion [21,24], and the use 
of probabilistic graphic models for subsequent processing 
[22,23]. 

The supervised method requires numerous ground-truth 
depth map to train the model, so that it has strong 
generalization ability, the real depth map is usually difficult to 
obtain, and the supervised depth map estimation method is 
considered to be an ill-posed problem because of the 
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ambiguity of the scale. Researchers have proposed many 
semi-supervised and unsupervised methods [26,27] to solve 
the problems of supervised prediction methods. However, the 
estimation output of semi-supervised and unsupervised 
methods are not as accurate as those of supervised methods, 
and internal settings such as camera calibration are required. 

The paper proposes a novel single-image supervised 
depth prediction method. We use the encoder-decoder 
structure with feature pyramid to complete prediction of dense 
depth map. The encoder uses ResNeXt-50[28] as the basic 
network to obtain representative features from the raw image. 
The pyramid structure can make high-level and low-level 
information merge with each other, and feature information is 
not lost. The decoder uses the deconvolution and the 
convolution layer to connect as an up-sampling block to 
restore the size of the output feature. At the same time, we 
experiment with the proposed method on indoor datasets. The 
visual effects and qualitative indicators are all due to other 
methods. 

II. DEPTH ESTIMATION METHODS 
In this part, we introduce our depth map estimation 

method for a single image in detail. Above all, we use 
ResNeXt-50 as our encoder part, and the decoder section 
adopts a new up-sampling strategy to expand the size of the 
predicted output. The encoder and decoder are combined and 
arranged in the feature pyramid. Second, we propose a suitable 
training strategy to optimize a given task and achieve better 
prediction results. 

A. Network framework 

Inspired by U-net network structure [30], we designed a 
depth estimation network with an encoding-decoding structure, 
and regarded depth estimation as learning problem of deep 
regression. Fig. 1 shows the overall network structure of the 
proposed model. 

 

input

+
Upsample

conv1x1

output

Resnext layer

Pyramid feature

Upsample block  
Fig.1 Our proposed encoder-decoder structure 

 
The skeleton structure of the encoder is ResNeXt-50 (the 

blue block in the figure), and the decoder structure is 
composed of three deconvolution blocks (the green block in 
the figure). The encoders and decoders are arranged in the 
form of feature pyramid. The encoder part extracts the key 
features from the original data and the decoder section mainly 
adopts deconvolution operations to restore the resolution of 
the output feature map. 

In the encoder module, we use ResNeXt-50 [28] to 
acquire multi-scale features of the original image, similar to 
[29]. The feature image size is reduced at the speed of ratio 2, 
and the feature image depth is zoomed in at the speed of ratio 
2. The top-level feature image is the feature image with low 
resolution and strong semantic information. In the network 
structure, many blocks constitute a stage, and the final output 
of each stage is regarded as the first level of the multi-scale 
structure. For ResNeXt-50 as the basic skeleton, the biggest 
difference between the ResNeXt block and the residual block 

is that the intermediate dimensions are divided into multiple 
groups at the same time, and the dimensions of each group are 
very small, which reduces the running time. The 
characteristics of the ResNeXt block are shown in Fig. 2.The 
residual network mainly has four layers, which are composed 
of 3, 4, 6, and 3 residual blocks respectively. Each residual 
block consists of 1×1, 3×3, 1×1 convolutional layers and skip 
connections. 

This structure divides the middle dimension into multiple 
groups and reduces the dimension of each group. As shown in 
the figure 2, the 128 dimensions are divided into 32 groups, 
and each group has a dimension of 4. Among them, different 
convolution kernels (1×1,3×3,1×1) have different functions, 
namely compression dimension, convolution processing, and 
restoration dimension. The network parameters are reduced 
and the speed is increased. 
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                            (a)                                (b) 
Fig.2 The basic residual block structure of ResNetXt-50. (a) is residual block; (b) is resnext block. 1x1 and 3x3represent that 

the convolution kernel is 1x1 and 3x3 size 
 
The resolution from small to large path and internal 

connections: The higher levels are connected to the lower 
levels through horizontal connections and simple up-sampling 
operations to strengthen the reuse of features. The 
up-sampling operation expands the feature size of the 
high-level to be consistent with the feature of the low-level. 
We use bilinear interpolation method to up-sample the lower 
resolution features map by 2 times, and then the up-sampled 
feature map and the corresponding path of resolution from 
large to small feature maps (after 1×1 convolution for 
decreasing the number of channels and parameters) 
element-wise addition and merging, repeat this process until 
the highest resolution. Before starting the above operation, we 
can generate the roughest resolution map by convolving c5 
with 1×1. 

 In the encoding-decoding structure, the decoder only 
performs up-sampling operations on the highest-level features 
extracted by the encoder, and the contextual semantic 
information in the bottom layer will be lost, and the 
highest-level features contain less information about small 
objects in the image, so the up-sampling operation is 

performed When restoring the feature resolution, the depth of 
small objects will be blurred or even ignored. The middle 
connection path of the feature pyramid merges multilevel 
feature The high resolution features reduce the number of 
parameters through convolution, and the high-level features 
increase the resolution to the same as the low-level through 
bilinear interpolation and up-sampling, and then the processed 
features are gradually processed. The intermediate connection 
path helps to retain detailed information from low-level 
features. 

In the decoder stage, we designed a novel deconvolution 
block to increase the size of output feature map. Through the 
structure, the output feature map is up-sampling to a higher 
resolution, and the channel dimension is consistent with the 
feature map with higher resolution. Our decoder section 
contains four deconvolution block structures. The specific 
details of the deconvolution block structure are shown in Fig. 
3. 
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Fig. 3 The structure of deconvolution block. The size of the output of deconvolution block is the same as that of the low-level 
feature maps, and the dimension is the same. 

 
First, we use  3×3 convolutional,  regularization  and  

deconvolution layers to keep the output high-level and 
low-level features the same size. The convolutional layer plays 
a role in reducing the number of channels of the input feature 
map, and deconvolution operation keeps the dimensionality 
unchanged. On the other hand, the low-level features are 

passed through the 1×1 convolutional layer, BN layer and 
activation layer (ReLU), and then the output of the low-level 
and the high-level features are added. The number of channels 
remains the same. Unlike cascading, since the number of 
channels of the feature map is not increased, the number of 
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parameters can be significantly reduced. Finally, we output the 
feature map through the ReLU layer. 

III. LOSS FUNCTION 
When training the regression model, it is necessary to 

design a suitable loss function to improve the accuracy and 
robustness of the prediction, and further explore the 
relationship between the predicted and ground-truth value. 
Manhattan distance (L1) and Euclidean distance (L2) are often 
used as the standard loss function for regression tasks. The 
Manhattan distance is the sum of the absolute values of the 
difference between the estimated and true depth point. The 
Euclidean distance loss minimizes the squared Euclidean term 
between the predicted and ground-truth value. Expressed by 
the following: 

*
1

1
=

n

i i

i

L y y


                (1) 
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=
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where n is sum of valid pixels, i is the index. iy  and *
iy is 

the i  pixel value of the estimated and true depth map, 
separately. 

From Eq.1 and Eq.2, we can get the depth loss Ld, 
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where  *1 max
5 i i ic y y  .  

As shown in formula (3), when the absolute value of the 
error of the estimated and true depth value is greater than c, 
the Ld is changed to L2 loss; otherwise, we take the L1 loss 
function as the Ld. The L2 term is more sensitive to pixels with 
high residual errors, which increases its weight; and the L1 
term has a greater impact on the pixel values with smaller 
errors. However, for edge structures with sudden changes in 
depth, the above loss is relatively insensitive to the offset in 
the horizontal and vertical directions and edge deformation 
and blurring. Therefore, we added gradient term to make the 
edge of the prediction result clearer, see Eq.4. 

*
g

1

1 n

i i

i

L y y
n 

                 (4) 

where *
iy and iy are the sum of the X-direction and 

Y-direction gradients for the real and output depth map, 
respectively. The gradient term is sensitive to the offset of the 
edges in the horizontal and vertical directions. 

So as to deal with the depth of smaller objects and make 
further efforts the accuracy of the global depth map, we 
introduce the surface normal loss, (the measurement of the 

depth map relative to the ground-truth depth map and the 
accuracy of the estimated surface normal) into our training 
strategy. 
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where ( ), ( ),1
T

d

i x i y in d d      is the surface 

normal vectors and ( ), ( ),1
T

p

i x i y in p p     is the 

estimated depth map.  x  and  y means X and Y 

direction gradients, ,   expresses the inner product of the 

two vectors. 
2 2

,d p

i i

d p

i i

n n

n n
 indicates the cosine similarity of 

the surface normal vector between the estimated and true 
depth map. The closer the value is to 1, the higher the 
similarity.  

Finally, we assign different weights to the Ld,, Lg and Ln. 
The weights are obtained by experiments and are 0.6, 0.2 and 
0.2 respectively. The loss function we adopt is, 

o 0.6* 0.2* 0.2*d g nL ss L L L         (6) 

IV. EXPERIMENTATION 
This paper conducts experiments on the indoor 

dataset−NYU Depth v2, which is usually used to evaluate the 
performance of depth estimation models, to verify the 
effectiveness of proposed method. The detailed experimental 
process and results will be described in the following 
summary.  

A. Dataset: NYU Depth v2 

We use the NYU Depth v2 dataset, which is commonly 
used in depth prediction, to train and test our model. The raw 
dataset was acquired by the Microsoft Kinect camera and 
contained 464 scenes. We use the official split, with 249/215 
training and test scenes. We expand the original rough dataset 
of NYU Depth v2 as the training set of the model. There are 
about 40,000 training images in the original rough dataset. 
This paper uses data enhancement operations such as rotation, 
flips, scale, to expand the training images to about 1.2 million 
as the training set. The test set is the official 164 test images. 

The size of the raw image are 640×480, we downsample 
the raw image to half, and then center clipped to 300×228 as 
the input to network. Finally, we train our model with a batch 
size of 8 for approximately 20 hours. The initial learning rate 
is 0.0001. The momentum is 0.9.  

The visual effect of the experiment is represented in Fig.4 
below. 
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(a)                            (b)                          (c) 

Fig.4 The visual effect of our method on the test set. (a) is the original input, (b) is the ground-truth depth map, and (c) is 
the output predicted by this method.  
The darker the color represents the smaller the depth value and the closer the object is to the lens; the lighter the color (the 
yellow area in the figure) represents the greater the depth value and the farther the object is from the lens. 

 

B. Data processing and experimental details 

The depth map output by our model has a lower resolution 
than the ground truth depth map. When comparing, we use 
bilinear interpolation to expand the resolution of the prediction 
result (114×150) to be consistent with the ground truth 
(480×640). The evaluation criteria used in this paper are the 
same as classic papers, and the evaluation criteria used are as 
follows: 
 
Threshld: percentage of predicted pixels. 
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where n is the total number of effective pixels, i represents the 
index. iy and *

iy  is the i pixel value of the predicted and 
ground truth depth map, separately. The threshold is a 
constant: 1.25, 1.252, 1.253. 

In order to verity the capability of the model on 
quantitative indicators, we conducted a comparative 
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experiment on the test set of the indoor dataset to prove that 
our model is better than other methods. Figure 1 shows the 

quantitative indicators of our method compared with other 
methods. 

 
Table 1. The experimental results of the depth estimation on NYU Depth v2 dataset. 

Method 
Higher is better  Lower is better 

δ<1.25 δ<1.252 δ<1.253  REL Log10
 RMSE 

Saxena et al.[16] 0.447 0.745 0.897  0.349 -- 1.214 
Ladicky et al.[17] 0.542 0.829 0.940  -- -- -- 
Karsch et al.[18] -- -- --  0.350 -- 1.2 
Liu et al.[22] 0.614 0.883 0.971  0.230 0.095 0.824 
Eigen et al.[20] 0.611 0.887 0.971  0.215 -- 0.907 
Eigen et al.[21] 0.769 0.950 0.988  0.158 -- 0.641 
Laina et al. (L2)[25] 0.785 0.952 0.987  0.138 0.060 0.592 

Ours 0.796 0.962 0.990  0.134 0.058 0.583 
 
 

C. Depth Completion 

Our method can also fill in missing depth values. The 
depth map obtained by depth sensors such as Microsoft Kinect 
has the problem of loss of depth information. For instance, if 
the surface of an object is too smooth, bright or high 

reflectivity, 10% to 50% of the depth information will be lost. 
The method only needs to input the RGB image to perform the 
depth completion on the corresponding depth map in the NYU 
Depth v2 datasets. The result of completing the depth map is 
shown in Fig.5

 

   
 

   
 

   
 

   
                         (a)                      (b)                      (c) 
Fig.5 Deep completion cases. (a) is the raw input, (b) is the ground-truth depth map, and (c) is the output complemented by 
proposed model. The figure shows that this method can complement the depth of objects with high reflectivity in the 
ground-truth depth map, such as windows, glass, and objects directly illuminated by lights. 
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V. CONCLUSION 
Obtaining depth information from monocular images is the 
meaning mission. The paper put forward the novel network 
structure to estimate the depth information. There are two 
main innovations in this paper, as follows. First of all, the 
article adopts an auto-encoder network based on pyramid 
structure to enhance the flow of feature information. Second, 
the loss function is composed of depth, gradient and surface 
normal loss with different weight values. The gradient loss 
makes the edges of the prediction results clearer, and the 
gradient changes in the edge area of the object are more 
obvious. The surface normal loss is used to refine the details 
of the object. Besides, the novel up-sampling structure is 
proposed to expand the size of the output. Experiments 
conducted on the indoor dataset NYU Depth v2 verify that the 
method proposed is superior to other methods. In the future, 
we will merge the output predicted by proposed model with 
the original RGB image to complete the semantic 
segmentation of complex scenes. 
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