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Abstract—The measurement of downhole engineering 

parameters is greatly disturbed by the working 

environment. Effective de-noising methods are required for 

processing logging-while-drilling (LWD) acquisition 

signals, in order to obtain downhole engineering 

parameters accurately and effectively. In this paper, a new 

de-noising method for measuring downhole engineering 

parameters was presented, based on a feedback method and 

a wavelet transform threshold function. Firstly, in view of 

the mutability and density of downhole engineering data, an 

improved wavelet threshold function was proposed to 

de-noise the signal, so as to overcome the shortcomings of 

data oscillation and deviation caused by the traditional 

threshold function. Secondly, due to the unknown true 

value, traditional single denoising effect evaluation cannot 

meet the requirements of quality evaluation very well. So 

the root mean square error (RMSE), signal-to-noise ratio 

(SNR), smoothness (R) and fusion indexs (F) are used as the 

evaluation parameters of the de-noising effect, which can 

determine the optimal wavelet decomposition scale and the 

best wavelet basis. Finally, the proposed method was 

verified based on the measured downhole data. The 

experimental results showed that the improved wavelet 

de-noising method could reduce all kinds of interferences in 

the LWD signal, providing reliable measurement for 

analyzing the working status of the drilling bit. 
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I. INTRODUCTION 
ecause of the complications in the stratum structure, accidents 

during the petroleum exploration and development process are a 
problem that cannot be ignored. One of the main reasons for 
these accidents is that the downhole engineering parameters 
cannot be obtained accurately [1]. The downhole engineering 
parameters measuring system is vulnerable to the downhole 
environment. Several factors can result in interference, such as 
high temperature, high pressure and strong vibration caused by 
assorted noise. In this case, the obtained data cannot reflect the 
true working conditions of the downhole. The key to better 
conduct the drilling test is to obtain accurate drilling pressure 
and torque from various interfered signals, which are known as 
the logging-while-drilling (LWD) acquisition signals. To make 
sure that the drilling environment is safe, it is important to 
establish an effective de-noising method to obtain real drilling 
pressure, torque, and other downhole engineering information.  

During past decades, researchers have put forward a lot of 
methods to deal with de-noising processing for downhole 
engineering parameters. Namuq [2] combined a linear filter 
algorithm method with a nonlinear algorithm method to deal 
with the downhole project signals. Wang et al. [3]-[4] used a 
correlation filtering method to deal with the noise of downhole 
engineering signals. Shaw et al. [5]-[8] proposed a new time 
domain signal decomposition method using an empirical mode 
decomposition (EMD) method, which could effectively remove 
signal interference. Tu et al. [9]-[10] raised a new method based 
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on Manchester coding to analysis downhole signal noise. Zheng 
[11] designed a digital filter to optimize downhole signal 
de-noising. On the basis of EEMD algorithm, Li et al. [12] 
proposed an adaptive index optimization EEMD algorithm 
(AIO-EEMD) for signal de-noising. 

Although the methods from the above researchers can 
effectively reduce signal interference, the specificity of 
downhole interference has not been studied, which may 
eliminate the original characteristics of the signal [13]-[15]. The 
downhole engineering signal has many peaks and abrupt parts, 
which is its particularity. Wavelet analysis can effectively 
distinguish abrupt parts and noise in the signal, and detect 
transient components in the signal. So it can detect weak signals 
and enhance signal-to-noise ratio, so as to realize the de-noising 
of non-stationary signals [16]-[18]. A few researchers have used 
wavelets to deal with the downhole data. Giaouris et al. 
[19]-[20] developed a wavelet-denoising approach for 
downhole signals using nonlinear wavelet transform threshold 
value. Kim Kyong-il et al. [21] proposed an improved wavelet 
threshold function for acoustic signal de-noising based on 
wavelet transform.All of these methods can distinguish the 
sharp peak and abrupt change in the underground engineering 
signal from the noise to a certain extent and realize the effective 
de-noising of the underground signal. 

However, the traditional wavelet threshold function 
will cause data oscillation and deviation when processing 
data, this paper proposes a method based on the combination 
of feedback wavelet transform and improved wavelet 
threshold function to de-noise downhole engineering signals. 
In view of the limitations of the traditional single de-noising 
effect evaluation index, a comprehensive evaluation index is 
proposed as the evaluation parameter of the signal 
de-noising effect to determine the best wavelet 
decomposition scale and the optimal wavelet basis.The 
experiment shows that the improved method has a 
remarkable effect on the de-noising of downhole data, which 
provides good support for obtaining accurate data in drilling 
engineering. 

II. DOWNHOLE ENGINEERING PARAMETER SIGNAL AND NOISE 
CHARACTERISTIC ANALYSIS 

Downhole engineering parameters include pressure, 
temperature, drilling pressure, torque, acceleration and bending 
stress. All of these parameters are collected and transmitted 
through downhole engineering instruments. In order to 
investigate engineering parameters de–noising approach, it is 
very important to analyze the noise characteristics of down-hole 
data [22]-[24]. Noise in Drilling Well Sites is an important 
factor that affects the regular work of instruments, which 
reduces the SNR (Signal-to-Noise Ratio) of the received signal. 
The sources of the noise in downhole engineering can be 
divided into three aspects. The first aspect is the man-made 
noise caused by human activities, such as diesel engines, 
generators, mud pumps, drilling rigs and other equipment. The 
second aspect is natural noise, such as all kinds of 

electromagnetic wave sources in nature. The third aspect is the 
instrument internal noise generated by the system itself, such as 
the white noise of semiconductor components, the  noise 

caused by circuit board wiring, and the internal power noise of 
the instrument [23]. The approximate spectrum distribution and 
the frequency range of these internal and external noises are 
shown in Fig. 1. 

 

Fig.1 Noise Distribution 

In the received engineering signals, there are various random 
noises, of which white Gaussian noise (WGN) accounts for the 
most. In the signal processing, the mean variance of a wavelet 
transform of white noise will decrease with the increment of 
decomposition number. So white noise has negative singularity. 
However, for the original signal, the modulus maximum of its 
wavelet transform increases with the increment of 
decomposition layers [26]-[27]. Wavelet de-noising method 
distinguishes signals and noises by changing the trend of 
different modulus maxima in multiscale space. Therefore, the 
number of the wavelet decomposition has a major impact on the 
de-noising effect. Wavelet transforms that are characterized by 
multi-resolution analysis can extract weak signals and meet the 
need of processing LWD data in harsh environments. 

III. MODEL FOR DOWNHOLE ENGINEERING SIGNAL 
DE-NOISING  

A. Feedback basic principle of wavelet de-noising method 

Signals of downhole instruments are mainly interfered by 
WGN, so this paper mainly studies wavelet de-noising for 
WGN [28]. The basic principle of wavelet threshold de-noising 
is as follows. 

 Assuming that a finite length signal superimposed with WGN 
can be expressed as: 

         , 1,2 , 1s i f i e i i n       (1) 

Where, ( )f i  is the true signal, ( )e i is a standard white noise, 
and  is the noise level. Using the wavelet threshold method, 
the accurate signal ( )f i can be recovered from the noisy 
signal ( )s i . The algorithm is shown in Fig. 2. 
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Fig.2 Wavelet threshold de-noising algorithm 

(1) The wavelet transform of a noisy signal is carried out, and 
the appropriate wavelet basis and wavelet decomposition level j 
is selected to decompose the noisy signal to the j layer, and the 
corresponding wavelet decomposition coefficient ,j kw  can be 
obtained.  

 (2) Threshold quantization of high frequency coefficient of 
wavelet decomposition: according to a threshold quantization 
criterion, the high frequency coefficient of each layer from the 
first layer to the j layer is processed by determining the 
appropriate threshold function to obtain the estimated value of 

the wavelet coefficient *
,j kw . 

 (3) Wavelet reconstruction: the wavelet inverse 
transformation is carried out for the high-frequency wavelet 
coefficients of layer 1 to layer j and the low-frequency wavelet 
coefficients of layer j after quantized by threshold value, to 
obtain the estimated signal, so as to recover and obtain the 
useful signal. 

 (4) The evaluation parameters are used to check the 
de-noising effect of the signal. The de-noising effect of different 
decomposition scales and different wavelet bases are compared, 
then return to step (1) according to the difference of the 
de-noising effect. 

The feedback wavelet threshold de-noising algorithm takes 
the multi index fusion as the evaluation parameter of the 
de-noising effect, and the multiple indexes include the root 
mean square error, signal to noise ratio, smoothness and so on. 
After de-noising using the wavelet threshold, the de-noised 
signal is evaluated and feedback is carried out according to the 
evaluation parameters. 

B. Improved wavelet de-noising threshold function 

According to the characteristic analysis of downhole 
engineering parameters, the downhole engineering data was 
abrupt and intensive [29]. An improved threshold function is 
proposed. This method can overcome the shortcomings of a 
traditional threshold function that can cause oscillation and 
deviation, and it can effectively de-noise engineering 
parameters. There are two major traditional threshold operators: 

 (1) Hard thresholding, 
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The disadvantage of this method is that at some point it will 
generate a break, and the reconstructed signal will produce 
oscillation. 

(2) Soft thresholding, 
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 (3) 

Although the overall continuity of soft thresholding is better 

than hard thresholding, when ,j kw  , there is always a 

constant deviation between ,j kw and *
,j kw , which directly 

affects the degree of approximation of the signal after the 
de-noising and the accuracy of the signal, and affects the 
de-noising effect of the signal. The above two threshold 
operators have been widely used in engineering problems, but 
there are some limitations in practical applications. In order to 
overcome the different defects of the soft-threshold operators 
and hard-threshold operators, an improved threshold operator is 
constructed. 
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 (4) 

The improved threshold operators, like the soft threshold 
operators, is a continuous function, which can overcome 
oscillation caused by the hard threshold de-noising method.  
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 , , 0j k j kf w w  .  
The asymptote of the improved threshold function 

is  , ,j k j kf w w , which overcomes the constant deviation 

caused by the soft threshold de-noising method. 
In addition to the selection of the threshold function, the other 

important aspect is the specific estimation of the threshold 
 [30]. In this paper, a number of experiments have been 
carried out to obtain the threshold, which 

is    2lg / log 1M j   , here M is the length of 

signal and j is the decomposition level. The expression of the 
noise standard deviation  , / 0.6745j kmedian w  . 

C. Wavelet de-noising effect comprehensive evaluation 

The evaluation indexes of common signal de-noising are root 
mean square error (RMSE), signal to noise ratio (SNR) and 
smoothness (R) [31]-[32]. 

(1)RMSE: 

   
2

^

1

1 n

i

RMSE f i f i
n 

     (5) 

Where,  f i is the original signal,  ^f i is the de-noised 

signal, and n is the length of the signal. Eq. (5) shows that the 
smaller the RMSE, the better the signal de-noising effect. 

(2)SNR: 

 1010log /signal noiseSNR power power  (6) 

Where, 
 

 
2

1

1 n

signal

i

power f i
n 

     (7) 
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2

^ 2

1

1 n
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i

power f i f i RMSE
n 

      (8) 

Eq. (6) illustrates that the higher the SNR, the better the signal 
de-noising effect. 

(3)R: 

       
2 21 1

^ ^

1 1
1 / 1

n n

i i

R f i f i f i f i
 

 

           (9) 

Eq. (9) shows that the smaller the smoothness, the better the 
signal de-noising effect. 

According to the characteristics of the above RMSE, SNR 
and R, the fusion index F can be weighted by the entropy 
method. The fusion index F is obtained as an evaluation 
parameter for the de-noising effect. Its specific formula is 

     RMSE SNR SNR R RRMSE
F W C m W C m W C m       (10) 

Where, RMSEW  is the weight coefficient of RMSE, SNRW  is 

the weight coefficient of SNR, RW  is the weight coefficient of 
R. 

 
   

   

min
max minRMSE

VRM m RMSE
C m

RMSE RMSE





 (11) 

 
   

   

min
max minSNR

VSNR m SNR
C m

SNR SNR



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 (12) 

 
   

   

min
max minR

VR m R
C m

R R





 (13) 

 
RMSE

C m ,  SNRC m and  RC m denote the normalized 

value of the RMSE variation, the SNR variation and the R 
variation respectively. 

Where, 

     1VRM m RMSE m RMSE m    (14) 

Eq.14 shows that VRM(m) indicates that RMSE(m) is the 
change in the wavelet decomposition scale between the m+1 
and the m level; RMSE (m) indicates the root mean square error  
at the M decomposition level. 

     1VSNR m SNR m SNR m    (15) 

In the same way, VSNR (m) represents the change of SNR 
between level m+1 and level M, SNR (m) means the 
signal-to-noise ratio at the M decomposition level. 

     1VR m R m R m    (16) 

VR (m) means the variation of R between level m+1 and level 
m, R (m) indicates the smoothness of the M decomposition 
scale. Further, taking VRM (m) as an example, the calculation 
method of the weight coefficient is given, 

     

1
1 1 1
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RMSE SNR R

H
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H H H


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H P P
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 
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 
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Where, RMSEH represents index entropy and n represents 
sequence length. 

 

 
1

RMSE

i n

i

RMSE i
P

RMSE i





 (19) 

Here, RMSE

iP  represents probability.  
The weight coefficients of SNR and R can be calculated in the 

same way. 

IV.  OPTIMUM WAVELET DECOMPOSITION LEVEL AND BEST 
WAVELET BASIS 

The improved wavelet threshold function was used to 
de-noise, with combining root mean square error (RMSE), 
signal-to-noise ratio (SNR), smoothness (R) and fusion indexs 
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(F), The de-noising effects of different decomposition scales 
and different wavelet bases are compared through computer 
simulation in MATLAB®, so as to determine the optimal scale 
and wavelet base of underground engineering parameters 
decomposition. Fig. 3 shows the comparison of the changes of 
RMSE, SNR, R and F under different wavelet decomposition 
scales. 

 

Fig.3 Variation of the Vrm、Vsnr、Vr and Vf  

The MATLAB Function Block was applied to simulate the 
non-stationary and random signals, with 2048 sampling points 
and the SNR being 2dB in each signal. It can be seen from Fig. 
3, the changes in root mean square error, signal-to-noise ratio, 
smoothness and fusion index all show obvious convergence 
characteristics along with the increase of decomposition scale, 
and these index values all tend to flatten out when the 
decomposition scale is greater than 5. Therefore, it can be 
concluded that the optimal scale of wavelet decomposition of 
the improved wavelet threshold function is 5.White noises are 
superimposed on the Blocks signals to obtain the noisy signals, 
with the SNR being approximately 15 dB (Fig. 4a). The noisy 
signal is de-noised with the haar, the Sym8 and the db3, as 
demonstrated in Figs. 4(b)-(d), which indicates that the signal 
obtained by Haar wavelet de-noising is the smoothest, the curve 
obtained is closer to the original signal, and the reconstructed 
signal can better reflect the details of the original 
signal.Therefore, Haar is chosen as the wavelet basis in this 
study. 
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Fig.4 db3、sym8 and haar at level 5 de-noising signals 

V. RESULTS AND DISCUSSION 

A. Downhole Engineering Measured Parameters 

Processing and Analysis 

The improved threshold de-noising method is used to 
de-noise the measured drilling pressure and torque signal of the 
downhole. Drilling pressure data from the Wen Xing 5th well is 
shown in Fig. 5a. The drilling pressure signal de-noised by the 
improved threshold function is shown in Fig. 5b.  
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(a) Drilling pressure original signal 
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(b) Drilling pressure de-noising signal 

Fig.5 Experimental results of Drilling pressure de-noising signal 

Table 1 RMSE, SNR, R and F comparison 

Experimental Index Hard-threshold  Soft-threshold   improved threshold 

Rmse 5.5015 5.0023 4.7823 
Snr 35.0079 36.2759 38.5871 

R 0.2390 0.2362 0.1419 

F 8.7884 7.1130 6.8176 

According to the parameters of RMSE, SNR, R and F in 
Table 1, it can be seen that for downhole drilling pressure signal 
de-noising, the root mean square RMSE, smoothness R and 
comprehensive evaluation index F of the improved threshold 
function de-noising are smaller than the traditional threshold 
function, And its signal-to-noise ratio SNR is higher than the 
traditional threshold function, indicating that the de-noising 
effect of the improved threshold function is better than that of 
the soft and hard threshold function.By comparing the region A 
in Figs. 5(a) and (b), it can be seen that in the stage of relatively 
stable drilling pressure change, the improved threshold wavelet 
de-noising makes the drilling pressure data clearer. By 
comparing the region B in Figs. 5(a) and (b),it can be seen that 
in the stage when the torque changes dramatically, This method 
can effectively suppress the white noise and sharp pulse 
interference in the drilling pressure signal, retain the original 
characteristics of the original signal, and reflect the actual 
drilling pressure value more accurately. Drilling pressure data is 
an important parameter affecting rock drillability [34]. After 
wavelet de-noising, the drilling pressure data can accurately 
reflect the actual downhole drilling pressure value, which is 
good for engineers to understand and analyze the downhole 
conditions. 
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(a) Original torque signal 
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(b) Torque de-noising signal 

Fig.6 Experimental results of Torque de-noising signal 

Table 2 RMSE, SNR, R, and F comparison 

Experimental Index   Hard-threshold       Soft-threshold        improved threshold 

Rmse 8.0365 7.0332 6.4728 
Snr 27.6256 29.5623 31.7088 
R 2.351 1.3570 0.9993 
F 10.9782 9.2265 8.7474 

The measured original torque signal is shown in Fig. 6a. The 
de-noised torque signal is shown in Fig. 6b. Table 2 shows that 
the de-noising effect of the improved threshold function is 
improved compared with the soft and hard threshold function. 
Fig. 6 illustrates that most of the noise is effectively suppressed, 
and the reconstructed signal basically preserves the full details 
of the original signal. By comparing the region C in Figs. 6(a) 
and (b), it can be seen that in the stage of relatively stable torque 
change, the improved threshold wavelet de-noising can 
effectively filter out the " glitches" generated by white noise and 
obtain a relatively smooth reconstructed signal, which enables 
engineers to grasp the torque change more accurately. By 
comparing the region D in Figs. 6(a) and (b), it can be seen that 
in the stage when the torque changes dramatically, the improved 
threshold function wavelet de-noising can effectively suppress 
the white noise and sharp pulse interference in the torque signal. 
This method preserves the mutation position of the useful signal 
under the condition of strong noise, and thus preserves the 
original characteristics of the torque signal.Torque is an 
important basis for judging downhole drilling tool operation 
conditions, bit wear conditions and underlying lithology [35]. It 
is the most vital parameter for judging the underlying lithology 
and drillability. The torque after de-noising can accurately 
calculate its relative variation, thus providing a reliable basis for 
engineers. 
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VI. CONCLUSION 
In this paper, by analyzing the signal characteristics of the 

downhole engineering parameters, a new threshold function of 
wavelet de-noising approach was determined for LWD signals. 
Through theoretical analysis and experimental verification, the 
following conclusions can be obtained: 

1)    Compared to traditional downhole engineering signal 
processing methods, the proposed method can overcome 
the disadvantage of constant deviation between 
estimation wavelet coefficient and decomposition 
wavelet coefficient, aiming at the disadvantage of data 
oscillation and deviation caused by traditional threshold 
function wavelet transform in downhole data processing. 

2)    Concerning the limitation of traditional single evaluation 
index of de-noising effect, a comprehensive evaluation 
index is proposed as the evaluation parameter of 
de-noising effect. In the Blocks Matlab simulation 
experiment, the optimal wavelet de-noising scale is 5 
based on the convergence characteristics of the change 
in root mean square error, signal-to-noise ratio, 
smoothness and fusion index F. By comparing the 
de-noising effects of different wavelet bases at the 
decomposition scale of 5, the optimal wavelet basis is 
Haar wavelet. 

3)     An improved threshold function based wavelet 
denoising method for underground engineering 
parameters is proposed in this paper.The experimental 
results show that the method can effectively suppress the 
white noise and sharp pulse interference in the downhole 
WOB and torque signals, retain the characteristics of the 
original signal such as sharp peak and sudden change, 
and more accurately reflect the actual information in the 
downhole, thus providing a reliable measuring method 
for the analysis of the working state of the bit. 
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