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Abstract—This paper proposed a novel algorithm which is called the 

joint step-size matching pursuit algorithm (JsTMP) to solve the issue of 

calculating the unknown signal sparsity. The proposed algorithm falls 

into the general category of greedy algorithms. In the process of iteration, 

this method can adjust the step size and correct the indices of the 

estimated support that were erroneously selected in a dynamical way. 

And it uses the dynamical step sizes to increase the estimated sparsity 

level when the energy of the residual is less than half of that of the 

measurement vectory. The main innovations include two aspects: 1) The 

high probability of exact reconstruction, comparable to other classical 

greedy algorithms reconstruct arbitrary spare signal. 2) The sinh() 

function is used to adjust the right step with the value of the objective 

function in the late iteration. Finally, by following this approach, the 

simulation results show that the proposed algorithm outperforms state-

of-the-art similar algorithms used for solving the same problem.  
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I. INTRODUCTION 
n recent years, the research of compressed sensing(CS) [1-3] has 
received more attention as a mean to process the sparse signal (i.e., the 
number of nonzero elements in the vector is small). CS is a newly 

developed signal processing technique for efficiently 
acquiring and reconstructing a signal by finding solutions to 
underdetermined linear systems. Sparse signal reconstruction 
technology has important applications and extensive research 

in computer science and electronic science. E.g. Single pixel camera 
developed by MIT, magnetic resonance imaging, and wireless sensor 
network technology.  Zhu [4] take the structured perturbation into 
account and propose the perturbation considered vector approximate 
message passing (PC-VAMP) algorithm. Qiu [5] proposed a joint low-
rank and sparsity priors' constrained model for ISAR imagingwith 
various sparse data patterns.  And it also has important applications in 
deep learning. E.g. Leong [6] present group lasso as an efficient method 
for obtaining robust cluster expansions (CEs) of multicomponent 
systems. Li [7] proposed a deep learning method  to accurately 
reconstruct images for previously solved and unsolved CT 
reconstruction problems with high quantitative accuracy. Particularly, 

accurate reconstructions were achieved for the case when the sparse 
view reconstruction problem.  

CS theory can exactly recover the sparse signal or compressible 
signals by a sampling rate which does not satisfy the Nyquist–Shannon 
sampling theorem. But many papers have demonstrated that CS can 
effectively get the key information from sample value with a small 
number of non-correlative measurements. The main idea of CS is to 
make compression and sampling run at the same time. CS technique can 
reduce the hardware requirements, further reduce the sampling rate, 
improve the signal quality, save on signal processing and transmission 
costs. Nowadays, CS has been widely used in wireless sensor networks, 
information theory, image processing, earth science, optical/microwave 
imaging, pattern recognition, wireless communications, atmosphere, 
geology and other fields.  

CS theory mainly includes three aspects: 1) The sparse representation 
of signals;  2) The design of the measurement matrix; 3) Signal 
reconstruction algorithm. One of the most important aspects is the design 
of the reconstruction algorithm. It is the huge challenge for the 
researchers to propose a quick reconstruction algorithm with reliable 
accuracy. At present, the studies of domestic and foreign scholars have 
proposed many reconstruction algorithms. There are two important kind 
of the reconstruction algorithm. One is greedy algorithm, the other is 
convex optimization algorithm. A series of iterative greedy algorithms 
received significant attention due to their low complexity and simple 
geometric interpretation. Briefly, the greedy algorithm selects the 
support (the set of nonzero elements) of the sparse signal vector x in an 
iterative manner. The algorithms in this category include matching 
pursuit(MP), orthogonal matching pursuit(OMP), Stagewise 
OMP(StOMP) [8], Regularized OMP(ROMP), Subspace Pursuit(SP) [9], 
Compressive sampling OMP(CoSaMP) and so on. The basic idea of 
those method is to find the support of the sparse signal vector x. In each 
iteration, one or many indexs of the column are selected for testing based 
on the correlation values between the sensing matrix 𝚽 and the new 
residual. If those indexs are reliable, they will be added to the final 
support set to recover the original signal. The pursuit algorithms iterate 
this procedure until all indexs in the correct support set are included in 
the final support . The convex optimization algorithm solves a much 
easier l1-norm minimization problem based on linear programming (LP), 
such as basis pursuit(BP)  which requires high computational complexity 
to achieve exact reconstruction. 

In this paper, we propose a novel algorithm to reconstruct the sparse 
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signal which is called the joint step-size matching pursuit 
algorithm(JsTMP). The proposed algorithm can adjust the step size and 
correct the indices of the estimated support that were erroneously 
selected in a dynamical way. The simulation results show that the 
proposed algorithm outperforms state-of-the-art similar algorithms used 
for solving the same problem. 

The rest of this paper is organized as follows: Section 2 introduces the 
compressive sensing model and the Preliminaries of JsTMP algorithm. 
In Section 3, we discuss the performance of proposed algorithm and 
conclude the paper in Section 4. 

 
 

II. RELATED WORKS 

A. Compressive Sensing Model 

Compressive sensing acquires sparse signals at a rate significantly 
below Nyquist rate. Signal is sparse or sparse is the application of 
compressed sensing prior information. Prior information using CS 
technology is that signal is sparse or compressible. K-sparse signal 
vector x , i.e, n-dimensional vector having at most K nonzero elements. 
It is the basic principle that the sparse signals 𝑥 ∈ 𝑅𝑛  can be 
reconstructed from the measurement y. The measurement is expressed 
as 

                                                   𝑦 = Φ𝑥                                        (1) 
Φ is the sensing matrix(Φ ∈ 𝑅𝑚×𝑛, 𝑚 ≪ 𝑛). Since the 𝑚 ≪ 𝑛 for the 

model, the system in (1) can be regard as the underdetermined system or 
sick system. Obviously, it is impossible to recover the original sparse 
signal from y by using the conventional “matrix inverse” transform of 
the sensing matrix Φ. But we can make full use of the prior information 
on the signal sparsity and a condition imposed on Φ then  x can be 
correctly reconstructed by solving the l1-norm problem as follows: 

                                           min‖𝑥‖1  𝑦 = Φ𝑥                                 (2) 
The sensing matrix Φ must satisfy the restricted isometry 

property(RIP) [10-12]. It ensures that the sensing matrix will not map 
two different K sparse signals into the same set. Sensing matrix falls 
broadly into three categories: random measurement matrix, partial 
random measurement matrix and deterministic measurement. They all 
satisfy the restricted isometric principle. The commonly used sensing 
matrixes include the Gaussian random matrix [13], Bernoulli random 
matrix, Fourier random matrix, Toeplitz matrix [14-15], etc.K is the 
signal sparsity. The reconstruction accuracy of the  l1 -norm is limited in 
terms of the RIP formally defined below. 

Definition 1(RIP): A matrix  Φ ∈ 𝑅𝑚×𝑛  is described to satisfy the 
restricted isometry property(RIP) with the parameters (𝐾, 𝛿𝑆).For 𝐾 <
𝑚, 0 ≤ 𝛿𝑆 < 1 and 𝑆 ⊆ {1,2,3, … , n} , the matrix Φ𝑆  consists of the 
columns of  Φ with indices Ss . Such that ‖𝑆‖ < 𝐾  and  𝑥 ∈ 𝑅|𝑆|  
,one has 

    (1 − 𝛿𝑆)‖𝑥‖2
2 ≤ ‖Φ𝑆𝑥‖2

2 ≤ (1 + 𝛿𝑆)‖(1 + 𝛿𝑆‖2
2                (3) 

Generally, if the s is very close to one, then it is possible that 
‖Φ𝑆𝑥‖2

2 ≈ 0.so the measurement y can not preserve any information on 
x(i.e, x is nullspace of the sensing matrix Φ). As a result, it is nearly 
impossible to reconstruct the sparse signal x by using any greedy 
algorithms when 𝛿𝑆 ≈ 1. 

B. Sparse signal approximation method 

In order to describe the main steps of the JsTMP algorithm, we 
introduce the notation of the projection of a vector and its residue. 

Definition 2(Projection and Residue): Let 𝑦 ∈ 𝑅𝑚,Φ𝑆 ∈ 𝑅𝑚×|𝑆|. If Φ 
is full column rank, then (Φ′Φ)−1Φ𝑆  is the Moore-

Penrosepseudoinverse [16] of Φ . And the Φ′ represents the matrix 
transposition. The projection of the measurement y onto span(Φ𝑆) is 
defined as 

                                                 𝑦𝑝 = Φ𝑆Φ𝑆
†𝑦                                                    (4) 

where  

                                              Φ𝑆
† = (Φ𝑆

′ Φ𝑆)−1Φ𝑆
′                                      (5) 

It can be seen from the equation (4) that the reconstruction result of the 
sparse signal x can be expressed as  

                                    𝑥̂ = Φ𝑆
†𝑦 = (ΦS

′ ΦS)−1Φ𝑆
′ 𝑦                              (6) 

The residue of the projection vector y equals 

                                           𝑦𝑟 = (𝐼 − ΦSΦS
†)𝑦                                   (7) 

Suppose that  ΦS
′ ΦS is invertible. The projection of y  onto span(ΦS) is 

defined as  

                                           𝑦𝑝 = ΦSΦS
†𝑦                                         (8) 

After each iteration, the I stands for the unit matrix, in order to illustrate 
the relationship between projection and residue of the vector 𝑦 before 
and after iteration, we draw a diagram below. See the Fig.1 for the 
definition. 

As can be seen from Fig.1, the reconstruction result of the sparse 
signal obtained by using equation (6) can ensure that the residue is 
perpendicular to the hyperplane. This means that the residue of each 
iteration are minimized. And that can speed up the convergence of the 
algorithm. 

 

Fig. 1 In each iteration, a T-dimensional hyper-plane closer to y  is 
obtained. 

C.The Preliminaries of JsTMP Algorithm 

In this section, we will provide a summary of the proposed 
algorithm.In particular, If the signal sparsity and length are set to K and
n . In sparse signal reconstruction, sparsity level is an important piece 
of information that determines whether the original signal can be exactly 
reconstructed. However, in practical applications, we can not know the 
sparsity level in advance. If we know the signal sparsity, we can 
determine how many indices the recover algorithm needs to choose to 
reconstruct the original signal. This paper proposed JsTMP algorithm 
takes full advantage of the fixed steps and dynamic steps, and creatively 
uses sinh() function model to get the sparsity level accurately. In the 
early stage, the sparsity of the signal can be close quickly by using a 
larger fixed step. In the latter stage, the sinh() function model is used to 
dynamically adjust the step size to get the exact sparsity level. 
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We supposed that the size of the support set at the i-th stage is equal 
to Ki. The residual 𝑟𝑖 = 𝑦 − ΦKiΦKi

† 𝑦  decreases gradually with the 
increase of the Ki.Let 𝛼 = 𝑛𝑜𝑟𝑚(𝑟𝑖)/𝑛𝑜𝑟𝑚(𝑦)(0 ≤ 𝛼 ≤ 1) ,and a 
threshold 𝛽 = 1 − 𝛼(0 ≤ 𝛽 ≤ 1). The  𝑛𝑜𝑟𝑚(𝑟𝑖)  stands for residual 
energy of the i-th iteration. In the later stages of signal reconstruction, 
the step sizes is dynamically adjusted with the gradual decrease of 𝛼 . 
When 𝛽 ≤ 0.55 , the JsTMP algorithm uses a fixed-step strategy to 
speed up convergence. When 𝛽 > 0.55  , ⌈𝐿𝑖⌉  can be used to 
dynamically adjust the step sizes.  

                             𝐿𝑖 = (-sinh(5*𝛽-5)/10)+1                             (9) 

 
Fig.2 Step-size changing ratio λ versus residual to measurement 

energy ratio β 

A diagram of the proposed algorithm is depicted in Fig. 3. The 
initial fixed step size 𝐿0 can set to any constant. But this constant 
had better not to be greater than 10. As show in Fig. 3, in the 
iteration, 𝑟𝑖 represents the residuals of the i-th iteration, 𝜌 is the end 
threshold. The JsTMP algorithm uses the fixed step size and 
dynamic step size to adjust the number of selected index, while using 
backtracking strategy to remove the wrong index. An index, which 
is considered reliable in some iteration but shown to be wrong at a 
later iteration, can be added to or removed from the estimated 
support set at any stage of the recovery process. 

Union
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Selection

Signal estimation

Fixed Step 

Sizes 

Dynamic 

Step Sizes 

No

NoYes

Yes

Yes

quit iteration

 
Fig.3 Description of the proposed reconstruction algorithms for𝐾 -

sparsesignals. 

 
III. THE  PROPOSED JsTMP ALGORITHM 

 The main steps of the JsTMP algorithm are summarized in Table 
1.  

Table 1.  The proposed JsTMP Algorithm 
Input: Sensing matrix Φ, measurement vector 𝑦, 

Initialization step size 𝐿0 
Output: A K-sparse approximation 𝑥̂ of the original vector 
𝑥 

I.Initialization: 
        1. 𝑥̂0 = 0                                     (Initial approximation) 

2. 𝑟0 = 𝑦                                                 (Initial residue) 
3.  𝐿 = 𝐿0                                              (Initial step size) 

II. Repeat: 
1.  𝑖 = 𝑖 + 1                           (The number of iterations) 
2.  𝑆𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥‖(Φ′𝑟𝑖)‖2

2       (Choose L best indices) 
3.  𝑇𝑖 = 𝑆𝑖 ∪ 𝑆𝑠𝑡𝑒𝑚𝑝    (Construct a temporary index set) 
4.  𝑥̂𝑖 = Φ𝑇i

† 𝑦                                  (Perform estimation) 
5.  𝑟𝑖 = 𝑦 − Φ𝑥̂𝑖                               (Update the residue) 
6.  𝑆𝑠𝑡𝑒𝑚𝑝 = 𝑎𝑟𝑔 𝑚𝑎𝑥|𝑥̂𝑖|         (Choose L best indices) 

7.  𝛽𝑖 = 1 −
‖𝑟𝑖‖2

2

‖𝑦‖ 2
            (Determine the step strategy) 

8.  if ‖𝑦‖2
2 < 𝜌, Let 𝑥̂ = 𝑥̂𝑖               (Quit the iteration) 

until halting criterion true 
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As shown in table 1, there are three input parameters for the 
proposed algorithm. The input parameters include the sensing matrix 
Φ , the measurement vector 𝑦  and the initial step size 𝐿0 . And it 
consists of eight main steps. The most critical step is the seventh step. 
That can determine which step strategy to be used by judging the 
parameter 𝛽𝑖 . In contrast to other greedy algorithms, the support 
update 𝑇𝑖  in the proposed procedure is dynamic in a sense that any 
index can be added to, or removed from, the estimated support 𝑆𝑖 at 
each iteration.  

Similar to other greedy algorithms, the JsTMP algorithm also 
calculate correlation coefficient |Φ′𝑟𝑖| in the first step. This step is 
referred to as correlation maximization (CM). We need to make it 
clear. In each iteration, the CM operation costs O(mn) computations 
and the complexity of the projection is marginal compared with the 
CM. So the computational complexity of the algorithm proposed is 
O(mn). The updated support 𝑆𝑖 is then calculated as the indices of the 
𝐿𝑖 approximation coefficients with largest magnitude values. These 
updated supports are then merged with the previously backtracking 
index set 𝑆𝑠𝑡𝑒𝑚𝑝to construct the set of indices set 𝑇𝑖 . The sub matrix 
Φ𝑇𝑖

 is used for calculating the least-squares coefficients to estimation 
the signal in the fourth step in Table 1. Then the residue 𝑟𝑖 is updated 
by calculating 𝑦 − Φ𝑥̂  in the following iteration. According to the 
conditions of the fourth step, optimize the step size strategy. Finally, 
the JsTMP algorithm will terminate when the energy of residue 𝑟𝑖 
satisfies ||𝑟𝑖|| < 10−6. 

IV. EXPERIMENTAL CLASSIFICATION RESULTS AND 
ANALYSIS 

In this section, some experiments are conducted to illustrate the 
performance of the proposed JsTMP algorithm. The proposed 
algorithm is compared with other greedy algorithms which are include 
OMP, ROMP, SP, StOMP and CoSaMP. Experimental platform was 
MATLAB R2013b. A Gaussian random sparse signal with length of 
N = 256 is used to test the probability of exact reconstructionof the 
proposed JsTMP algorithm. Each sparsity K runs 1000 simulations to 
get the probability of exact reconstruction. 

Fig.4 shows each algorithm’s recovery probability under different 
sparsity level. It can be seen from the simulation results that compared 
with other algorithms, the proposed algorithm can reconstruct the 
sparse signal with higher precision for different sparsity level. When 
sparsity level K 60 , all the algorithms start to fail besides the 
proposed JsTMP. Even if the sparsity level K  60 , the probability of 
reconstruction of JsTMP algorithm is almost 70%. So this also 
illustrates the superiority of adopting the joint step strategy.And it can 
be found that when K=45, the probability of exact reconstruction of 
the proposed algorithm is still close to 100%, but other algorithms 
begin to decay. 

 

Fig.4 The probability of exact reconstruction with 𝐾 = [10, 15, 20, 
25, …. ,70] (test signal is 𝑁  =256 in length, the number of 
measurements is 𝑀 = 128, and the Initial fixed step size 𝐿0 = 5 (the 
red line in the figure) 

The error of the algorithm is defined as the Mean Squared Error 
(MSE), which is shown in (10), where 𝑥̂ is the reconstructed signal 
and 𝑥 is the original signal. ‖. ‖2

2 is the energy of signal. We choose 
the sparsity level 𝐾  from 10 to 60. 1000 simulations were 
independently carried out for calculating the MSE of the 
reconstructed signal 𝑥̂  for different algorithms. Fig. 5 presents the 
MSE of the reconstructed signal. 

                          𝑀𝑆𝐸 =
‖𝑥−𝑥̂‖2

2

‖𝑥‖2
2                      (10) 

As the following Fig.5 shows that the proposed algorithm is better 
than other greedy algorithms (OMP, SP, StOMP and so on) in the MSE 
of the reconstructed signal. So the JsTMP algorithm can accurately 
reconstruct the original signal. 

 

Fig.5 The MSE of exact reconstruction with 𝐾 = [10, 15, 20, 25, 
…. ,60] (test signal is the Gaussian random sparse signal of N =256 
in length, the number of measurements is  𝑀 = 128 (the red line in the 
figure)). 

We depict the number of measurements(𝑀) required by the JsTMP 
algorithm for recovering Gaussian random sparse signal with length 
𝑁 = 256. The sparsity levels are chosen from 𝐾 = 4 to 𝐾 = 36. And 
the probability of exact recovery signal is averaged over the 1,000 
trials, It can be seen from the Fig. 6 that the proposed algorithm can 
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accurately reconstruct the signals with different sparsity level 𝐾.  

It can be seen from the Fig. 7 that the probability of exact 
reconstruction of JsTMP algorithm is better than that of OMP, SP, 
CoSaMP and StOMP for Gaussian random sparse signal. The 
probability of exact reconstruction of JsTMP algorithm when 
measurement varies is higher than that of other algorithms and JsTMP 
algorithm which does not require the prior knowledge of sparsity 𝐾. 
It is concluded that the proposed algorithm has obvious advantages 
over the rest greedy algorithms when the signal sparsity 
changes.When the measurement is 70, the exact reconstruction rate of 
the proposed algorithm is at least 10% higher than that of other 
algorithms. 

 

Fig.6  Probability of exact recovery signal with proposed 
algorithm. the original signal has length of 𝑁 = 256 with sparsity level 
𝐾 =4,12,20,28,36 non-zero entries. 

 

Fig.7 The probability of exact reconstruction with the 
measurements 𝑀 = [50, 55, 60, …. ,100] (test signal is the Gaussian 
random sparse signal of 𝑁 =256 in length, the sparsity level 𝐾 =20) 

 

(a) 

 

(b) 

Fig.8  The reconstruction of the sparse signal in time domain(a), 
the reconstruction error (b) (test signal is the Gaussian random sparse 
signal of 𝑁 =256 in length, the sparsity level 𝐾 =30) 

In Fig.8, we show the effect of the reconstructed signal in the time 
domain. And the reconstruction error is set to |𝑥 − 𝑥̂| in time domain. 
(a) is a comparison between the original signal and the reconstructed 
signal in the time domain. It can be seen from  (b)  that the value of 
vertical axis in the reconstructed error is on the order of magnitude of 
10-15. In practice, such a small reconstruction error is negligible. That 
is to say that the proposed algorithm can accurately reconstruct the 
original signal. 

V. CONCLUSION 
In this paper, a novel joint step-size matching pursuit 

algorithm(JsTMP) is proposed. The JsTMP algorithm uses the fixed 
step size and dynamic step size to adjust the number of selected 
indexs, while using backtracking strategy to remove the wrong index. 
Compared with the other existing algorithms, the proposed JsTMP 
algorithm can quickly converge to the real sparsity of the target signal 
and accurately reconstruct the original signal. Simultaneously, it does 
not require the prior knowledge of the sparsity level K. The multiple 
simulation results demonstrate that JsTMP can precisely reconstruct 
the original signal with high probability in this paper. For those 
advantages, the proposed algorithm has broad application prospects 
and a higher guiding significance for the research on sparse signal 
reconstruction. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.61 Volume 15, 2021

E-ISSN: 1998-4464 554



  

Author Contributions: Dongxue propose the methodology; 
Zengke wirtie software and validate the proposed method; Dongxue 
writes this paper; Zengke reviews and edits it. 

Funding: The research is supported by the National Nature Science 
Foundation of China (No. 61771262). 

Conflicts of interest: The authors declare no conflict of interest. 

 
REFERENCES 

[1] D.L.Donoho, “Compressed Sensing,” IEEE Trans. Information Theory, vol. 52, no. 4, 
pp. 1289-1306, Apr 2006. 

[2]  E. J. Candes, M. B. Wakin, “An introduction to compressive sampling,” IEEE Siganl 
Process., vol 25, no. 2, pp. 21-30, Mar 2008. 

[3] E. Candes, J. Romberg, T. Tao, “Stable Signal Recovery From Incomplete and 
accurate Measurement,” Communication on Pure and Applied Mathematics, vol 
59, no. 8, pp. 1207-1223, 2006. 

[4] Zhu J, Zhang Q, Meng X, et al. Vector approximate message passing algorithm for 
compressed sensing with structured matrix perturbation[J]. Signal Processing, 
2020, 166: 107248. 

[5] Qiu W, Zhou J, Fu Q. Jointly Using Low-Rank and Sparsity Priors for Sparse Inverse 
Synthetic Aperture Radar Imaging[J]. IEEE Transactions on Image Processing, 
2019, 29: 100-115. 

[6] Leong Z, Tan T L. Robust cluster expansion of multicomponent systems using 
structured sparsity[J]. Physical Review B, 2019, 100(13): 134108. 

[7] Li Y, Li K, Zhang C, et al. Learning to reconstruct computed tomography (CT) images 
directly from sinogram data under a variety of data acquisition conditions[J]. IEEE 
transactions on medical imaging, 2019. 

[8] D. L. Donoho, Y. Tsaing, I. Drori, et al. “Sparse solution of underdetermined systems 
of linear equations by stagewise orthogonal matching pursuit,” IEEE Trans. 
Information Theory, vol. 58, no. 2, pp. 1094-1121, Feb 2012. 

[9] Wei Dai, Olgica Milenkovic. “Subspace Pursuit for Compressive Sensing Signal 
Reconstruction,”  IEEE Transactions on Information Theory, vol. 55, no.5, pp. 
2230 – 2249, April 2009. 

[10] Wen, JM , Wang, J , Zhang, QY.  “Nearly Optimal Bounds for Orthogonal Least 
Squares,” IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 65, no.20, 
pp. 5347-5356, OCT 2017. 

[11] Cohen Albert, Dahmen Wolfgang, DeVore Ronald. “Orthogonal Matching Pursuit 
Under the Restricted Isometry Property,” CONSTRUCTIVE APPROXIMATION, 
vol. 45, no. 1, pp. 113-127, Feb 2017. 

[12] Voroninski V,  Xu ZQ. “A strong restricted isometry property, with an application to 
phaseless compressed sensing,” Applied and Computational Harmonic Analysis, 
vol. 40, no. 2, pp. 386-395, Mar 2016. 

[13] Chiani-M, Elzanaty-A, Giorgetti-A, “Analysis of the Restricted Isometry Property 
For Gaussian Random Matrices,” in 2015 IEEE Global Communications 
Conference (GLOBECOM), pp.6,San Diego, CA. Dec 06-10,2015. 

[14] Salahdine, Kaabouch, EI Ghazi, “A Bayesian recovery technique with Toeplitz 
matrix for compressive spectrum sensing in cognitive radio networks”, 
International journal of communication Systems. vol. 30, no. 15, pp.1-9, Feb 2017. 

[15] Haupt J, Bajwa W U, Raz G, et al. Toeplitz compressed sensing matrices with 
applications to sparse channel estimation[J]. IEEE transactions on information 
theory, 2010, 56(11): 5862-5875. 

[16] Barata J C A, Hussein M S. The Moore–Penrose pseudoinverse: A tutorial review of 
the theory[J]. Brazilian Journal of Physics, 2012, 42(1-2): 146-165. 

 

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.61 Volume 15, 2021

E-ISSN: 1998-4464 555




