
 

 

 
Abstract—This paper mainly studies the flight route planning 

in complex and uncertain environments. The improved artificial 

immune algorithm is used to complete the flight route planning in 

different complex environments. The experimental results show 

that the improved artificial immune algorithm has a higher 

success rate of route planning than the common genetic algorithm 

in complex environments; therefore, it also shows that this 

method has better adaptability in complex environment. 
 

Keywords—Airplane, AIA-based Path Planning, Algorithm 

comparison, uncertain environment.  

I. INTRODUCTION 
T is very important to plan a safe and operational path for an 
aircraft in a rescue mission under an environments including 

terrain and building threats. Currently, multiple UAVs 
cooperate with each other to complete the rescue task [1, 2]. 
Therefore, the design of multi Aircraft Cooperative Route 
Planning in complex environment has great application value in 
civil rescue fields.  

In the field of path planning, many methods have been 
developed in a given environment. Graph search method can be 
used to generate a planar path in short time under the 
environment with known threat information [3, 4]. A * 
algorithm usually has better performance such as accuracy and 
velocity with the help of heuristic function, but the path planned 
can be local optimal solution [5, 6]. Ant colony algorithm is a 
heuristic global optimization algorithm. However, this 
method’s use is limited due to its relatively slow convergence 
speed and tendency to be trapped in local minim [7]. 
Evolutionary algorithms have inherent parallelism and good 
global search capabilities, but its local search ability is poor, 
prone to the premature convergence [8]. The potential field 
theory is a simple, easy and low-level algorithm, while it is 
prone to stuck in local minima and deadlocking [9]. Artificial 
neural networks (ANN) have the ability of quickly determine 
optimal solutions, but it requires a number of parameters and 

 
 

too long learning time to reach the desired destination [10]. The 
bacterial memetic algorithm has also been proposed to solve the 
path-planning problem in uncertain environments [11, 12]. 
Particle Swarm Optimization (PSO) method is also been used 
in path planning[13], PSO A new hybrid PSO known as the 
HGC-PSO uses Gaussian and Cauchy mutations to increase the 
population diversity and avoid the tendency of the PSO to be 
stuck on local optima values [14]. A hybrid path planning 
algorithm for the D* algorithm and Voronoi graph has been 
developed that incorporates global and local path planning 
schemes for mobile robots [15]. Genetic algorithm (GA) has 
good global searching ability when it is used in route planning, 
but it also has the problem of premature convergence [16].  

Based on the basic AIA algorithm, this paper develops an 
AIA algorithm for aircraft route planning. Combined with the 
various threat scenarios in the rescue mission, the basic AIA 
algorithm is improved by introducing the aircraft 
maneuverability and flightability optimization module to 
improve the safety of the planned route. Aiming at the situation 
of multi Aircraft Cooperative mission, this paper designs the 
dual aircraft route planning AIA algorithm: introduces the 
voyage comparison module to reduce the voyage difference 
between the two aircraft, so as to ensure that the two aircraft can 
reach the destination at the same time and improve the 
efficiency of mission execution. Compared with the widely 
used genetic algorithm, experiments are carried out in many 
complex environments. The experimental results show that the 
algorithm has better operability and robustness. 

II. AIRCRAFT PATH PLANNING PROBLEM FORMULATION 
The purpose of this paper is to calculate a 3D flight path 

using the AIA with the desired characteristics of aircraft in a 
complicated environment. For the multiple aircraft path 
planning problem, there are two aspects that must be taken into 
account: (1) the cooperative problem in multiple aircraft path 
planning and (2) multiple aircraft cooperating with each other 
during the flight planning process. For multiple aircraft 
systems, the main problem is the cooperation of multiple 
aircraft, the arrival time, direction of attack and the task 
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assignments.  
Aircraft path planning assumed in this paper has 

characteristics including: 
(1) Stealth. The designed path must minimize threats by 

choosing radar shadow zones, maximize a safety margin from 
ground obstacles and constrain the maximum and minimum 
elevation from the ground. 

(2) Physical feasibility and mission performance. This is 
related to special aircraft performance, such as the maximum 
climb and descent rates, flight path angles, the length of the 
flight path, airspeed and minimum turning radius. 

(3) Estimated time of arrival (ETA). For multi-aircraft path 
planning, all aircraft must arrive at the destination at almost at 
the same time to complete a certain task. 

(4) Multiple aircraft cooperation. When an unexpected threat 
appears, aircrafts should safely reach target region in the 
shortest time by information exchange.  

(5) Real-time implementation. This requires that the design 
time of the next flight segment be less than the execution time 
of present flight segment. 

III. ARTIFICIAL IMMUNE ALGORITHM-BASED PATH PLANNING 

A. Artificial Immunity Algorithm (AIA) 
AIA refers to the concept and theoretical calculation model 

of biological immune system. It bases the immune algorithm to 
be solved on the biological humoral immune process. The 
characteristics of biological fluid immunity includes antigen 
recognition, plasma cells selected by affinity, having memory 
cells, promoting and inhibiting the production of antibodies, 
and generating the next generation of antibodies through cross 
mutation. 

The AIA is capable of high level parallel processing, and 
does not only have learning and memory capabilities but also 
has related repair, distribution and self-organization abilities. 
Therefore, AIA provides a new way to yield intelligent control 
in this particular research field. 

Our research utilizes the AIA’s advantages and combines the 
method with aircraft path planning. At the same time, we 
consider the aircraft’s airworthiness, namely, the condition of 
the aircraft with respect to its aerodynamic, mechanical and 
legal ability to fly. 

B. Main techniques of AIA aircraft path planning  

Because AIA is seldom used in aircraft path planning field, 
we provide a description of AIA’s operation as follows. 
1) Spatial discretization 

The planning space is continuously distributed, and the track 
points in the flight route are discrete. In order to facilitate the 
selection of the track points, it is necessary to discretize the 
planning space. At the same time, ground surface model (DTM) 
also need to be spatialized base on the granularity of airspace to 
unify calculation of route scale (see Figure 1). The granularity 
of airspace’s discretization has an important impact on the 
calculation efficiency and memory capacity, which just like the 
higher the resolution of the image, the larger the storage space. 
In this paper, a concept is explained for airspace’s grid 

discretization in a rough path set theoretic planning. Formula 
(1) and formula (2) show the 3D discrete dot set formed. 
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Msp=⌈Wsp/Dw⌉, Nsp=⌈Lsp/Dl⌉
                          

(2) 

 

Here, Psp(i,j) and (xsp(i,j),ysp(i,j) ,hsp(i,j)) indicate the point of 
ith row and jth column, corrdination on the airspace 
respectively, with unit being per kilometer, i∈(1,2,…, Msp), j

∈(1,2,…, Nsp), hsp. Wsp, Lsp repress the width and Length of 
airspace respectively; symbol ‘⌈⌉’ indicates rounding up. Dw 
and Dl are the discreted distance of x-axis, y-axis on level 
airspace respectively. hlimit expresses airspace’s the limit height 
of planning, which include high limit (i.e. hlimit_high) and low 
limint (i.e. hlimit_ low), that is, hlimit∈(hlimit_high, hlimit_low). hDTM 
means the height of DTM in formula (3). 
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   (d) 
Fig. 1.  Discrete DTM (a), DTM projection on x-y plane (b) and y-h 

plane(c) and a real DTM and its projection on x-y plane (d) 
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(3) 

 
2) Route expression 

A flight route (F) is composed of a track points (Pf) set 
in airspace.

 
Pf(k,l) is the lth point of kth flight path, which 

corrdination is expressed as(xf,yf,hf) (k,l), which is 
simplified form of xf(k,l),yf(k,l),hf(k,l), l∈(1,2,…,Nf), k∈

(1,2,…,Np) in formula (4)and formula (5). Np and Nf 
indicate the number of flight path, flight point respectively. 
hsuitability means the value more suitable for plane safe flight, 
which is in the range of hsuitability_low and hsuitability_high. 
hplane_adjust expresses the safety margin value adjusted for 
the sake of safety (see figure 2). 
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Fig. 2. Elevation dimension diagram of flight route planning 

 
3) Population Characteristics 

The population includes a certain number (Np) of 
solutions (i.e., antibodies). Each antibody represents a 
candidate flight path composed by a series of flight 
waypoints (i.e., genes). In this paper, we assume each 
candidate flight path including 10 flight waypoints, that is, 
(Nf =10) connected together to form a path from one point 
to another (starting point → intermediate waypoints → 
ending point) shown in formula (6). The starting point (i.e. 
Ps) and ending point (i.e. Pe) are initialized with fixed 
values. 
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4) Selection technique 
A roulette-wheel method is utilized in selection 

operation, which randomly and repeatedly selects a half of 
antibodies from its parent antibodies.  

The main idea of roulette-wheel can be imagined a 
rotating wheel can only rotates turn around at most. Before 
each wheel disc put the chromophore randomly 
somewhere on the outer edge of the wheel disc, that is, the 
chromophore does not rotate with the wheel disc, and a 
random number pc represents its position. After the roulette 
rotates, the sector number of the roulette indicated (j) by 
the dice changes constantly. When the roulette stops, the 
sector number on the roulette indicated by the dice (ps) is 

hlimit 
hsuitability 

pvertical  
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the individual number selected for this roulette, and the 
initial rotation position of disc expressed as psum. 

The roulette-wheel method’s selection process is as 
follows: 

 
Tab. 1. Roulette-wheel method pseudo code 

Roulette-wheel method 

pseudo code 

Function 

for i←1, i∈{1, 2, …, n } do 

pc ← rand(0,1) 
 
psum ← 0 

j ← 1 
while psum < pc do 

psum ←psum + p(j) 

j← j + 1 
end while 
ps(i) ← j-1; 
end for 

The first to ith dice throw 
pc is initialized as a random number 
between 0 and 1  
psum is set as 0 
j is set as 1 
The termination condition is satisfied 
The wheel turns to new position (psum 
+ p(j)) 
j is updated accordingly 
The wheel stops turning 
ps goes back to j-1 
End of the cycle 

 
5) Clone and mutation operator 

A certain number of antibodies are cloned to prepare for the 
next generation’s mutation operation. In this paper, all 
antibodies cloned（i.e. ‘1-1 selection probability’） are mutated 
to produce new generation child antibodies (path). Mutating 
antibodies are chosen randomly, which will improve the 
diversity of antibodies. The operations of selection, cloning and 
mutation operation is repeated until the stopping criteria are 
met. 
6) Vaccination Operation 

A vaccine is a short segment containing the most outstanding 
antibody, which is used to inoculate other antibodies. One 
antibody can be chosen as a vaccine when the antibody’s 
probability exceeds preset threshold. In this paper, a vaccine is 
inoculated in three ways: Part of antibodies are randomly 
chosen to be inoculated, all antibodies to be inoculated and 
Each antibody to be inoculated but the inoculated position is 
random selected. 
7) Population update technique 

The affinity function can be measured by the antibody’s 
comprehensive voyage, which is equivalent to the path’s 
weighted cost. The different types of threats are transformed 
into terrain threats by their maximum influence range and 
height, whose affinity function can comprehensively express as 
follows: 

9

1
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                (9) 

Here, F(i) is an affinity function of ith flight segment’s 

comprehensive distance Cdseg(i). In formula (8), (x(i), y(i))  and 
(x(i+1), y(i+1)) are the coordination of flight point p(i), p(i+1) 
respectively. α and b is the coefficient of flight path’s height, a 
plus constant. b’s value is depended on circumstance’s 
complicate degree of mission. ThreatL and ThreatH repress the 
threat projection on horizontal and height. 

After vaccine’s segment is initialized by randomly selected 
from vaccine but starting and ending points. Three different 
vaccination modes are adopted in this paper: (1) part of 
antibodies randomly are selected, (2) the ith and 
(antibodySum+1-i)th antibodies are selected and (3) the ith and 
(i+antibodySum/2)th antibodies are chosed to be vaccinated, 
antibodySum is the total number of antibodies. Children 
antibodies is generated by inoculation copy of parent antibodies 
with vaccine. 
8) Evaluation technique and convergence criteria 

In this paper, the convergence criterions include maximum 
iterative generation and the deadline of planning time. That is, 
if either criterions is reached, program will cease. 
9) Path planning major steps by AIA 

The details of the AIA progress are: 
Parameter initialization. Maximum and minimum turning 

angles, maximum and minimum turning gradient, flight speed, 
maximum voyage and the size of antibody (path) population, 
the probability of crossover Pe and variation mode Mv are 
initialized. 

Flight path initialization. In this paper, the plane 
coordination of track point are initialized randomly value in the 
range of airspace by formula (10). Here, (xt, yt) is temp 
coordination of path point. The function of round() and 
random()are used for expression of rounding and generating 
random numbers respectively.   
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     (10) 

 
Affinity function. Affinity function express the value of 

path planned, whose size can measure safety and voyage of 
flight.   

Terminal condition. The program’s terminal condition 
chosen includes flight path’s value and iterations. The main 
consideration factor is former for sake of safety.  

Selecting operation. The roulette-wheel method is adopted 
for selecting operation. Different affinity probabilities  are used 
to avoid falling into local optimum. 

Crossover and mutation operation. Conventional 
crossover and mutation operations is performed according to 
the establishment crossover probability Pe and the variation 
mode Mv after the immune body is selected. 

Although a minimal threat trajectory is generatered for an 
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aircraft by AIA, which is a 3D Zigzag lineonnected by a set of 
segmented polyline having poor operability due to its flyability 
constraints. So smoothing operation should be executed on the 
path. Smoothing operation performed on three-dimensional 
track includes two step: fly-ability adjust operation and path 
smooth operation.  Fly-ability adjust operation means aircraft’s 
climb angle and turn angle. When aircraft’s flight checked its 
climb angle and turn angle beyond its limit value, it must adjust 
the path due to safety. To summarized, turn angle and pitch 
angle constraints is used to adjust the planned path on level and 
vertical aspect respectively. Overall, the following research 
works have been done in process: 

In the course of online flight, when flight path’s angle 
surpasses the maximum turn angle, we should adjust the turn 
angle by formula (11).The coordinates of flight point associated 
is adjusted accordingly to adapt to this adjustment. The path 
should also be within the specific scope as the pitch angle, as 
shown in formula (12). Length of the shortest track segment is 
set no more than 5km considering maneuver time of aircraft, as 
shown in formula (13): 

 

              

(11) 

30 30
30 30

30 30



  



 


   
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 (12)

 

min( ( )) 5 , 1,2,...,9segCd k km k        (13)   

After this fly-ability adjust, Cubic spline curve is adopted to 
smooth above 3D flight path.                    

IV. EXPERIMENTS AND RESULTS 
 

In this research, AIA is used to plan path under a simulated 
environment with mountain threats compared with Genetic 
Algorithm (GA), which is recently becoming a more popular 
optimization method in the aircraft path planning community. 
Starting point and ending point was fixed at (1 km, 1 km), (60 
km, 60 km) for one aircraft path planning respectively. For two 
aircrafts path planning, two initial coordination are set at (1 km, 
8 km) and (10 km, 1 km); while the destination coordination are 
still preset at (60 km, 60 km). In this paper, experiments were 
run on a Pentium (R) 2 with a CPU speed of 2.2 GHz. Other 
flight parameters are: Pitching angle ∈(-30º, +30º); Maximum 
turning angle ∈(-60º, +60º); Minimum flight segment length 
not greater than 5 km; Velocity range∈(61 m/s, 77 m/ s); 
airspace assumed 60 km×60 km. 

Three simulated scenarios were designed within an airspace 
to verify the AIA method’s robustness and efficiency. In these 
tests, aircraft’s number and threats’ number (and/or types) are 
also changed. The following three tests provides a comparison 
of AIA and GA on planning path. 

A. Simulation  Scenario #1 

Figure 3(a) and 3(b) shows the plane path, 3D flight path 
planned by AIA. The path generated can satisfactorily avoid 

threats, whose plane path is the project of 3D flight path on 
horizontal. The threat zones are denoted as a set of colored 
contour graphs, which represent the elevation of the mountains. 
The aircraft fly from starting point on the bottom left corner to 
ending point on the top right corner. The planned path stays 
away from the threat with lower value. Figure 4 provides the 
simulation results planned with GA under the same 
environment. The results show that the GA is also capable of 
designing a feasible flight path in a shorter time (GA 3.875 
seconds and AIA 4 seconds), but with a longer flight length 
than the AIA. This means that GA can quickly design a flight 
path under terrain threat conditions. This advantage helps the 
operator to decide how to address emergency cases with terrain 
threats. The operator can evaluate the two methods’ merits and 
demerits and select an appropriate one for a particular mission. 

 

 
(a)                          (b) 

Fig. 3. Path on x-y plane (a) and in 3D airspace (b) by AIA in simple 
circumstance 

 

  
(a)                                        (b) 

Fig. 4. Path on x-y plane (a) and in 3D airspace (b) planned by GA 
under simple circumstance 

 

B. Simulation Scenario #2 

The second test scenario examined four threats situated in the 
way of the aircraft reference path shown in Figure 5. 
Additionally, five new threats are set as no-fly-zone. These 
threats and their threat zone are represented as several colored 
cylinders in 3D airspace, and white rings on x-y plane 
respectively. 
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Fig. 5. Path on x-y plane (a) and in 3D airspace (b) by AIA in 
complicate circumstance 

 
It can be seen that the path planed has bypassed these 

no-fly-zone and  gone through low-lying areas from Figure 5. 
This shows that Artificial Immune Algorithm is feasible and 
effective in solving the problem of disaster rescue in complex 
environment.  

The 2D and 3D paths are shown by AIA in Figure 5, which 
was successful in satisfying its objective requirements. The red 
path prior to a top priority on safety than minimize additional 
fuel usage and maximize reconnaissance. 

Figure 6 shows the path planned by GA without avoiding the 
no-fly-zone due to its inefficacy at maintaining antibody 
diversity. By compared Figure 5 and Figure 6, AIA has higher 
success rate than GA under a complex environment. 

 
(a) 

 
(b) 

Fig. 6. Path on x-y plane (a) and in 3D airspace(b) by GA in 
complicate circumstance 

 

C. Simulation Scenario #3 

This scenario add more terrain and a pop-up threat near 
destination in simulation Scenario #2. The result of planning 
flight path is shown on Figure 7 and Figure 8. The conclusions 
are like those from simulation scenario #2: the path(s) is (or are) 
planned with the minimum flight value but also having the 
maximum safety margin against these ground obstacles. Figure 
7 and Figure 8 also indicate AIA has a faster and more 
successful path planning ability than GA under a complicated 
environment to make a long story short. 

   
(a)                    (b) 

 
(c) 

Fig. 7. Path on x-y plane (a) and in 3D airspace (b) for two aircrafts 
by GA in complicate circumstance 

In this research, the total aircraft flight path’s length is 
planned as shortly as possible on the premise of safe flight. As a 
result, two airplane can easily reach the same estimation by 
slightly changing their velocities. In experiment, four threats 
are added into above environment, which expressed by 
cylinders Figure 7(b), 8(b) and shown in Figure 7(a) 8(a) by 
white circular zones. 

 
(a)                            (b)  

 
(c) 

Fig. 8. Path on x-y plane (a) and in 3D airspace (b) and replaced 
sub-optimal paths (c) for two aircrafts by AIA in complicate 

circumstance with no-fly-zone 
 In the iterative process of genetic algorithm, the instability 

of cost change shows that there is great randomness in the 
search of genetic algorithm in complex environment leading to 
converge difficultly to the optimal solution in figure 7(c). From 
Figure 7(a), 7(b), we can see that the newly designed path 
completely avoids these threats by GA but not bypass no-fly 
zone. As a result, GA failed in this experiment. 

By using the AIA, two airplane’s paths are designed passing 
safe area, which improves the successful ratio for aircraft 
rescue in Figure 8. There is 3.73km’s distance difference 
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between two aircrafts’ flight paths in this simulation. The 
individual flight path length for two aircrafts in red color are 
92.168km for aircraft 1 and 88.438 km for aircraft 2 in black 
color. 

D. The analysis of iteration and antibody number’s 

influence 

Based on Scenario #1, experiments is carry out with the 
variation of iteration number and antibody number as constant. 
Each experiment is performed five times for every iteration 
number. The average value is taken as the last result, and the 
iteration number is increased from 10 to 150 with step of 20. 
Figure 9(a) shows that the comprehensive cost is proportional 
to the iteration number. Moreover, from the comprehensive 
cost fitting line, the total cost does not increase with iteration 
numbers increased. Figure 9(b) shows that the planning time 
also becomes longer as the iteration number increases from 
107.5 s to 109.4 s. Therefore, it can conclude that the flight path 
difference between the two aircraft clearly decreases with the 
iteration number increased in figure 9(c).  
 

 
(a)                           

 
(b)    

 
(c) 

Fig. 9. (a) Cost table; (b) Time table; (c) Two path difference 
table with iterative number increased 

To completely depict the influence of the iteration number, 
we provide a function (TC, Total Cost for abbreviation) 
containing the above three relative parameters: planning time 
(time), comprehensive cost (cost) and two flight path difference 
(Pd): 

TC=time*cost*Pd                          (14) 
where time is expressed as the time value in figure 9 (a) , cost 

is the comprehensive threats’ influence shown in figure 9(b) 
and Pd is the difference between the two planned paths, shown 
in figure 9(c). The result TC with iterative number increased is 

shown in Figure 10. It can be seen TC has gone through three 
stages of change with iteration increased: slight increasing 
process with iteration number less than 10,   largely declining 
process with iteration number in range of (10, 80), and slow 
improvement process when iteration number larger than 80. 
This phenomenon indicates that there is a suitable iteration 
algebra to minimize the flight cost. 

 

 
Fig. 10. Total cost with iterative number increased 

 

 
(a)   

 
  

 (b) 
Fig. 11. (a) Parameters influence, (b) Cost with antibodies number 

increased 
 

Figure 11(a) shows the effect of the three influence parameters 
including planning time (time) and comprehensive cost (cost) 
as the antibody numbers are increased. The flight path 
difference (Pd) of two aircraft decreases with antibody less than 
90, but changes slightly when antibody larger than 90. Time 
increases in ratio to antibody number, which means an increase 
of antibodies’ number will greatly make the path planning time 
greatly extended. Figure 11(b) shows that comprehensive cost 
exhibits a larger decrease with antibody number increased, 
whose fitting line approximately follows an exponent function. 
This shows the remarkable influence that improving the 
antibody number has on the total cost value. When antibody 
number is larger than 120, the downtrend of cost’s fitting line 
become slow. 
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V. CONCLUSIONS AND DISCUSSIONS 
This paper studies the path planning of single and double 

aircraft in complex rescue environment. AIA-based method is 
applied in solving the problem of path planning in complex 
environment.  With adding aircraft’s fly-ability and operation 
model, AIA method can successfully design flight path under 
complicate environment even congested with no-fly-zone or 
moving theat. In this paper, three simulation scenarios is adopt 
to study AIA’s path planning’ feasibility with comparison with 
genetic algorithm (GA) commonly used in aircraft path 
planning field. Through the comparison of the first two 
experiments, AIA has better performs than GA under complex 
circumstances.  

In order to study the influence of iterative number and the 
number of antibodies on the performance of path planning of 
artificial immune algorithm, we introduce path planning’s total 
cost as an index to measure the advantages and disadvantages 
of path. 

The experiments shows total cost changed with approximate 
parabola law as the iteration number increased and there is least 
total cost at the number of 90. Total cost also decreased with 
antibody number increased and there is little change when 
antibody number larger than 120. 

Although artificial immune algorithm can complete route 
planning in complex environment, the influence of climate 
factors such as wind mutation on flight maneuverability and 
adaptability of route planning methods still needs further study. 
The problems of route planning of multi aircraft formation and 
dynamic planning of how to cooperate with various types of 
aircraft to maximize rescue efficiency need to be improved in 
the next research work to improve and perfect. 
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