
Abstract- Face tracking is an importance task
in many computer vision based augment reality
systems. Correlation filters (CFs) have been ap-
plied with great success to several computer vi-
sion problems including object detection, classi-
fication and tracking, but few CF-based methods
are proposed for face tracking. As an essential
research direction in computer vision, face track-
ing is very important in many human-computer
applications. In this paper, we present a con-
tent aware CF for face tracking. In our work,
face content refers to the locality sensitive his-
togram based foreground feature and the learn-
ing samples extracted from complex background.
It means that both foreground and background
information are considered in constructing the
face tracker. The foreground feature is intro-
duced into the objective function which could
learn an efficient model to adapt to the face ap-
pearance variation. For evaluating the proposed
face tracker, we build a dataset which contains
97 video sequences covering the 11 challenging
attributes of face tracking. Extensive experi-
ments are conducted on the dataset and the re-
sults demonstrate that the proposed face tracker
shows superior performance to several state-of-
the-art tracking algorithms.

Keywords- Face tracking, Correlation Filters,
Locality Sensitive Histogram

I. Introduction

WITH the repaid development of computer vision
and virtual reality, augmented reality systems

are becoming more common in many real-world appli-
cations, especially in healthcare [1, 2]. Augmented real-
ity is one of the most promising digital health technolo-
gies at present. Many of the existing healthcare appli-
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Fig. 1: Challenges in face tracking.

cation systems require accurate and real-time tracking
of human faces in order to finish specific tasks [3, 4, 5].
Face tracking is a fundamental task in related intelligent
human-computer interaction systems. This is because
face tracking is an essential step to build 3D face mod-
els [6, 7]. A good face tracking method should track hu-
man face accurately in a variety of lighting conditions,
head poses, environments, and occlusions [8].

As is known to all, the main challenges in general
object tracking include illumination variation (IV), fast
motion (FM), in-plane rotation (IPR), scale variation
(SV), motion blur (MB), out-of-plane rotation (OPR),
occlusion (OCC), deformation (DEF), background clut-
ters (BC), out-of-view (OV) and low resolution (LR) [9].
Face tracking also suffers these challenges. But differ-
ent from general object tracking, some of the main chal-
lenges in face tracking may stem from the appearance
variations induced by heavy makeup, face decorations,
severe facial expression changes, and so on (see Fig. 1),
which makes face tracking a challenging task in various
real-world applications.

In the past two decades, face tracking has been in-
tensively studied in the literature and many advanced
algorithms are proposed for face tracking. The existing
tracking algorithms can be classified using different stan-
dards, one of which is based on whether the whole face
is tracked or individual facial features are tracked (facial
landmark tracking). There exists a lot of facial landmark
tracking methods in the literature [10, 11, 12, 13, 14].
When the whole face is considered during tracking, it
can be represented as a general object. Different from

Received: February 10, 2021. Revised: June 26, 2021. Accepted: July 19, 2021. Published: July 20, 2021. 

Face Tracking via Content Aware Correlation 

Filter 

 Houjie Li, Shuangshuang Yin, Fuming Sun, Fasheng Wang* 

 Dalian Minzu University, 

No. 18, West Liaohe Road, Jinpu New District, Dalian 116600 

China 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.76 Volume 15, 2021

E-ISSN: 1998-4464 677



facial landmark tracking, this kind of face tracking aims
to localize the exact position of the whole face or head.

Most of the existing face trackers adopt hand-crafted
features, such as skin color [15] and geometry [16, 17],
Harr-like feature [18], optical flow [19], and so on. Tra-
ditional tracking methods like mean shift [20], multiple
instances and Online Adaboost [21], particle filters [22],
Kalman filter [12, 18], bilateral filtering [23] have been
applied successfully in face tracking. Recently, as deep
learning has gained special attention in computer vi-
sion field, many deep learning based face trackers are
proposed in the literature [24, 25, 26, 27, 28]. The
main drawback of deep trackers lie in that researchers
need strong-computation power to perform online/offline
model learning which is quite time-consuming. Another
popular tracking framework, correlation filters, also have
been applied with success to face verification [29], face
recognition [30, 31] and face tracking [32, 33, 34]. Since
its first application in object tracking [35], a lot of CF-
based trackers are proposed which show improved per-
formance in object tracking [36, 37, 38, 39, 40, 41]. How-
ever, the existing CF-based trackers suffer from bound-
ary effects due to the circulant shifted sampling pro-
cess. Another problem is that the training samples are
obtained by shifting the original base sample cirularly,
which means that the generated samples are virtual sam-
ples. At the same time, the samples are generated from
foreground target object lacking negative samples from
background area which deteriorates the tracking perfor-
mance in complex and cluttered background.

In order to evaluate the performance of face trackers,
a number of video sequences must be collected to run the
trackers and compare their performances using specific
evaluation metrics. Shen et. al. [11] developed a facial
landmark tracking dataset, 300-VW, which contains 110
video sequences. Chrysos et. al. [10] perform compre-
hensive evaluation of facial landmark tracking method on
300-VW dataset. But this dataset is not suitable for face
tracking as it focuses much on facial landmark detection
and tracking, while the common challenges mentioned
above are not included in this dataset. In [42], Lin et.
al. proposed a mobile face tracking which consists of
80 mobile videos. MobiFace dataset contains most of
the challenging attributes in online tracking benchmark
(OTB), but it does not contain the challenges induced
by heavy makeups, face decorations, severe facial expres-
sion changes, etc. On the other hand, the sequences are
captured by mobile phones which are not suitable for
general performance evaluation purpose.

In this paper, we design a CF-based face tracking
method and collect a face tracking dataset for perfor-
mance evaluation. The proposed face tracker considers
not only the foreground face feature but also background
information of faces. First, negative samples extracted
from the background are used for learning CFs. Second,
for the foreground feature, we compute the locality sen-
sitive histogram (LSH) [43] based feature of the face and
incorporate the feature into the CF model, which can
enhance the discriminative ability of the face tracker.

The CF model is solved using the alternating direction
method of multipliers (ADMM) [44]. In addition, we col-
lect a face tracking dataset which contains both indoor
and outdoor situations and includes 11 attributes indi-
cating different challenges in face tracking. We conduct
extensive experiments on the collected dataset. Exper-
imental results show that our proposed method outper-
forms several state-of-the-art tracking methods.

II. Related Works

A. Correlation Filter Tracking

In the past ten years, CF-based tracking methods has
gained special attention in object tracking. Bolme et.
al. [35] first proposed a CF tracker (MOSSE) for object
tracking with a very fast speed of about 700 frames per
second. In MOSSE tracker, the filter is trained with
only grayscale samples which limits the application of
MOSSE in other challenging scenarios. Many improved
CF-based trackers learn multi-channel filters on HOG
feature or color names feature [36, 38, 40, 45]. Many
works on face tracking focus on correlation filters. In
[32], My et. al. combine an adaptive CF and Viola-
Jones face detection method to design a robust real-time
face tracking algorithm for mobile robot. The designed
algorithm can help the robot track human face as well as
the facial features of eye corners and nose under different
illumination conditions.

Gaxiola et. al. [33] proposed a locally-adaptive cor-
relation filter for face tracking. A composite correlation
filter which is adapted online is used to detect and locate
faces in each frame of a video sequence. In [34], Su et al.
propose a fast face tracker based on the kernelized cor-
relation filter (KCF) [36]. Multi-task cascade convolu-
tional neural networks (MTCNNs) are used for detecting
face. Liao et al. [46] apply the KCF to driver face track-
ing by combining the MTCNN and deepSORT method.
Soldic et al. [47] developed a multi-face tracking system
by combining discriminative scale space tracking (DSST
[45]) and a robust face detector. The proposed system
could handle long-term full occlusions.

B. Deep Learning based Tracking

Deep learning have shown its strong ability in many
real-world applications [48]. In the past decades, many
deep learning methods, including CNNs, Siamase net-
work and generative adversarial network (GAN), have
been applied with great success in object detection, clas-
sification, recognition and tracking. In [25], convolu-
tional neural networks (CNNs) are used for face tracking.
The authors take advantage of the strong representation
ability of hierarchical CNN features. Discriminative face
information is captured at both local and global level us-
ing two types of Siamese CNNs, Local-CNNs (L-CNNs)
and Global-CNNs (G-CNNs). The L-CNNs are used to
extract local features from target area, such as eye, nose
and mouth. The G-CNNs are designed to extract global
features from the entire face. A correlation filter tracking
framework is used to integrated the two-level features to
construct a robust face tracker.
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Li et. al. [26] proposed a simple real-time multi-
face tracking system which is composed of three parts:
face detection module, feature extraction module and
tracking module. The authors adopt multi-task CNN
to detect human face, and use a simple CNN to obtain
face features of the detected faces. A shallow network
is used to track target face on the basis of the extracted
features. Lian et. al. [27] designed a real-time face
tracking system using multi-task CNN for face detection.
The authors aim to solve face occlusions or fast motion
which induce tracking failure. Multiple features which
include appearance, motion and shape features are fused
to enhance the robustness of face tracking. Males et. al.
[49] proposed a multi-agent dynamic system which can
be easily adapted for robust multi-face tracking problem.
Deep learning method are used for face detection which
is integrated in the proposed tracking system.

In [28], the authors design a dual-agent deep rein-
forcement learning algorithm for deformable face track-
ing. A unified framework are designed which can simul-
taneously generate bounding box and perform face align-
ment tasks. The deep reinforcement learning is used to
train the dual agent models which is responsible for ex-
ploiting the relationships of the two tasks.

C. Other Face Trackers

Zou et. al. [50] proposed to perform face tracking in
the gradient logarithm field (GLF) feature space in order
to overcome the low-resolution and illumination changes
problems. The proposed GLF feature is a global feature
which mainly depends on the intrinsic characteristic of
a face and is illumination insensitive. In [51], the au-
thors propose to describe a face in a L2-subspace using
a relational graph, and proposed a robust face tracking
method which specify an importance to appearance fea-
tures during tracking initialization and the whole face
tracking process. They design a weighted score-level fu-
sion scheme to localize target face from output of the
tracker that have the highest fusion score. Huang et.
al. [21] use multiple instance and online AdaBoost to
train a face tracking model and incorporate face detec-
tion method to recover tracking when occlusions are de-
tected.

In order to solve the drifting problem encountered
in face tracking, in [52], Jiang et. al. employ a super-
vised descent method (SDM) and a compressive track-
ing method (CT) to propose a robust face tracking al-
gorithm. The SDM is employed for correcting drifting
errors of CT during frontal face tracking. When face ori-
entation changes severely, SDM tracking failure occurs.
The authors switch tracking to CT to keep tracking until
SDM recover from tracking failure.

Li et. al. [53] designed a face tracker by fusing mul-
tiple features within the particle filter framework. Color
histogram and edge orientation histogram are used for
describing the facial feature while the features are fused
using a self-adaptive strategy in order to compute the
particle weight. Wu et. al. [54] proposed a coupled hid-
den Markov random field (CHMRF) for simultaneously

modeling face clustering and face tracking. Two HMRF
models are used for clustering faces and tracklet linking.
The authors provided a method for joint optimization of
cluster labels and face tracking. Nam et. al. [55] propose
a face tracking system which comprises detection, track-
ing and false track removal. The multi-view deformable
part-based model (DPM) is used as face detector, and a
tracking-by-detection framework is leveraged for track-
ing adding motion cues, color histogram and SURF fea-
tures. Wrong detections are filtered out using an explicit
false alarm removal step.

Aspandi et. al. [56] build a fully end-to end facial
tracking model from Re3 tracker [57]. The proposed
model has a long short term memory layer (LSTM) which
could model the short and long temporal dependency
between frames. The authors perform extensive experi-
ments using 300-VW dataset [11]. Experimental results
show that the proposed model perform superior to sev-
eral advanced face trackers.

III. Proposed Method

A. Correlation Filters
The goal of the standard discriminative correlation

filter (DCF) is to learn a multi-channel CF h in the spa-
tial domain based on training examples {(xk,yk)}tk=1,
where xk is training sample with d channels, and yk is
the correlation response. The learning process can be
formulated as minimizing the objective function as fol-
low:

ε(h) =
1

2

∥∥∥∥∥y −
K∑

k=1

xk ∗ hk

∥∥∥∥∥
2

2

+
γ

2

K∑
k=1

‖hk‖22 (1)

where y ∈ RD denotes the desired correlation response,
K denotes the number of feature channels, hk is the kth
channel of the filter, γ is the weight of regularization
term, and ∗ denotes the correlation operator. According
to [35], (1) can be considered as solving ridge regression
problem in the spatial domain using the following objec-
tive function:

ε(h) =
1

2

D∑
j=1

∥∥∥∥∥y(j)−
K∑

k=1

h>
k xk[4τj ]

∥∥∥∥∥
2

2

+
γ

2

K∑
k=1

‖hk‖22 (2)

where y(j) is the jth element of correlation response y,
4τj represents the circular shift operator.

As the baseline CF suffers from the annoying bound-
ary effects caused by the circulant shifted samples, a spa-
tial regularization term is introduced into the objective
function to penalized the filter coefficient in the learning
process [38] to alleviate the boundary effects. But fixed
spatial regularization weight cannot adapt the tracker to
complex tracking scenarios. Another problem is that all
the training samples are generated from circular shifted
foreground patches which ignores the background infor-
mation. Most of the existing CF trackers only use his-
togram of gradient (HOG) feature which is insufficient
for face tracking when encountering severe appearance
changes.
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B. Locality sensitive Histogram
Locality sensitive histogram is a location-related sta-

tistical feature which has been applied with success to
visual tracking as it enhances the trackers’ ability of sep-
arating the target from complex background [58]. It con-
siders every pixel in an image region. Let HE

p (b) denotes
the bin b of LSH computed at pixel location p, where
b = 1, 2, ..., B. Suppose we have an image I,then HE

p (b)
can be computed as follow:

HE
p (b) =

N∑
q=1

γ|p−q| ·Q(Iq, b) (3)

where N represents the number of pixels in image I,
γ ∈ (0, 1) is a parameter used for controlling the weight
reduction according to the distance between q and p. Iq
is the intensity value of pixel q, and the value of Q(Iq, b)
is zero except when Iq falls into bin b. If the image
I is 1D, HE

p (b) can be computed efficiently using the
following equation:

HE
p (b) = HE,left

p (b) +HE,right
p (b)−Q(Ip, b) (4)

where HE,left
p (b) denotes the LSH on the left of pixel p,

and HE,right
p (b) is the LSH on the right of pixel p. The

two LSHs are computed using the following equation:

HE,left
p (b) = Q(Ip, b) + γ ·HE,left

p−1 (b) (5)

HE,right
p (b) = Q(Ip, b) + γ ·HE,right

p+1 (b) (6)

Let HO
p be the histogram for image region Op cen-

tered at pixel p, and bp is the bin that intensity value
Ip falls in. According to the definition of histogram, we
count the number of pixels in the image region Op whose
intensity values are within the interval [bp − ep, bp + ep]
as follow:

Jp =

bp+ep∑
b=bp−ep

HO
p (b) (7)

where ep denotes a parameter used for controlling the
integration interval at pixel p. The integral value Jp

represents a statistical feature of the image region Op.
Under the assumption of affine illumination transform,
it is practically inaccurate to find an exact image region
within which the affine illumination transform keeps in-
variant [58]. We hence adaptively consider the contribu-
tion of all the pixels in the image region Op. Then, we
replace the histogram HO

p in (7) by the LSH HE
p and (7)

becomes:

Jp =
B∑

b=1

exp

(
− (b− bp)2

2max(β, ep)2
·HE

p (b)

)
(8)

where β = 0.1 is a constant, ep = β|Ip − Īp|. Īp is the
mean intensity value of all the pixels in image region Op:
Īp = 1

|op|
∑

q∈Op
Iq, and |op| is the total pixel number in

region Op.

Fig. 2: LSH features of exmple frames.

In (8), Jp shows an illumination invariant feature
computed on the basis of LSH which is different from
the intensity value. Jp keeps invariant even under severe
illumination changes (for more details of LSH, please re-
fer to [43]). Figure 2 show examples of LSHs features
for two image sequences: Man and sunglasses005. We
use this LSH-based feature as foreground feature in our
tracking method.

C. Objective Function of Our CF Model
In our work, we aim to learn a content aware CF

(CACF) for face tracking. The objective function of the
tracker is defined as follow:

ε(h) =
1

2

T∑
j=1

∥∥∥∥∥y(j)−
K∑

k=1

(h� J)k
>

Pxk[4τj ]

∥∥∥∥∥
2

2

+
γ

2

K∑
k=1

‖(h� J)k‖22

(9)

In this equation, P is a binary matrix used for cropping
the mid D elements of a given signal xk ∈ RT , satisfy-
ing T � D. The size of P is D × T . The � operator
denotes the element-wise product. h = [h1, h2, ..., hk] is
the correlation filter h ∈ RD. J ∈ RD is the LSH based
feature. y ∈ RT is the correlation output.

The training sample x are circularly shifted and then
the cropping operator P is applied to crop the shifted
training sample to obtain desired patches with size D
from current frame. Those patches that correspond to
the peak of y are positive examples showing the target
of interest while the patches corresponding to the zero
values of y are negative samples showing the background
content. In order to further enhance the content of the
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target of interest, the LSH based feature is incorporated
into the objective function. When the appearance of the
target is changed, the LSH based feature can benefit the
filter to avoid possible model drift, which does greatly
improve the ability of the filters in dealing with appear-
ance variation induced by out of view, low resolution and
in plane rotation.

D. Optimization of Our CF Model
In order to solve (9) efficiently, similar to the typical

CF trackers, we can convert it into the frequency domain
which is expressed as follow:

ε(h, ĝ) =
1

2

∥∥∥ŷ − X̂ĝ
∥∥∥2
2

+
γ

2
‖h� J‖22

s.t. ĝ =
√
T (FP> ⊗ IK) ∗ (h� J)

(10)

where ĝ denotes an auxiliary variable to shorten the
expression, and we define the attached matrix X̂ =
[diag(x̂1)>, ..., diag(x̂K)>] and its size is T ×KT . h =

[ĥ>1 , ..., ĥ
>
K ], ĝ = [ĝ>1 , ..., ĝ

>
K ] and IK is a K ×K identity

matrix. The symbol ⊗ denotes the Kronecker product
andˆrepresents the discrete Fourier transform of a given
signal, such that ĥ =

√
TFh, where F represents an or-

thonormal matrix of complex basis vectors that is used
for transforming any T dimensional vectorized signal into
the Fourier domain. The size of F is T × T . We use a
symbol f to represent h� J.

The ADMM method [44] is adopted to find the opti-
mal solution of the CACF model. First, we can obtain
the augmented Lagrangian form of (10) as follow:

 L(ĝ,f, ˆ̀) =
1

2

∥∥∥ŷ − X̂ĝ
∥∥∥2
2

+
γ

2
‖f‖22

+ ˆ̀>(ĝ −
√
T (FP> ⊗ IK)f)

+
ω

2

∥∥∥ĝ −√T (FP> ⊗ IK)f
∥∥∥2
2

(11)

where ˆ̀ = [ˆ̀>1 , ...,
ˆ̀>
K ]> denotes the Lagrangian vector

defined in the Fourier domain with size KT × 1, the
symbol ω is a regularization constant. Then the ADMM
method is adopted to solve this equation. It will convert
the complex formulas to two subproblems alternatively
in order to obtain a closed solution.

Subproblem f:

f = arg min
f

{γ
2
‖f‖22 + ˆ̀>(ĝ −

√
T (FP> ⊗ IK)f)

+
ω

2

∥∥∥ĝ −√T (FP> ⊗ IK)f
∥∥∥2
2

}
(12)

Solve the partial derivative of f:

∂  L

∂f
= γf− T`− ωTg + µTf = 0 (13)

So,

f =
(
ω +

γ

T

)−1
(ωg + `) (14)

where g = 1√
T

(PF>⊗IK)ĝ, and ` = 1√
T

(PF>⊗IK)ˆ̀.

Then g and ` can be divided into K independent IFFT
calculations of g = 1√

T
PF>ĝ and ` = 1√

T
PF> ˆ̀. Fur-

thermore, both gk and ` are computed efficiently using
IFFT on each ĝ and ˆ̀ (gk = 1√

T
F>ĝk , `k = 1√

T
F> ˆ̀

k).

Thus, the computation complexity is O(KT log T ).
Subproblem g:

ĝ = arg min
ĝ

{
1

2

∥∥∥ŷ − X̂ĝ
∥∥∥2
2

+ ˆ̀>(ĝ −
√
T (FP> ⊗ IK)f)

+
ω

2

∥∥∥ĝ −√T (FP> ⊗ IK)f
∥∥∥2
2

} (15)

Due to its computation complexity, solving (15) to
achieve real-time tracking is extremely difficult. Since
the value of each pixel is independent, we consider to
solve for ĝ at all the iterations of ADMM. We can

represent ĝ as T separate objectives ˆg(t): ĝ(t) =
[conj(ĝ1(t)), ..., conj(ĝK(t))]>. The operator conj(.)
refers to the complex conjugate operator of a complex
vector. So (15) can be reformulated as :

ĝ(t) = arg min
ĝ(t)

{
1

2

∥∥ŷ(t)− x̂(t)>ĝ(t)
∥∥2
2

+ ˆ̀(t)>(ĝ(t)− f̂(t))

+
ω

2

∥∥∥ĝ(t)− f̂(t)
∥∥∥2
2

} (16)

where x̂(t) = [x̂1(t), ..., x̂K(t)], f̂K(t) =
√
TFP>f,

f̂(t) = [f̂1(t), ..., f̂K(t)]. Similar to the solution of (12),
the solution of ĝ(t) can be obtained by:

ĝ(t) = (x̂(t)x̂(t)> + TωIK)−1

(ŷ(t)x̂(t)− T ˆ̀(t) + Tωf̂(t))
(17)

Even if we acquire (15) for ĝ(t), the calculation is still a
puzzle because we need real-time tracking. So we utilize
the Sherman-Morrison formula to accelerate computa-

tion: (A + uv>)−1 = A−1 − A−1uv>A−1

1+v>A−1u
, where in our

model, A = TωIK and u = v = x̂(t). Therefore, we
rewrite (15) as:

ĝ(t) =
1

ωT

(
ŷ(t)x̂(t)− T ˆ̀(t) + ωT f̂(t)

)
− x̂(t)

ωTe
(ŷ(t)ŝx(t)− T ŝ`(t) + ωT ŝf(t))

(18)

where, ŝx(t) = x̂(t)>x̂, ŝ`(t) = x̂(t)> ˆ̀, ŝf(t) = x̂(t)>f̂,
and e = ŝx(t) + Tω.

Lagrangian Multiplier Update:

ˆ̀(i+1) = ˆ̀(i) + ω(ĝ(i+1) − f̂(i+1)) (19)

where ˆ̀(i) represents the Fourier transform of the La-
grangain in the previous state. ĝ(i+1) and f̂(i+1) are
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the present solutions to the above subproblems at iter-
ation i + 1 within the iterative ADMM period. It is
worth mentioned that ω is usually set to be ω(i+1) =
min(ωmax, βω

(i)).
Online Update: We adopt an online adaptation

scheme which is similar to conventional CF trackers, such
as [35, 59], in order to further boost the performance of
our tracker. At frame f , the model adaptation is formu-
lated as:

x̂
(f)
model = (1− ϕ)x̂

(f−1)
model + ϕx̂(f) (20)

The parameter ϕ is adaptation rate. In (18), x̂
(f)
model will

be used to compute the corresponding terms.
Object Localization The final step is to determine

the position of the target face which is detected by ap-
plying the updated filter of frame f − 1: ĝ(f−1). The
spatial location of the target face can be computed in
the Fourier domain using the following equation:

r̂ =
K∑

k=1

x̂k � ĝk (21)

where r is the response map and r̂ denotes its Fourier
transform. After the response map is obtained, the
promising face location is obtained based on the max-
imum response.

Fig. 3 shows an illustration of the proposed content
aware CF.

IV. Experiment

In this section, we present the experimental result of
the CACF tracker. We first describe the face tracking
dataset collected for performance evaluation. Then, we
demonstrate the effectiveness of our tracker compared
with several advanced tracking methods.

Our method is implemented in MATLAB and tested
on a tower workstation with CPU Intel Core i7-9700
3.0GHz and 48GB RAM. In our experiment, we adopt
31-channel HOG features with each feature cell size 4×4,
which is commonly used in [36, 38, 59]. The regulariza-
tion weight γ is set to be 0.01. The learning rate ϕ is
0.013. The ADMM iteration number is 2 and the pa-
rameter ω is set as 1, while parameter β for updating ω
is 4 and ωmax is 10000. For LSH feature, as in [43], the
number of bins is B =32 and the parameter α = 0.15,
while the parameter in (8) is 0.1.

We compare the proposed CACF tracker with several
state-of-the-art tracking methods including CF track-
ers and deep trackers: SiamRPN++ [60], DASiamRPN
[61], SiamMask [62], AutoTrack [63], SKSCF [64], BACF
[40], ECO HC [65], Staple [59], SRDCF [38], fDSST [45],
DSST [66], SAMF CA [39].

A. Evaluation Metrics
Following the standard paradigm in object tracking,

we use the success and precision plots mentioned in
[9, 67] to evaluate all the trackers. All of them are ranked
based on the area under curve scores (AUC) of their suc-
cess plots. The precision plots are generated based on the

trackers’ center location errors (CLE), which is defined
as the average Euclidean distance between the estimated
face location center and ground-truth center. In our ex-
periments, we use 20 pixels as the CLE threshold for
ranking trackers.

B. Collected Face Dateset
In order to do performance evaluation of the track-

ers, we collect 97 face video sequences and manually an-
notate the dataset according to public standard. The
challenging dataset contains different kinds of challeng-
ing attributes in general object tracking. To the best
of our knowledge, our dataset the largest face tracking
dataset that contains both indoor and outdoor faces in
the literature. We name the dataset as FaceSet. The
video sequences in FaceSet are collected from four vi-
sual tracking datasets: OTB100 [67], ClemsonHeadSeqs
[68] and NUS-PRO [69] and BUAA-PRO [70]. Table 1
shows the detailed challenges and resolution of each face
sequence.

C. Quantitative Results
The success and precision plots of our tracker against

state-of-the-art trackers are shown in figure 4. It is
clear that our proposed CACF tracker gains the best
performance in terms of precision score (0.898), while
the runner-up is BACF (0.897). The deep trackers do
not obtain satisfactory results over the FaceSet. The
best deep tracker is SiamRPN++ mobile (0.763) which
is 23.5% lower than the proposed CACF tracker. Au-
toTrack, which is very impressive in UAV object track-
ing, gets a precision score 0.842 that is 6.24% lower than
CACF. In light of the success plots, the AUC score of
CACF tracker (0.739) is the runner-up which is slightly
less than the SRDCF (0.740). When compared to the
baseline BACF tacker which is the second runner-up,
our CACF obtains 0.004 improvement in terms of the
AUC score. It is notable that all the deep trackers do
not perform well enough on the FaceSet compared to the
CF based trackers.

We also give the attribute-based results in figure 5.
From figure 5, it is clear that the winners and runner-ups
of different attributes are varied. In terms of precision
plots, CACF ranks first in BC and IPR subsets, sec-
ond in DEF, IV and SV subsets, and third in OCC sub-
set. In OPR subset, the Siamese network based trackers
occupy the top five positions, which demonstrates that
they can cope with out-of-plane rotation better than CF
based trackers. As for the success plots, CACF wins the
championship in BC, DEF, IPR and SV subsets. In MB
subset, CACF AUC score is 0.630 which is 9.76% higher
than BACF (0.574). When it comes to the OCC sub-
set, CACF (0.695) is the second runner-up followed by
BACF (0.688), while SRDCF and ECO HC ranks top
two. For OPR subset, the results are similar to that of
precision plots.

From the above analysis, it is clear that the overall
performance of our CACF tracker is much stabler than
its counterparts and is very competitive under different
challenging attributes. When compared with the base-
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Table 1: FaceSet sequences and challenges
Name Resolution Challenges Name Resolution Challenges

Biker 640 × 360 OPR,SV,OCC,MB,FM,OV,LR interview003 1280 × 720 IV,DEF,IPR
BlurFace 640 × 480 MB,FM,IPR interview004 1280 × 720 DEF,IPR,BC
Boy 640 × 480 OPR,SV,MB,FM,IPR interview005 1280 × 720 MB,IPR,BC
David 320 × 240 IV,OPR,SV,OCC,DEF,MB,IPR interview006 1280 × 720 IV,SV,DEF
David2 320 × 240 OPR,IPR interview007 1280 × 720 SV
DragonBaby 640 × 360 OPR,SV,OCC,MB,FM,IPR,OV interview008 1280 × 720 SV,IPR
Dudek 720 × 480 OPR,SV,OCC,DEF,FM,IPR,OV,BC interview009 1280 × 720 SV,BC
FaceOcc1 352 × 288 OCC interview010 1280 × 720 SV,IPR
FaceOcc2 320 × 240 IV,OPR,OCC interview011 1280 × 720 SV,IPR,BC
FleetFace 720 × 480 OPR,SV,DEF,MB,FM,IPR interview012 1280 × 720 IV,SV,BC
Freeman1 360 × 240 OPR,SV,IPR interview013 1280 × 720 SV
Freeman3 360 × 240 OPR,SV,IPR interview014 1280 × 720 IV,SV,OCC,IPR
Freeman4 360 × 240 OPR,SV,OCC,IPR interview015 1280 × 720 SV,BC
Girl 129 × 96 OPR,SV,OCC,IPR interview016 1280 × 720 SV,IPR,BC
Jumping 352 × 288 MB,FM interview017 1280 × 720 IV,SV,IPR,BC
KiteSurf 480 × 270 IV,OPR,OCC,IPR interview018 1280 × 720 DEF,IPR
Man 241 × 193 IV interview019 1280 × 720 SV
Mhyang 320 × 240 IV,OPR,DEF,BC interview020 1280 × 720 IV,SV,OCC,DEF
Shaking 624 × 352 IV,OPR,SV,IPR,BC politician001 1280 × 720 DEF,IPR
Soccer 640 × 360 IV,OPR,SV,OCC,MB,FM,IPR,BC politician002 1280 × 720 IV,IPR
Surfer 480 × 360 OPR,SV,FM,IPR,LR politician003 1280 × 720 IV,IPR
Trellis 320 × 240 IV,OPR,SV,IPR,BC politician004 1280 × 720 IV,IPR
seqBB 128 × 96 IV,OPR,SV,IPR,BC politician005 1280 × 720 IV,IPR
seqCubicle 128 × 96 IV,SV,OCC,IPR politician006 1280 × 720 IV,OCC,IPR
seqDhb 128 × 96 IV,IPR politician007 1280 × 720 IV,IPR
seqDjb 128 × 96 IV,SV,IPR,BC politician008 1280 × 720 IPR
seqDk 128 × 96 IV,IPR politician009 1280 × 720 IPR
seqDp 128 × 96 IV,SV,OCC,IPR,BC politician010 1280 × 720 IPR
seqDt 128 × 96 IV,SV,DEF,IPR sunglasses001 1280 × 720 IV,SV,OCC
seqFast 128 × 96 FM sunglasses002 1280 × 720 IV,OCC,IPR
seqJd 128 × 96 IV,SV,OCC,IPR,BC sunglasses003 1280 × 720 IV,OCC,IPR
seqMg 128 × 96 IV,SV,OCC,IPR,BC sunglasses004 1280 × 720 IV,OCC
seqMs 128 × 96 OCC sunglasses005 1280 × 720 IV,SV,OCC
seqSb 128 × 96 IV,SV,OCC,DEF,IPR sunglasses006 1280 × 720 SV,OCC
seqSim 128 × 96 IV,SV,OCC,IPR sunglasses007 1280 × 720 SV,OCC
seqVillains1 128 × 96 IV,SV,OCC,IPR,BC sunglasses008 1280 × 720 OCC,IPR
seqVillains2 128 × 96 IV,SV,OCC,IPR,OV,BC sunglasses009 1280 × 720 OCC
hat001 1280 × 720 IV,OCC,IPR sunglasses010 1280 × 720 OCC,IPR
hat002 1280 × 720 IV,OCC,IPR mask001 1280 × 720 IV,OCC,DEF,IPR
hat003 1280 × 720 IV,OCC,MB,IPR mask002 1280 × 720 OCC,IPR
hat004 1280 × 720 IV,OCC mask003 1280 × 720 OCC,IPR
hat005 1280 × 720 OCC,MB,IPR mask004 1280 × 720 OCC,IPR
hat006 1280 × 720 SV,OCC,MB,IPR mask005 1280 × 720 OCC,DEF,IPR
hat007 1280 × 720 IV,SV,OCC mask006 1280 × 720 OCC
hat008 1280 × 720 IV,OCC mask007 1280 × 720 OCC,IPR
hat009 1280 × 720 IV,SV,OCC,DEF mask008 1280 × 720 SV,OCC,IPR
hat010 1280 × 720 IV,SV,OCC mask009 1280 × 720 IV,OCC,IPR
interview001 1280 × 720 DEF,IPR mask010 1280 × 720 IV,OCC,IPR
interview002 1280 × 720 IV,SV – – –
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Fig. 3: Illustration of the proposed content aware correlation filter.

line CF trackers, especially the BACF tracker, our CACF
could boost the tracking performance in almost all the
challenging situations. This is mainly attributed to the
incorporation of both foreground and background infor-
mation within the CF framework.

D. Qualitative Results
We select 6 typical face sequences from FaceSet to

show the qualitative results, that are David, hat001,
hat003, hat006, mask006 and sunglasses005. Sam-
ple tracking results of five CF trackers are shown
in figure 6 (CACF, BACF, ECO HC, SiamMask and
SiamRPN++ r50).

In the first row (David), it shows that our tracker
can capture the face successfully under severe illumina-
tion change and in plane rotation. The faces in the sec-
ond (hat001), third (hat003) and fourth (hat005) rows
undergo frequent rotation, deformation and occlusion,
but our CACF can still track the faces accurately under
these challenging factors. In the fifth and sixth rows, the
faces are interrupted by heavy makeups and decorations
which makes it difficult to capture them accurately. The
fifth row corresponds to the Mask006 sequence while
the sixth row Sunglasses005. The sample frames in
the two rows show that almost all the five trackers can
capture the faces, thus it is difficult to directly show
the improved performance of our CACF tracker against
the other methods. We compute the center location er-
rors (CLE) of the trackers on these two sequences. The
CLEs on these sample frames are listed in Table 2. It
is clear that our CACF tracker is obviously better than
the other four methods. BACF and ECO HC are better
than SiamRPN++ r50 and SiamMask.

V. Discussion

As we analyzed in the experiment section, the pro-
posed CACF could boost the performance of face track-
ing under different challenging situations. The main
advantage of CACF is the real negative training sam-
ples drawn from the background patches and the incor-
poration of the locality sensitive histogram based fore-

ground features. For CF based trackers, traditional neg-
ative samples are mainly obtained from circular shifted
foreground patches, which leads to annoying boundary
effects. In order to suppress such effect, real negative
samples must be used for training the CF. On the other
hand, leveraging background information could boost the
tracking performance and it is common in constructing
trackers. As shown in figure 3, the background patches
are sampled as the negative samples in the training block.
In order to further increase the discriminative ability of
the tracker, we adopt the LSH based feature as the fore-
ground feature and incorporate it into the CF framework.
By using the above strategies, the learned CF could high-
light the target face area in the response map (see figure
3).

Despite the improved face tracking performance of
CACF, the main limitation of the CACF lies in that
the weight γ in the spatial regularization term of our
objective function keep invariant during tracking, which
cannot well adapt to the variation of target face. Thus,
it is necessary to change the weight of spatial regular-
ization according to different face appearances. Another
limitation is the ADMM method for solving the objec-
tive function. Since the ADMM methods requires er-
godic averaging of variables [44], it destroys the sparsity
of the solution, leading that the convergence rate is not
optimal[71]. This problem will ignite the exploration of
improved ADMM method for solving the objective func-
tion of various CF trackers.

VI. Conclusion

In this paper, we have proposed a content aware cor-
relation filter for face tracking. In order to solve the
boundary effect in CF trackers, we exploit the back-
ground information for learning a CF in which the back-
ground patches are used as negative samples while the
target patches as positive samples. A locality sensitive
histogram based illumination invariant feature is used as
foreground feature to discriminate the target face from
complex background. The feature is incorporated into
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Fig. 4: Precision plots and success plots on FaceSet compared against state-of-the-art tracking methods.
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Precision plots of OPE - background clutter (19)
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Success plots of OPE - background clutter (19)
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Precision plots of OPE - motion blur (11)
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Success plots of OPE - motion blur (11)
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Precision plots of OPE - deformation (16)
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Success plots of OPE - deformation (16)
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Precision plots of OPE - in-plane rotation (68)

CACF [0.904]

BACF [0.883]

SRDCF [0.881]

SKSCF [0.878]

ECO_HC [0.877]

Staple [0.854]

fDSST [0.852]

AutoTrack [0.845]

DSST [0.811]

SAMF_CA [0.806]

SiamRPN++_mobile [0.778]

SiamRPN++_r50 [0.764]

SiamRPN++_alex [0.716]

SiamMask [0.634]

DaSiamRPN [0.578]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - in-plane rotation (68)
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Precision plots of OPE - illumination variation (49)
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Success plots of OPE - illumination variation (49)
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Precision plots of OPE - occlusion (51)
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Success plots of OPE - occlusion (51)
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Precision plots of OPE - out-of-plane rotation (18)
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Success plots of OPE - out-of-plane rotation (18)
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Fig. 5: Attribute-based comparison. We list the precision and success plots of eight attributes. The other three
attributes, FM, LR and OV are not shown because the number of sequences containing the three attributes are 9,
2 and 4, respectively.
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Fig. 6: Sample frames of tracking results over several face sequences from FaceSet. Red: CACF, Green: BACF,
Blue: SiamRPN++ r50, Black: SiamMask, Pink: ECO HC

Table 2: CLEs of the trackers on the sample frames of Fig. 6
Seq. # FrameNo. CACF BACF SiamRPN++ r50 SiamMask ECO HC

Mask006#33 0.5 0.5 4.533 5.453 1.803
Mask006#86 0.707 1.118 2.625 12.834 2.828
Mask006#141 2.5 2.549 10.052 6.136 2.692
Mask006#240 5.148 5.701 18.037 22.255 5.523
Mask006#322 2.0 2.236 19.410 15.389 3.640

Sunglasses#030 6.042 6.50 13.481 12.362 7.211
Sunglasses#055 1.803 2.50 46.999 31.098 12.806
Sunglasses#093 7.433 8.515 37.667 33.056 8.016
Sunglasses#210 8.322 6.708 32.669 177.741 1.803
Sunglasses#222 2.236 2.550 18.564 176.217 2.915
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the objective function and the ADMM method is used to
solve the objective function. We also build a face track-
ing dataset (FaceSet) which contains 97 sequences and
covers 11 challenging attributes in face tracking. The re-
sulting content aware correlation filter shows promising
performance improvement compared to other CF based
trackers in the FaceSet. In our future work, we will
further explore the potential of the content aware CF
framework to incorporate deep features for boosted per-
formance and expand the FaceSet with more sequences.
We will also try to improve the CACF tracker by intro-
ducing adaptive spatial regularization weight and accel-
erated ADMM method to further boost the face tracking
performance.

References

[1] S. Yeung, F. Rinaldo, J. Jopling, B. Liu, R. Mehra,
N. L. Downing, M. Guo, G. Bianconi, A. Alahi,
J. Lee, B. Campbell, K. Deru, W. Beninati, F.-f.
Li, and A. Milstein, “A computer vision system for
deep learning-based detection of patient mobiliza-
tion activities in the icu,” npj Digit. Med., vol. 2,
pp. 1–5, 2019.

[2] K. Adapa, S. Jain, R. Kanwar, T. Zaman,
T. Taneja, J. Walker, and L. Mazur, “Augmented
reality in patient education and health literacy: a
scoping review protocol,” BMJ Open, vol. 310, no.
e038416, pp. 1–9, 2020.

[3] Y. J. Lee and Y. J. Lee, “Face tracking for aug-
mented reality game interface and brand place-
ment,” in UCMA 2011: Ubiquitous Computing
and Multimedia Applications, ser. Communications
in Computer and Information Science, T. Kim,
H. Adeli, R. Robles, and M. Balitanas, Eds.
Springer, 2011, vol. 151, pp. 72–78.

[4] P. Gupta, B. Bhowmick, and A. Pal, “Mombat:
heart rate monitoring from face video using pulse
modeling and bayesian tracking,” Comput. Biol.
Med., vol. 121, p. 103813, 2020.

[5] V. Srisamosorn, N. Kuwahara, A. Yamashita,
T. Ogata, and J. Ota, “Design of face tracking sys-
tem using environmental cameras and flying robot
for evaluation of health care,” in DHM 2016: Digital
Human Modeling: Applications in Health, Safety,
Ergonomics and Risk Management, ser. Lecture
Notes in Computer Science, V. Duffy, Ed. Springer,
June 2016, vol. 9745, pp. 264–273.

[6] P. Huber, P. Kopp, W. Christmas, M. Rtsch, and
J. Kittler, “Real-time 3d face fitting and texture fu-
sion on in-the-wild videos,” IEEE Signal Proc. Let.,
vol. 24, no. 4, pp. 437–441, 2017.

[7] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt,
and M. Niebner, “Facevr: real-time gaze-aware
facial reenactment in virtual reality,” ACM T.
Graphic., vol. 37, no. 2, pp. 1–15, June 2018.

[8] A. K. Roy-Chowdhury and Y. Xu, Face tracking.
Boston, MA: Springer US, 2015, pp. 532–538.

[9] Y. Wu, J. Lim, and M.-H. Yang, “Online Object
Tracking: A Benchmark,” in Proc. CVPR. IEEE,

Jun. 2013, pp. 2411–2418.
[10] G. Chrysos, E. Antonakos, P. Snape, A. Asthana,

and S. Zafeiriou, “A comprehensive performance
evaluation of deformable face tracking ”in-the-
wild”,” Int. J. Comput. Vision, vol. 126, pp. 198–
232, 2018.

[11] J. Shen, S. Zafeiriou, G. G. Chrysos, J. Kossaifi,
G. Tziiropoulos, and M. Pantic, “The first facial
landmark tracking in-the-wild challenge: bench-
mark and results,” in Proc. ICCVW. IEEE, Dec.
2015, pp. 1003—1011.

[12] U. Prabhu, K. Seshadri, and M. Savvides, “Auto-
matic facial landmark tracking in video sequences
using kalman filter assisted active shape models,” in
Trends and Topics in Computer Vision, K. N. Ku-
tulakos, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 86–99.

[13] H. Kim, H. Kim, and E. Hwang, “Real-time shape
tracking of facial landmarks,” Multimed. Tools
Appl., vol. 79, pp. 15 945–15 963, 2020.

[14] V. Contreras-Gonzalez, V. H. Diaz-Ramirez, and
R. Juarez-Salazar, “Facial landmark detection and
tracking with dynamically adaptive matched fil-
ters,” J. Electron. Imaging, vol. 29, no. 3, pp.
033 004.1–18, 2020.

[15] H. K. Almohair, “An icsc model for detecting hu-
man skin in jpeg images,” WSEAS Trans. Signal
Process., vol. 16, pp. 75–80, 2020.

[16] A. Bulbul, Z. Cipiloglu, and T. Capin, “A color-
based face tracking algorithm for enhancing interac-
tion with mobile devices,” Visual Comput., vol. 26,
pp. 311–323, 2010.

[17] M. Goyani, G. Shikkenawis, and B. Joshi, “Ge-
ometry and skin color based hybrid approach for
face tracking in colour environment,” in CCSIT
2011: Advances in Computer Science and Infor-
mation Technology, ser. Communications in Com-
puter and Information Science, N. Meghanathan,
B. Kaushik, and D. Nagamalai, Eds. Springer,
2011, vol. 131, pp. 339–347.

[18] J.-H. Kim, B.-D. Kang, J.-S. Eom, C.-S. Kim, S.-
H. Ahn, B.-J. Shin, and S.-K. Kim, “Real-time
face tracking system using adaptive face detector
and kalman filter,” in HCI 2007: Human-Computer
Interaction. HCI Intelligent Multimodal Interaction
Environments, ser. Lecture Notes in Computer Sci-
ence, J. Jacko, Ed. Springer, 2007, vol. 4552, pp.
669–678.

[19] Q. N. Vo and G. Lee, “A feature-based adap-
tive model for realtime face tracking on smart
phones,” in SCIA 2013: Image Analysis, ser. Lec-
ture Notes in Computer Science, J.-K. Kamarainen
and M. Koskela, Eds. Springer, 2013, vol. 7944,
pp. 630–639.

[20] V. Varadarajan, S. Lokesh, A. Ramesh, A. Vanitha,
and V. Vaidehi, “Face tracking using modi-
fied forward-backward mean-shift algorithm,” in
DaSAA 2017: Data Science Analytics and Appli-
cations, ser. Communications in Computer and In-

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.76 Volume 15, 2021

E-ISSN: 1998-4464 687



formation Science, R. Shriram and M. Sharma, Eds.
Springer, 2017, vol. 804, pp. 46–59.

[21] Y.-S. Huang and C.-I. Chang, “Multi-face track-
ing with occlusion recovery,” in Proc. ICGEC.
Springer, Aug. 2015, pp. 247—257.

[22] K.-Y. Liu, Y.-H. Li, S. Li, L. Tang, and L. Wang,
“A new parallel particle filter face tracking method
based on heterogeneous system,” J. Real-Time Im-
age Proc., vol. 7, pp. 153–163, 2012.

[23] Y.-H. Lee, M.-H. Jeong, J.-J. Lee, and B.-J. You,
“Robust face tracking using bilateral filtering,” in
ICIC 2008: Advanced Intelligent Computing The-
ories and Applications. With Aspects of Theoret-
ical and Methodological Issues, ser. Lecture Notes
in Computer Science, D.-S. Huang, Ed. Springer,
2008, vol. 5226, pp. 1181–1189.

[24] K. Zhang, E. Barati, E. Rashedi, and X. Chen,
“Long-term face tracking in the wild using deep
learning,” in Proc. KDD Workshop on Large-scale
Deep Learning for Data Mining, Aug. 2016, pp. 1–
13.

[25] Y. Qi, S. Zhang, F. Jiang, H. Zhou, and D. Tao,
“Siamese local and global networks for robust face
tracking,” IEEE Trans. Image Process., vol. 29, pp.
9152 – 9164, 2020.

[26] X. Li and J. Lang, “Simple real-time multi-face
tracking based on convolutional neural networks,”
in Proc. ICCRV. IEEE, May. 2018, pp. 337–344.

[27] Z. Lian, S. Shao, and C. Huang, “A real time face
tracking system based on multiple information fu-
sion,” Multimed. Tools Appl., vol. 79, pp. 16 751–
16 769, 2020.

[28] M. Gu, J. Lu, and J. Zhou, “Dual-agent deep rein-
forcement learning for deformable face tracking,” in
Proc. ECCV. Springer, Sep. 2018, pp. 783–799.

[29] A. Sleit, R. Abu-Hurra, and W. Almobaideen,
“Lower-quarter-based face verification using corre-
lation filter,” Imaging Sci. J., vol. 59, no. 1, pp.
41–48, 2011.

[30] X. Zhu, S. Liao, Z. Lei, R. Liu, and S. Z. Li, “Feature
correlation filter for face recognition,” in Proc. ICB.
Springer, Sep. 2005, pp. 77–86.

[31] M. Taheri, “Robust face recognition via non-linear
correlation filter bank,” IET Image Process., vol. 12,
no. 3, pp. 408–415, 2017.

[32] V. D. My and A. Zell, “Real time face tracking and
pose estimation using an adaptive correlation fil-
ter for human-robot interaction,” in Proc. ECMR.
IEEE, Sep. 2013, pp. 119–124.

[33] L. N. Gaxiola, V. H. Diaz-Ramirez, J. J. Tapia,
A. Diaz-Ramirez, and V. Kober, “Robust face track-
ing with locally-adaptive correlation filtering,” in
CIARP 2014: Progress in Pattern Recognition, Im-
age Analysis, Computer Vision, and Applications,
ser. Lecture Notes in Computer Science, E. Bayro-
Corrochano and E. Hancock, Eds. Springer, Nov.
2014, vol. 8827, pp. 925–932.

[34] J. Su, L. Gao, W. Li, Y. Xia, N. Cao, and R. Wang,
“Fast face tracking-by-detection algorithm for se-

cure monitoring,” Appl. Sci. Basel, vol. 9, pp. 1–17,
2019.

[35] D. S. Bolme, J. R. Beveridge, B. A. Draper, and
Y. M. Lui, “Visual object tracking using adaptive
correlation filters,” in Proc. CVPR. IEEE, Jun.
2010, pp. 2544–2550.

[36] J. F. Henriques, R. Caseiro, P. Martins, and
J. Batista, “High-speed tracking with kernelized
correlation filters,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 3, pp. 583–596, 2014.

[37] Y. Li and J. Zhu, “A scale adaptive kernel correla-
tion filter tracker with feature integration,” in Proc.
ECCV. Springer, Sep. 2014, pp. 254–265.

[38] M. Danelljan, G. Hager, F. Shahbaz Khan, and
M. Felsberg, “Learning spatially regularized corre-
lation filters for visual tracking,” in Proc. ICCV.
IEEE, Dec. 2015, pp. 4310–4318.

[39] M. Mueller, N. Smith, and B. Ghanem, “Context-
aware correlation filter tracking,” in Proc. CVPR.
IEEE, Jun. 2017, pp. 1396–1404.

[40] H. Kiani Galoogahi, A. Fagg, and S. Lucey, “Learn-
ing background-aware correlation filters for visual
tracking,” in Proc. ICCV. IEEE, Oct. 2017, pp.
1135–1143.

[41] M. Danelljan, G. Hager, F. Shahbaz Khan, and
M. Felsberg, “Convolutional features for correla-
tion filter based visual tracking,” in Proc. ICCVW.
IEEE, Dec. 2015, pp. 58–66.

[42] Y. Lin, S. Cheng, J. Shen, and M. Pantic, “Mobi-
face: a novel dataset for mobile face tracking in the
wild,” in Proc. FG, May. 2019, pp. 1–8.

[43] S. He, Q. Yang, R. W. Lau, J. Wang, and M.-H.
Yang, “Visual tracking via locality sensitive his-
tograms,” in Proc. CVPR. IEEE, Jun. 2013, pp.
2427–2434.

[44] S. Boyd, N. Parikh, E. Chu, B. Peleato, and
J. Eckstein, “Distributed optimization and statis-
tical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine
Learning, vol. 3, no. 1, pp. 1–122, 2011.

[45] M. Danelljan, G. Häger, F. S. Khan, and M. Fels-
berg, “Discriminative scale space tracking,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 8,
pp. 1561–1575, 2017.

[46] J. Liao, Q. Wang, L. Cao, X. Jiahao, and Z. Yit-
ing, “Mtcnn-kcf-deepsort: driver face detection and
tracking algorithm based on cascaded kernel corre-
lation filtering and deep sort,” in WCX SAE World
Congress Experience, ser. SAE Technical Paper.
SAE, Apr. 2020, pp. 2020–01–1038.

[47] M. Soldic, D. Marcetic, and S. Ribaric, “A robust
online multi-face tracking system,” in 2018 Interna-
tional Symposium ELMAR, Sep. 2018, pp. 159–163.

[48] S. M. Rathnam and G. Siva Koteswara Rao, “A
novel deep learning architecture for image hiding,”
WSEAS Trans. Signal Process., vol. 16, pp. 206–
210, 2020.

[49] L. Males, D. Marcetic, and S. Ribaric, “A multi-
agent dynamic system for robust multi-face track-

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.76 Volume 15, 2021

E-ISSN: 1998-4464 688



ing,” Expert Syst. Appl., vol. 126, pp. 246 – 264,
2019.

[50] W. W. Zou, P. C. Yuen, and R. Chellappa, “Low-
resolution face tracker robust to illumination varia-
tions,” IEEE Trans. Image Process., vol. 22, no. 5,
pp. 1726–1739, 2013.

[51] T. Chakravorty and E. Bilodeau, Guillaume-
Alexandre ad Granger, “Robust face tracking using
multiple appearance models and graph relational
learning,” Mach. Vision Appl., vol. 31, no. 23, pp.
1–17, 2020.

[52] X. Jiang, H. Yu, Y. Lu, and H. Liu, “A fusion
method for robust face tracking,” Multimed. Tools
Appl., vol. 75, pp. 11 801–11 813, 2016.

[53] T. Li, P. Zhou, and H. Liu, “Multiple features fusion
based video face tracking,” Multimed. Tools Appl.,
vol. 78, pp. 21 963–21 980, 2019.

[54] B. Wu, B.-G. Hu, and Q. Ji, “A coupled hidden
markov random field model for simultaneous face
clustering and tracking in videos,” Pattern Recogn.,
vol. 64, pp. 361 – 373, 2017.

[55] N. Le, A. Heili, D. Wu, and J.-M. Odobez, “Tem-
porally subsampled detection for accurate and effi-
cient face tracking and diarization,” in Proc. ICPR.
IEEE, Dec. 2016, pp. 1792–1797.

[56] D. Aspandi, O. Martinez, F. Sukno, and X. Binefa,
“Fully end-to-end composite recurrent convolution
network for deformable facial tracking in the wild,”
in Proc. FG. IEEE, Sep. 2019, pp. 1–8.

[57] D. Gordon, A. Farhadi, and D. Fox, “Re3: real-time
recurrent regression networks for visual tracking of
generic objects,” IEEE Robot Autom. Let., vol. 3,
no. 2, pp. 788–795, 2018.

[58] S. Chan, X. Zhou, J. Li, and S. Chen, “Adaptive
compressive tracking based on locality sensitive his-
tograms,” Pattern Recogn., vol. 72, pp. 517–531,
2017.

[59] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik,
and P. H. Torr, “Staple: Complementary learners
for real-time tracking,” in Proc. CVPR. IEEE,
Jun. 2016, pp. 1401–1409.

[60] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and
J. Yan, “Siamrpn++: Evolution of siamese visual
tracking with very deep networks,” in Proc. CVPR,
2019, pp. 4282–4291.

[61] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu,
“Distractor-aware siamese networks for visual ob-
ject tracking,” in Proc. ECCV, 2018, pp. 101–117.

[62] Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H.
Torr, “Fast online object tracking and segmenta-
tion: a unifying approach,” in Proc. CVPR, Jun.
2019, pp. 1328–1338.

[63] Y. Li, C. Fu, F. Ding, Z. Huang, and G. Lu, “Au-
totrack: Towards high-performance visual tracking
for uav with automatic spatio-temporal regulariza-
tion,” in Proc. CVPR, 2020, pp. 11 923–11 932.

[64] W. Zuo, X. Wu, L. Lin, L. Zhang, and M.-H.
Yang, “Learning support correlation filters for vi-
sual tracking,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 41, no. 5, pp. 1158–1172, 2019.
[65] M. Danelljan, G. Bhat, F. Shahbaz Khan, and

M. Felsberg, “Eco: Efficient convolution operators
for tracking,” in Proc. CVPR, Jun. 2017, pp. 6638–
6646.
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