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Abstract—In some cases, there are problems  

associated with the compression and enlargement 

of images. The use of splines is quite effective in 

some cases. In this paper, a new image 

compression algorithm is presented. The features 

of increasing the size of an image when using local 

polynomial or non-polynomial splines are 

considered. The main method for enlarging an 

image is based on the use of splines of the second 

and third order of approximation. Polynomial and 

trigonometric splines are considered. To speed up 

the process of enlarging the image, we used the 

parallelization techniques. 
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I. INTRODUCTION 
URRENTLY, a lot of attention is paid to image 
processing [1]-[7]. Algorithms related to image 
compression and enlargement are the subject of 

many recently published works. This paper [1] 
considers several interpolation methods used for 
digital image enlargement. As it is written in [2] 
“Scaling is the major operation performed in the 
transformation of images. Scaling is an important 
operation for resizing and reshaping the images that 
are in digital form. Various operations can be 
performed with digital images out of which the 
shrinking and zooming are the most widely operated 
by any type of user in the world. The other name for 
shrinking is sub sampling, and the zooming operation 
is also called oversampling. The purpose of the 
 

 

zooming operation is to extend or enlarge the image 
in order to have a clear and efficient view. Zooming 
operations are mostly performed on our mobile 
phones for viewing images in our gallery and this 
operation is the most frequently performed operation 
by mobile phone users.” In paper [3] a new approach 
is proposed to transform bitmaps to vector images, 
which is based on triangle units and consists of three 
steps. A new multi-scale deep learning (MDL) 
framework is proposed and exploited in [4] for 
conducting image interpolation. The interpolation 
method is used in [5]. Paper [6] introduces VLSI 
(Very Large Scale Integration) architecture of an 
accurate and area effectual image scalar. As stated in 
this paper “Image scaling is a technique to enlarge or 
diminish the image by the provided scale factor. 
Image scaling can also be discussed as image 
interpolation, image re-sampling, image resizing, or 
image zooming.” As noted in paper [8] image 
compression is one of the most interesting fields of 
image processing that is used to reduce the size of an 
image. In paper [9] the authors suggest an additional 
step, in which established image-compression 
techniques are exploited to decrease the number of 
integration sub-cells. To find and apply an effective 
method that allows each type of pixel to be displayed 
in a compact form is an important problem. Two-
dimensional piece-polynomial basis are used in paper 
[10] to determine the recovery coefficients’ outcome 
of digital processing of radiographic images. In paper 
[11] an algorithm has been developed to digitally 
compress an image using two-dimensional Haar 
wavelets, reduce its size, determine the recovery 
coefficients, and display a higher quality image of the 
processed image than the original image.  
Some relevant studies can be found in [12], [13], 
[14], [15]. 
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The use of wavelets in image processing has the 
same qualities as their use in various cases of 
processing large amounts of numerical information. 
The main property of wavelets is the ability to 
represent the initial information flow in the form of 
two flows: the main one and the refinement (wavelet) 
one. The use of this property helps to reduce the load 
on computing and communication facilities, since 
these flows can be transmitted sequentially. The 
addition of the wavelet theory with the introduction 
of spline spaces significantly influenced the direction 
of further research and led to the emergence of the 
non-classical spline-wavelet theory (see, for example, 
[18]). Spline-wavelet decompositions are obtained 
for any pair of nested spline spaces. The enclosing 
spline space is represented as the sum of the enclosed 
spline space and its direct complement. Note that the 
nesting property is possessed by Haar spaces, as well 
as the spaces of piecewise linear functions. As a 
result, zero-order wavelet expansions (Haar wavelet 
expansions) and first-order wavelet expansions are 
obtained, respectively. The use of irregular grids and 
cellular subdivisions has led to adaptive algorithms 
for processing complexly structured streams of 
numerical information. When processing video 
information, the adaptability property allows us to 
select the main video stream by grouping close pixels 
of the same luminosity. Thus, the main advantages of 
the mentioned spline-wavelet processing are 
adaptability, processing speed and economical use of 
the video memory of the computing system. In this 
paper, for image processing, we use piecewise linear 
splines (polynomial splines of the second order of 
approximation), as well as trigonometric splines of 
the second order of approximation. 
In addition, for image processing, we use polynomial 
and non-polynomial spline approximations of the 
third order of approximation. 
As stated in paper [6] “Image scaling is extensively 
utilized in numerous image processing 
implementations, like digital cameras, tablets, mobile 
phones, and display devices.” One of the important 
characteristics of smartphones and TVs is the screen 
resolution. Screen resolution is the size of the display 
in pixels. It is often necessary to quickly adapt the 
image size to the required display size when 
transmitting an image. Typically, a color image uses 
the RGB color model. In this case, the color of each 
pixel is specified by three numbers. We can reduce 
the image by removing horizontal or vertical rows of 
pixels. We can enlarge the image by adding the 
missing color information to the rows of added 
pixels. Consider the features of image resizing using 
the spline approximation theory. In paper [16], a 
similar method was used using the Java programming 
language.  
This paper considers the features of the use of other 
programming languages. Section 2 discusses the 

theoretical foundations of image compression.  In 
Section 3, we will consider the theoretical aspects of 
using spline approximations (see [16]-[19]) for image 
processing. Section 3 will present the results of the 
experiments. 
 

II.  ABOUT IMAGE COMPRESSION 
First, we will propose an image compression 
algorithm. 
Consider a rectangular screen,  𝑴  with its standard 
rectangular pixel structure of the size 𝑚1 × 𝑚2,  
where  𝑚1, 𝑚2 are integer numbers. Let us introduce 
the notation 𝐽𝑚 =  {0, 1, 2, . . . , 𝑚 −  1} . Let a set, 
𝑪 =  { 𝑪𝑖 | 𝑖 ∈  𝐽𝑀} be the original pixel 
subdivision of the screen 𝑴; here 𝑀 =  𝑚1 × 𝑚2. 
Two pixels are considered adjacent if they have a 
common side. A connected union of any set of 
neighboring pixels will be called a cell. The 
collection of such cells will be denoted by ℳ. In 
particular, all pixels 𝐶𝑖 are also included in this 
collection, since they are a special case of a cell. The 
pixels are called original cells. For clarity, we can 
assume that screen 𝑴 lies in the quadrant  of the 
coordinate plane with the integer sides of length 𝑚1 
and 𝑚2 located on the 𝑥 and 𝑦 axes, when 𝑥 > 0,
𝑦 > 0   (it is clear that in this case  one of the vertices 
of this rectangle is at the origin coordinates). We 
associate a certain natural number with each original 
cell (i.e., pixel). Let us accept this number as the cell 
brightness. Thus, a piecewise constant function with 
positive integer values is given on the ℳ. We denote 
it as 𝑓(𝑡), where 

  𝑓(𝑡)  >  0 ∀𝑡 ∈  𝑴.               (1) 
 

As 𝑓(𝑡) we take a linear combination of difference 
ratios in mutually perpendicular directions. The 
coefficients of these linear combinations are 
inversely proportional to the side lengths of 
elementary rectangles (pixels). 
Further we deal with the sequential enlargement of 
this subdivision by combining adjacent cells into one 
cell. The enlargement process will essentially depend 
on the function  𝑓(𝑡). Let 𝜔 ∈  ℳ. Let 𝑚𝑒𝑠 𝜔  be 
the area of set 𝜔. Consider the set function defined 
by the relation 

𝜑𝑓 (𝜔) =  max
 𝑡∈𝜔

𝑓(𝑡)𝑚𝑒𝑠 𝜔.      (2) 
 

Obviously, the function 𝜑𝑓 has the following 
monotonicity property: 
 
𝜔′, 𝜔’’ ∈  ℳ,   𝜔’ ⊂  𝜔’’ ⇒  𝜑𝑓(𝜔′ )  ≤ 𝜑𝑓(𝜔′′). (3) 
We will enlarge the original subdivision  𝐶  in 
successive steps, uniting the group of cells of the 
mentioned subdivision so that the result is contained 
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in the collection ℳ (equivalent formulation: the set 
of interior points of the resulting union must be 
homeomorphic to the open circle). Thus, in the next 
step, another enlargement cell appears. The 
enlargement of the resulting cell can be continued by 
attaching the cell of the original subdivision, if the 
attached cell has not yet taken part in the enlargement 
(i.e., was not attached). At each step of the 
enlargement, the set of cells of the original 
subdivision splits into two sets. 
There are two types of sets.  Set 𝑪̃ = {𝑪𝑖}𝑖∈𝐽  is the 
set of those cells of the original subdivision that has 
not yet participated in the enlargement. The second 
set is  𝑪̂ = {𝑪𝒊}𝒊∈𝑱̂ of cells that have already 
participated in the enlargement. The cells of the first 
set are called admissible, and the cells of the second 
set are called excluded. It is clear that 𝑪̃∪𝑪̂ = 𝑪, 𝑪̃ 
∩𝑪̂ = ∅, 𝐽∪𝐽 =  𝐽𝑀, 𝐽∩𝐽 = ∅. Due to the steps above, 
the sets 𝑪̂, 𝐽 will expand, and the sets 𝑪̃, 𝐽 will 
shrink. The end of the enlargement process 
corresponds to the case when 𝑪̃ = ∅, 𝐽 = ∅, 𝑪̂ = 𝑪, 𝐽 
= 𝐽𝑀. To describe this process, we introduce the 
operation of an elementary cell enlargement. 
Let the cell 𝜔 already be constructed. If for 𝜔 there 
exists at least one neighboring cell from 𝑪̃, then the 
set 𝐼′ =  {𝑖 ′}  ⊂ 𝐽 of indices 𝑖′satisfying the 
condition 
 

𝑪𝑖′ ≈ 𝜔,  𝜑𝑓 (𝜔 ∪ 𝑪𝑖′) ≤ 𝜑𝑓(𝜔 ∪ 𝑪𝑖)   
 ∀𝑪𝑖  ≈  𝜔       (4)  

 
is not empty. Let 𝑖0  be the minimum index in the set 
𝐼′,  

  𝑖0 =  min
𝑖′∈𝐼′

{𝑖′},    𝜔+ =  𝜔 ∪ 𝑪𝑖0
     (5)  

 
The operation of the elementary enlargement of the 
cell 𝜔 is the process of joining cells 𝜔 and 𝑪𝑖0

; the 
result of this union is denoted by 𝜔+, 𝜔+ =  𝜔 ∪ 
𝐶𝑖0

. If cell 𝜔 has neighbors in set 𝑪̃, then cell 𝜔 is 
called extensible.  If 𝜔 has no neighboring cells in 
set 𝑪̃, then this cell is called a limit cell. It follows 
from what has been said that the operation of 
elementary enlargement can be applied to a cell that 
has neighbors in set 𝑪̃. 
Consider a sequence of elementary extensions, using 
the sign “: =” to denote the renaming of the variables 
in question. Let us start with cell 𝑪0 of the original 
subdivision. The corresponding algorithm is written 
as follows. 

 0. We set 𝜔 ∶=  𝑪0, 𝑪̃ : =  𝑪, 𝐽 := 𝐽𝑀, 𝑪 ̂ : =  ∅, 𝐽 ̂ 
: =  ∅.  
   1. If 𝜔 is extensible, that is, 𝜔 has at least one 
neighboring cell in 𝑪̃, then according to (3) - (4) we 

find 𝑖0, 𝜔+. Put 𝑪̃ := 𝑪̃\𝑪𝑖0
 , 𝐽 := 𝐽\{𝑖0}, 𝑪 ̂ := 𝑪 ̂ ∪ 

𝑪𝑖0
 , 𝐽 ̂ := 𝐽 ̂∪ {𝑖0}, 𝜔:= 𝜔+  and go to the beginning 

of the cycle (that is, to step 1.). 
 
   2. Otherwise (namely, when 𝜔 is a limit cell, that 
is, when 𝜔 has no neighboring cells in 𝑪̃), the 
sequence of elementary extensions is complete. 
Now it is clear that the operation of the described 
algorithm for a connected manifold ends with one 
cell, which turns out to be a limit cell. Thus, as the 
result of the operation of the algorithm, the enlarged 
cell subdivision 𝐷 of the connected manifold 𝑴 
consists of one cell 𝐷0  =  ⋃  𝑪𝑖′𝑖∈𝐽𝑀

, and  𝑪̃  =

 ∅, 𝐽  =  ∅, 𝑪 ̂  =  𝑪, 𝐽 ̂  =  𝐽𝑀. The described algorithm 
is the basis for a more complex algorithm that allows 
some approximation properties to be taken into 
account. The algorithm described below will be 
called an approximation. By definition we put 
 

𝜀∗ = max
𝑖∈𝐼

𝜑𝑓 (𝑪𝑖),    𝜀∗∗ = 𝜑𝑓(𝑴) . (6) 
 

Let the number 𝜀  be from the interval ( 𝜀∗, 𝜀∗∗) 
 

𝜀 ∈ ( 𝜀∗, 𝜀∗∗)  . (7) 
 

In contrast to the previous algorithm, where the 
enlargement of the cell was terminated by the 
exhaustion of all cells of the original subdivision in 
the approximation algorithm, the enlargement of cell 
𝜔 can stop earlier. The cell may turn out to be 
expandable, but its enlargement stops if the double 
inequality holds 

  𝜑𝑓 (ω) ≤ ε <  𝜑𝑓 (𝜔+ ). (8)  
 

Inequality (8) is called the 𝜀 -criterion for stopping 
the enlargement. In what follows, the numbers of 
such cells that satisfy criterion (8) are accumulated in 
the set 𝐽0, and the numbers of limit cells are 
accumulated in set 𝐽1 . At first, both sets are 
considered empty. Let's start describing this 
algorithm. 
 
ALGORITHM (A) 
0. We set  𝐽 := 𝐽𝑀, 𝑗: =  0 (thus, we put 𝑪̃ := 𝑪, 𝑪̂ := 
∅, 𝐽 := ∅, 𝐽0 ∶=  ∅, 𝐽1 ∶=  ∅). 
1. Define  𝑖0 = min

i∈ 𝐽
{𝑖} .  

2. Assign 𝜔: =  𝑪𝑖0
 (thus, we put 𝐽 := 𝐽\{𝑖0}, 𝐽 := 𝐽∪ 

{𝑖0}, 𝑪̃:= 𝑪̃\𝑪̃ 𝑖0
, 𝑪̂ := 𝑪̂ ∪ 𝑪̂𝑖0

; at the beginning of 
the algorithm, we have 𝑖0 =  0, 𝜔: = 𝑪0 ). 
   3. We analyze cell 𝜔: it is expandable or a limit 
cell.  
3.0. If 𝜔 is extensible, then we find 𝑖0 again (see (4) - 
(5)) and define 𝜔+.  
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3.0.0. If (8) holds, then we put, 𝐽0: = 𝐽0 ∪  {𝑗} ,here  
{𝑗}  are the stopped expandable cells, and go to 4.  
3.0.1. If (8) is not satisfied, then we put 𝜔: = 𝜔+, 𝐽: 

= 𝐽 \ { 𝑖0}, 𝐽 ̂ : = 𝐽 ̂ ∪ { 𝑖0}, 𝑪̃ : = 𝑪̃ \ 𝑪𝑖0
, 𝑪 ̂  : =𝑪 ̂  ∪ 

𝑪𝑖0
, and go to 3.1. If 𝜔 is a limit cell, then we find 𝐽1: 

= 𝐽1 ∪  {𝑗}, (and, therefore, go to 4). 
 
4. Make the assignments 𝑫𝑗 : =  𝜔;  𝑗: =  𝑗 +  1; 
and use the (previously defined) cell type ω and 
(earlier founded)  number 𝑖0.  
   4.0. If 𝜔 is an expandable cell, then we go to 2 (we 
emphasize once again that we know the number 𝑖0). 
 4.1. If 𝜔 is a limit cell, then we find out whether 𝐽 is 
empty. 
4.1.0. If  𝐽 ≠  ∅ (that is, 𝐽 is not empty), then we go 
to 1.  
4.1.1. If  𝐽 =  ∅ (i.e., 𝐽 is empty), then we go to 5. 
 
    5. END (the end of the algorithm). 

 
The resulting enlargement is denoted 𝑏𝑦 𝑫 (𝑓, 𝜀)  =
 {𝑫𝑗  | 𝑗 ∈ 𝐽𝐾 }, where 𝐾 =  | 𝐽0 |  + | 𝐽1|,   𝐽𝐾  =

 𝐽0  ∪  𝐽1. According to the algorithm which obtained 
it, the following properties hold: 1) for cells 𝑫𝑗with 
indices from set 𝐽0, the inequality  
 

𝜑
𝑓
(𝑫𝑗) ≤  𝜀 < 𝜑

𝑓
(𝑫𝑗

+) ∀𝑗 ∈  𝐽0           (9) 
 

holds,  
 2) for cells 𝑫𝒋with indices from  set 𝐽1 the inequality 

 𝜑𝑓  (𝑫𝑗) ≤  𝜀     (10) 
holds.  
 Definition. A cellular subdivision 𝑫 with properties 
(9) - (10) is called an adaptive enlargement defined 
by the triple (𝑪, 𝑓, 𝜀).  
Thus, the following statement is true. 

 
Theorem 1. Under conditions (6) - (7), the adaptive 
subdivision defined by the triple (𝑪, 𝑓, 𝜀) is realizable 
and uniquely determined. Moreover, the set of cells 
satisfying condition (9) is not empty,  

𝐽0 ≠ ∅  (11)  
Proof. The unambiguous definiteness of the adaptive 
subdivision follows from the unambiguousness of 
algorithm (A). To prove realizability, note that the 
algorithm starts from cell 𝑪0. In view of assumptions 
(6) - (7), the inequality 𝜑

𝑓
(𝑪0)  ≤  𝜀 < 𝜑

𝑓
(𝐌) holds. 

Due to the monotonicity property of the function 𝜑
𝑓
, 

the sequential enlargement of this cell will certainly 
lead to a situation where the result 𝜔 of such an 
enlargement will still satisfy the condition 𝜑

𝑓
(𝜔)  ≤

 𝜀, and the addition of the next cell 𝑪𝑖0
 of the original 

subdivision 𝑪 will lead to an extension 𝜔+ : =  𝜔 ∪

 𝑪𝑖0
, for which the inequality 𝜀 < 𝜑𝑓(𝜔+) is valid. 

So, the realizability of the algorithm and relation (11) 
are proved. This completes the proof.  
Remark. For 𝑛 =  1, algorithm (A) turns into the 
algorithm described in [19]. 
   Further options for compressing and enlarging 
images will be discussed in the following sections. 

III. SPLINE APPROXIMATION 
In the previous paper, this feature of the 
approximation with the splines of the third order of 
approximation of the rapid change function was 
eliminated in a more complicated way. Here we 
describe a simple algorithm for solving the problem 
of going beyond the boundaries of the allowed range 
of variation of numbers when using splines of the 
second and third orders of approximation. 
The theorems about the approximation with splines 
of the second and third order were proved in [16]. 
For the convenience of the reader, we present the 
formulations of these theorems here. 
Let a grid of nodes  {𝑥𝑗} be constructed on the 
interval [𝑎, 𝑏].  
 Polynomial splines of the second order of 
approximation are well studied (see [16], [17]). Basic 
spline formulas can be given by the formulas 
 

𝜔𝑗(𝑥) =
𝑥 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1

, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

 𝜔𝑗+1(𝑥) =
𝑥 − 𝑥𝑗

𝑥𝑗+1 − 𝑥𝑗

, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]. 

 
Here 𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥) are the basis functions. On the 
interval [𝑥𝑗 , 𝑥𝑗+1], we construct an approximation of 
the function 𝑢(𝑥) by the formula: 
 

𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥). 

 

This type of approximation can be applied to solving 
the problem of image enlargement as follows. We 
assume that 𝑢(𝑥𝑗) and 𝑢(𝑥𝑗+1)  are the values of the 
intensity of the red color in pixels of the row with 
numbers 𝑗 and 𝑗 + 1 of the original image. Our task 
is to enlarge the image by adding one or two pixels in 
a row with red intensity values. In this case, we use 
the values of the intensity of the red color in pixels 
with numbers 𝑗 and 𝑗 + 1. The color intensity in the 
added pixels is calculated by the formula: 𝑈(𝑥) =

𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),  
Let us investigate the application and the polynomial 
spline approximation, in addition to the non-
polynomial spline approximation ([16], [17], [18]). 
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 In this case we obtain 𝜔𝑗(𝑥𝑗 + 𝑡ℎ) =
𝑠𝑖𝑛(ℎ−𝑡ℎ)

𝑠𝑖𝑛(ℎ)
,

𝜔𝑗+1(𝑥𝑗 + 𝑡ℎ) =
𝑐𝑜𝑠(𝑡ℎ)

𝑠𝑖𝑛(ℎ)
 when 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 𝑥 =

𝑥𝑗 + 𝑡ℎ,  ℎ = 𝑥𝑗+1 − 𝑥𝑗 , 𝑡 ∈ [0,1]. 
We put 

𝑈𝑇(𝑥𝑗 + 𝑡ℎ) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥𝑗 + 𝑡ℎ) 
+𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥𝑗 + 𝑡ℎ), 𝑥𝑗 + 𝑡ℎ ∈ [𝑥𝑗 , 𝑥𝑗+1]. 

 

In the case of the splines of the third order of 
approximation, we distinguish between right and left 
approximations. Apply basis spline approximation 
near the beginning of the row 
 

𝜔𝑗
𝑅(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)
, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+1
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗+2)
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

𝜔𝑗+2
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+2 − 𝑥𝑗+1)(𝑥𝑗+2 − 𝑥𝑗)
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

 
𝑈𝑅(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗

𝑅(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1
𝑅 (𝑥) +

𝑢(𝑥𝑗+2)𝜔𝑗+2
𝑅 (𝑥).        (12) 

 
We apply the basic spline approximation near the end 
of the line 

𝜔𝑗
𝐿(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗−1)
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

𝜔𝑗+1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+1 − 𝑥𝑗−1)(𝑥𝑗+1 − 𝑥𝑗)
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

𝜔𝑗−1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗−1 − 𝑥𝑗+1)(𝑥𝑗−1 − 𝑥𝑗)
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

 
𝑈𝐿(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗

𝐿(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1
𝐿 (𝑥) +

𝑢(𝑥𝑗−1)𝜔𝑗−1
𝐿 (𝑥).    (13) 

 
Theorem 2 estimates the approximation error on the 
grid interval [𝑥𝑗 , 𝑥𝑗+1]. Denote ∥ 𝑢 ∥[𝑐,𝑑]=

max
𝑥∈[𝑐,𝑑]

|𝑢(𝑥)|. 

   Theorem 2. Let function 𝑢(𝑥) be such that 𝑢 ∈
𝐶2[𝑎, 𝑏]. We construct the approximation 𝑈 with the 
splines of the second order. Then for 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1] 
we have: 
 ∥ 𝑢 − 𝑈 ∥[𝑥𝑗,𝑥𝑗+1]≤ 𝐾ℎ2 ∥ 𝑢′′ ∥[𝑥𝑗,𝑥𝑗+1], 𝐾 = 1/8. 
Theorem 3. Let 𝑢 ∈ С3[𝑎, 𝑏].To approximate the 
function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], with spline (13), , the 
following inequality is valid: 

|𝑢(𝑥) − 𝑈𝐿(𝑥)| ≤ 𝐾ℎ3 ∥ 𝑢′′′ ∥[𝑥𝑗−1,𝑥𝑗+1]. 

To approximate the function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 
with spline (12), the following inequality is valid: 

|𝑢(𝑥) − 𝑈𝑅(𝑥)| ≤ 𝐾ℎ3 ∥ 𝑢′′′ ∥[𝑥𝑗,𝑥𝑗+2]. 

Proof. It is easy to notice that 𝑈𝑗
𝑅 is an interpolation 

polynomial of the third degree, and 𝑥𝑗 , 𝑥𝑗+1 are the 
interpolation nodes, 𝑈𝑗

𝑅(𝑥𝑗) = 𝑢(𝑥𝑗), 𝑈𝑗
𝑅(𝑥𝑗+1) =

𝑢(𝑥𝑗+1), 𝑈𝑗
𝑅(𝑥𝑗+2) = 𝑢(𝑥𝑗+2). Using the remainder 

term we get 
𝑢(𝑥) − 𝑈𝑗

𝑅(𝑥) =
𝑢′′′(𝜏)

3!
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥 −

𝑥𝑗+2).  
It follows that 

max
𝑥∈[𝑥𝑗,𝑥𝑗+2]

|𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥)| ≤

0.385

3!
 ℎ3 max

[𝑥𝑗,𝑥𝑗+2]
|𝑢′′′|. 

Thus, 𝐾 ≈ 0.064167.  
 

      We can also use the trigonometric splines: 

𝜔𝑗(𝑥) =
𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗+1 2⁄ )𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗+2 2⁄ )

𝑠𝑖𝑛(𝑥𝑗 2⁄ − 𝑥𝑗+1 2⁄ )𝑠𝑖𝑛(𝑥𝑗 2⁄ − 𝑥𝑗+2 2⁄ )
, 

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

𝜔𝑗+1(𝑥) =
𝑠𝑖𝑛 (

𝑥
2

−
𝑥𝑗

2
) 𝑠𝑖𝑛 (

𝑥
2

−
𝑥𝑗+2

2
)

𝑠𝑖𝑛 (
𝑥𝑗+1

2
−

𝑥𝑗

2
) 𝑠𝑖𝑛 (

𝑥𝑗+1

2
−

𝑥𝑗+2

2
)

, 

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

𝜔𝑗+2(𝑥) =
𝑠𝑖𝑛 (

𝑥
2

−
𝑥𝑗+1

2
) 𝑠𝑖𝑛 (

𝑥
2

−
𝑥𝑗

2
)

𝑠𝑖𝑛 (
𝑥𝑗+2

2
−

𝑥𝑗+1

2
) 𝑠𝑖𝑛 (

𝑥𝑗+2

2
−

𝑥𝑗

2
)

, 

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 
𝑈𝑅𝑇(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥)

+ 𝑢(𝑥𝑗+2)𝜔𝑗+2(𝑥) 

𝜔𝑗(𝑥) =
𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗+1 2⁄ )𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗−1 2⁄ )

𝑠𝑖𝑛(𝑥𝑗 2⁄ − 𝑥𝑗+1 2⁄ )𝑠𝑖𝑛(𝑥𝑗 2⁄ − 𝑥𝑗−1 2⁄ )
, 

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 
𝜔𝑗+1(𝑥)

=
𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗−1 2⁄ )𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗 2⁄ )

𝑠𝑖𝑛(𝑥𝑗+1 2 −𝑥𝑗−1⁄ 2⁄ )𝑠𝑖𝑛(𝑥𝑗+1 2⁄ − 𝑥𝑗 2⁄ )
, 

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 
𝜔𝑗−1(𝑥)

=
𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗+1 2⁄ )𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗 2⁄ )

𝑠𝑖𝑛(𝑥𝑗−1 2⁄ − 𝑥𝑗+1 2⁄ )𝑠𝑖𝑛(𝑥𝑗−1 2⁄ − 𝑥𝑗 2⁄ )
, 

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]. 
𝑈𝐿𝑇(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥)

+ 𝑢(𝑥𝑗−1)𝜔𝑗−1(𝑥). 
Let us consider the question of how to increase the 
speed of image processing. First, you can reduce the 
number of multiplicative operations. Let us go back 
to the formula 

𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥). 
Here we have 4 multiplicative operations. We write 
this expression in the form: 

𝑈(𝑥) = 𝑢(𝑥𝑗)
𝑥 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1

+ 𝑢(𝑥𝑗+1)
𝑥 − 𝑥𝑗

𝑥𝑗+1 − 𝑥𝑗

= 

(𝑥 − 𝑥𝑗)

(𝑥𝑗+1 − 𝑥𝑗)
(𝑢(𝑥𝑗+1) − 𝑢(𝑥𝑗)) + 𝑢(𝑥𝑗). 
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There are only two multiplicative operations in this 
formula. Similarly, you can transform the formulas 
for interpolation by splines of the third order of 
approximation. 

𝑈𝑅(𝑥)

= 𝑢(𝑥𝑗)
(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)

+ 𝑢(𝑥𝑗+1)
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗+2)

+ 𝑢(𝑥𝑗+2)
(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+2 − 𝑥𝑗+1)(𝑥𝑗+2 − 𝑥𝑗)
. 

There are 12 multiplicative operations in this record. 
Denote  

𝐴 = (𝑥 − 𝑥𝑗+1) (𝑥𝑗 − 𝑥𝑗+2)⁄ , 
𝐵 = (𝑥 − 𝑥𝑗)/(𝑥𝑗+1 − 𝑥𝑗+2), 
𝐶 = (𝑥 − 𝑥𝑗+2) (𝑥𝑗 − 𝑥𝑗+1)⁄ . 

Now we have 
𝑈𝑅(𝑥) = 𝑢(𝑥𝑗)𝐴𝐶 − 𝑢(𝑥𝑗+1)𝐵𝐶 + 𝑢(𝑥𝑗+2)𝐴𝐵. 

There are 9 multiplicative operations in this record. 
Now consider 

𝑈𝐿(𝑥) = 𝑢(𝑥𝑗)
(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗−1)
 

+𝑢(𝑥𝑗+1)
(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+1 − 𝑥𝑗−1)(𝑥𝑗+1 − 𝑥𝑗)

+ 𝑢(𝑥𝑗−1)
(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗−1 − 𝑥𝑗+1)(𝑥𝑗−1 − 𝑥𝑗)
. 

 
Denote  𝐷 = (𝑥 − 𝑥𝑗+1) (𝑥𝑗 − 𝑥𝑗−1)⁄ ,  
𝐸 = (𝑥 − 𝑥𝑗) (𝑥𝑗+1 − 𝑥𝑗−1)⁄ , 
 𝐹 = (𝑥 − 𝑥𝑗−1) (𝑥𝑗 − 𝑥𝑗+1)⁄  

𝑈𝐿(𝑥) = 𝑢(𝑥𝑗)𝐷𝐹 − 𝑢(𝑥𝑗+1)𝐹𝐸 + 𝑢(𝑥𝑗−1)𝐷𝐸. 
In the RGB model, the intensities of the red, green 
and blue colors range from 0 to 255. In this paper we 
use local spline approximations of the second or the 
third order of approximation when restoring a 
compressed image. The approximation on each grid 
interval uses the function values at the grid points. If 
the function changes rapidly, the values of the 
approximation of the rapid change function may go 
beyond the boundaries of the interval [0, 255].  
   The algorithm for constructing approximations 
whose values do not go beyond the boundaries of the 
range is as follows. When we use the approximation 
with the left splines of the third order of 
approximation, and the values of the approximation 
go beyond the boundary on some grid interval, then 
on this interval we apply the approximation with the 
right splines. If this does not help, then we apply the 
approximation with the splines of the second order of 
approximation. An approximation in which the left or 
right splines of the third order of approximation are 
used on adjacent intervals, or splines of the second 

order of approximation are used, will be called 
mixed. 
Consider, for example, the approximation of the 
function 𝑢(𝑥) = 75(−sin(3.2 𝑥) + cos(1.2 𝑥))2 on 
the interval [-1,1].  Let us construct a uniform grid 
{𝑥𝑗} with a step ℎ =  1/3 on the interval [−1,1]. Let 
us calculate the values  𝑢(𝑥𝑗) at the grid points. Now, 
let us compare the approximations constructed using 
linear and quadratic splines. First, we construct an 
approximation with the splines of the second order of 
approximation. The graph of the function 𝑢(𝑥) (blue) 
and it’s approximation (red) with the second-order 
splines is shown in Fig. 1, and the graph of the error 
of approximation when the second-order splines used 
is shown in Fig. 2.  
 

 
Fig.1. The graph of the function 𝑢(𝑥) (blue) and it’s 
approximation (red) with the second-order splines 

 

 
Fig.2. The graph of the error of approximation when the 

second-order splines are used 
 
Now we construct an approximation with the splines 
of the third order of approximation. The graph of the 
function 𝑢(𝑥) (blue) and it’s approximation (red) 
with the left third-order approximation splines is 
shown in Fig. 3, and   the error of approximation with 
the left third-order spline approximation is shown  in 
Fig. 4. 
 

 
Fig.3. The graph of the function 𝑢(𝑥) (blue) and it’s 

approximation (red) with the left third-order approximation 
splines 

 
The values of the approximation with the left splines 
takes negative values on the interval [1/3, 2/3]. To 
solve this problem, we apply the approximation with 
the right splines, using the same values of the 
function on the interval [1/3, 2/3].  
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    The graph of the function 𝑢(𝑥) (blue) and it’s 
approximation (red) with the left and right third-order 
approximation splines is shown in Fig. 5. The error 
of the approximation using the left and right splines 
is shown in Fig.6. 

 

 
Fig.4. The graph of the error of approximation when the 

left third-order spline approximation is used 
 

 
Fig.5. The graph of the function 𝑢(𝑥) (blue) and it’s 

approximation (red) with the left and right third-order 
approximation splines 

 

 
Fig.6. The graph of the error of approximation when the 

left third-order spline approximation is used 
 
 

Table 1 shows the maxima in the absolute values of 
the actual approximation errors of the function 𝑢(𝑥) 
in the interval [-1,1] when ℎ = 0.01. Table 2 shows 
the maxima in the absolute values of the theoretical 
approximation errors of the function 𝑢(𝑥) in the 
interval [-1,1] when ℎ = 0.01. To construct the 
approximation, the spline approximations 𝑈(𝑥) of 
the second order of approximation and the left spline 
approximations of the third orders were used. 
 
Table 1 The maxima in the absolute values of the actual 
approximation errors of the function 𝑢(𝑥) in the interval [-
1,1]. 

𝑢(𝑥) 𝑈(𝑥) 𝑈𝐿(𝑥) 
75(cos(1.2 𝑥)

− sin(3.2 𝑥))2 

0.39387 10−1 0.10668 10−2 

1/(1+25𝑥2) 0.62227 10−3 0.372323 10−4 

 
Table 2 The maxima in the absolute values of the 
theoretical approximation errors of the function 𝑢(𝑥) 
in the interval [-1,1]. 

𝑢(𝑥) 𝑈(𝑥) 𝑈𝐿(𝑥) 

75(cos(1.2 𝑥)

− sin(3.2 𝑥))2 

0.39409 10−1 0.10678 10−2 

1/(1+25𝑥2) 0.625 10−3 0.729462 10−4 

 
Note that the use the trigonometric splines can give a 
smaller error in the approximation, compared to 
polynomial splines. The second column of Table 3 
gives the errors of approximation with the 
trigonometric splines of the second order of 
approximation, and the third column gives the errors 
of approximation with the trigonometric splines of 
the third order of approximation. 
Table 3 The maxima in the absolute values of the actual 
approximation errors of the function 𝑢(𝑥)  

in the interval [-1,1]. 
𝑢(𝑥) 𝑈𝑇(𝑥) 𝑈𝐿𝑇(𝑥) 

75(cos(1.2 𝑥)

− sin(3.2 𝑥))2 

0.3619 10−1 0.1026 10−2 

1/(1+25𝑥2) 0.6098 10−3 0.3706 10−4 

 
The presented results show that by applying the 
spline interpolation correctly, it is possible to 
construct an approximation whose values do not go 
beyond the specified range. Tables 1, 2, 3 confirm 
that the obtained actual results of the approximation 
are consistent with the theoretical ones. 

IV. EXPERIMENTS 
   The experiment used the painting Road with 

Cypress and Star by Van Gogh [20]. The result of the 
magnification is shown in Figures 7, 8. Figure 7 
shows the original image.  Figure 8 shows a part of 
the enlarged image. 
 

 
Figure 7. The original image (Van Gogh) 

Let us consider how we can parallelize the process of 
enlarging an image. We will use the concept of 
geometric parallelism. In the case of splines of the 
second order of approximation, parallelization can be 
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organized both along several vertical or horizontal 
stripes (see Figure 9), and along four squares, starting 
from the vertices (see Figure 10). 
 

 
Figure 8.  A part of the enlarged image (Van Gogh) 
 
As we know, the range of the color channel is as 
follows: from 0 to 255. Note that when using splines 
of the third order of approximation, the value may be 
higher than 255 or less than 0. In this case, the 
developed program makes the appropriate correction. 
The experiment was performed on a 13821808 
image in the jpg format on the intel core i5 8250U 
processor. The average time for 5 measurements was 
measured directly. Image enlargement time (file 
reading, reduction and saving in jpg format are not 
taken into account), the time is indicated for 
optimized spline formulas with fewer multiplicative 
operations. 
Operations in python were performed directly using 
the language, without using the NumPy library. 
The execution time on Python 3.6 using a spline of 
the second order of approximation turned out to be 
48.4 sec. 
 

 
Figure 9. Рarallelization can be organized along four 

squares, starting from the vertices 
 

 
Figure 10. Рarallelization can be organized along several 

vertical or horizontal stripes 
 

The execution time on C++ 11 using the polynomial 
splines of the second order of approximation turned 
out to be 0.392 sec. The execution time on C++ 11 
using the polynomial splines of the polynomial third 
order of approximation turned out to be 0.908 sec. 

The experiments were performed on parallelization 
for 4 threads in С++11. The polynomial splines of 
the second order of approximation turned out to be 
0.274 sec. The polynomial splines of the third order 
of approximation turned out to be 0.562 sec. 

 
Figure 11. The original imagе 

 
The results of the program are shown in Fig. 11-13. 
The original image is shown in Fig. 11.  Columns 
and rows of pixels were removed through one. Figure 
12 shows the result of the reconstruction using the 
polynomial splines of the second order of 
approximation. Figure 13 shows the result of 
reconstruction using the polynomial quadratic 
splines. 
 

 
Figure 12. The reconstruction using splines of the second 

order of approximation 
 

Note that the computation time according to the 
optimized formulas (with fewer operations) gives a 
reduction in the computation time even in the case of 
using splines of the second order of approximation. 
The original image Figure 14 and the reconstruction 
using the polynomial splines of the third order of 
approximation are shown in Fig.15. The execution 
time on Python 3.8 using a spline of the second order 
of approximation turned out to be 4.31 sec. Here the 
modified form (with the least number of operations) 
of the splines were used. The reconstruction using the 
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polynomial splines of the second order of 
approximation is shown in Fig.10.  The execution 
time on Python 3.8 using a spline of the second order 
of approximation turned out to be 3.46 sec. Here the 
modified form (with the least number of operations) 
of the splines were used. 
 

 
Figure 13. The reconstruction using quadratic splines 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 14. The original image 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 15. The reconstruction using polynomial splines of 
the third order of approximation 

 

The disadvantages of using spline approximations of 
the third order of approximation include the fact that 
in some cases an excess of the permissible value is 
observed. In this case, we have to make an 
appropriate amendment. 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 

Figure 16. The reconstruction using splines of the second 
order of approximation 

 

 
 The calculations used Numpy library for Рython.  
The experiment was performed on a 512х image 
in jpg format on the Intel core i7 3170k processor. 
 

 
Figure 17. The reconstruction using the trigonometric 

splines 
 
The execution time when Julia used the polynomial 
splines of the second order of approximation turned 
out to be 241 ms. The execution time when Julia  
used the polynomial splines of the third order of 
approximation turned out to be 345ms. The execution 
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time when Julia  used the trigonometric splines of the 
third order of approximation turned out to be 568ms. 
Julia 1.5.3 used the Julia Images library for  the 
image manipulation. The tests were run on an Intel 
Core i5-8265U processor. 
Polynomial splines show more acceptable results 
when applied. 
An image with a size of   4032 3024 was processed. 
Figure 17 shows part of a double-zoomed image 
using the third-order trigonometric splines. 
We have investigated the features of image 
enlargement in several programming languages. The 
slowest process was in python. The fastest way is to 
use splines of the second order of approximation. For 
a better image, polynomial splines can be 
recommended. Parallelization on several threads (for 
example 4) speeds up the process. Note that a multi-
threaded Python application performs worse than a 
single-threaded one. 
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