

Abstract—In some cases, there are problems

associated with the compression and enlargement

of images. The use of splines is quite effective in

some cases. In this paper, a new image

compression algorithm is presented. The features

of increasing the size of an image when using local

polynomial or non-polynomial splines are

considered. The main method for enlarging an

image is based on the use of splines of the second

and third order of approximation. Polynomial and

trigonometric splines are considered. To speed up

the process of enlarging the image, we used the

parallelization techniques.

Keywords—Image enlargement, Polynomial

splines, Trigonometric splines.

I. INTRODUCTION
URRENTLY, a lot of attention is paid to image
processing [1]-[7]. Algorithms related to image
compression and enlargement are the subject of

many recently published works. This paper [1]
considers several interpolation methods used for
digital image enlargement. As it is written in [2]
“Scaling is the major operation performed in the
transformation of images. Scaling is an important
operation for resizing and reshaping the images that
are in digital form. Various operations can be
performed with digital images out of which the
shrinking and zooming are the most widely operated
by any type of user in the world. The other name for
shrinking is sub sampling, and the zooming operation
is also called oversampling. The purpose of the

zooming operation is to extend or enlarge the image
in order to have a clear and efficient view. Zooming
operations are mostly performed on our mobile
phones for viewing images in our gallery and this
operation is the most frequently performed operation
by mobile phone users.” In paper [3] a new approach
is proposed to transform bitmaps to vector images,
which is based on triangle units and consists of three
steps. A new multi-scale deep learning (MDL)
framework is proposed and exploited in [4] for
conducting image interpolation. The interpolation
method is used in [5]. Paper [6] introduces VLSI
(Very Large Scale Integration) architecture of an
accurate and area effectual image scalar. As stated in
this paper “Image scaling is a technique to enlarge or
diminish the image by the provided scale factor.
Image scaling can also be discussed as image
interpolation, image re-sampling, image resizing, or
image zooming.” As noted in paper [8] image
compression is one of the most interesting fields of
image processing that is used to reduce the size of an
image. In paper [9] the authors suggest an additional
step, in which established image-compression
techniques are exploited to decrease the number of
integration sub-cells. To find and apply an effective
method that allows each type of pixel to be displayed
in a compact form is an important problem. Two-
dimensional piece-polynomial basis are used in paper
[10] to determine the recovery coefficients’ outcome
of digital processing of radiographic images. In paper
[11] an algorithm has been developed to digitally
compress an image using two-dimensional Haar
wavelets, reduce its size, determine the recovery
coefficients, and display a higher quality image of the
processed image than the original image.
Some relevant studies can be found in [12], [13],
[14], [15].

 Image Compression and Enlargement
Algorithms

I.G.Burova, Yu.K.Dem’yanovich, A. N.Terekhov,
 A.Yu.Altynova, A.D.Satanovskiy, A.A.Babushkin

St. Petersburg State University
7/9 Universitetskaya nab., St.Petersburg, 199034

Russia

Received: January 24, 2021. Revised: June 30, 2021. Accepted: August 2, 2021. Published: August 5, 2021.

С

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.92 Volume 15, 2021

E-ISSN: 1998-4464 836

The use of wavelets in image processing has the
same qualities as their use in various cases of
processing large amounts of numerical information.
The main property of wavelets is the ability to
represent the initial information flow in the form of
two flows: the main one and the refinement (wavelet)
one. The use of this property helps to reduce the load
on computing and communication facilities, since
these flows can be transmitted sequentially. The
addition of the wavelet theory with the introduction
of spline spaces significantly influenced the direction
of further research and led to the emergence of the
non-classical spline-wavelet theory (see, for example,
[18]). Spline-wavelet decompositions are obtained
for any pair of nested spline spaces. The enclosing
spline space is represented as the sum of the enclosed
spline space and its direct complement. Note that the
nesting property is possessed by Haar spaces, as well
as the spaces of piecewise linear functions. As a
result, zero-order wavelet expansions (Haar wavelet
expansions) and first-order wavelet expansions are
obtained, respectively. The use of irregular grids and
cellular subdivisions has led to adaptive algorithms
for processing complexly structured streams of
numerical information. When processing video
information, the adaptability property allows us to
select the main video stream by grouping close pixels
of the same luminosity. Thus, the main advantages of
the mentioned spline-wavelet processing are
adaptability, processing speed and economical use of
the video memory of the computing system. In this
paper, for image processing, we use piecewise linear
splines (polynomial splines of the second order of
approximation), as well as trigonometric splines of
the second order of approximation.
In addition, for image processing, we use polynomial
and non-polynomial spline approximations of the
third order of approximation.
As stated in paper [6] “Image scaling is extensively
utilized in numerous image processing
implementations, like digital cameras, tablets, mobile
phones, and display devices.” One of the important
characteristics of smartphones and TVs is the screen
resolution. Screen resolution is the size of the display
in pixels. It is often necessary to quickly adapt the
image size to the required display size when
transmitting an image. Typically, a color image uses
the RGB color model. In this case, the color of each
pixel is specified by three numbers. We can reduce
the image by removing horizontal or vertical rows of
pixels. We can enlarge the image by adding the
missing color information to the rows of added
pixels. Consider the features of image resizing using
the spline approximation theory. In paper [16], a
similar method was used using the Java programming
language.
This paper considers the features of the use of other
programming languages. Section 2 discusses the

theoretical foundations of image compression. In
Section 3, we will consider the theoretical aspects of
using spline approximations (see [16]-[19]) for image
processing. Section 3 will present the results of the
experiments.

II. ABOUT IMAGE COMPRESSION
First, we will propose an image compression
algorithm.
Consider a rectangular screen, 𝑴 with its standard
rectangular pixel structure of the size 𝑚1 × 𝑚2,
where 𝑚1, 𝑚2 are integer numbers. Let us introduce
the notation 𝐽𝑚 = {0, 1, 2, . . . , 𝑚 − 1} . Let a set,
𝑪 = { 𝑪𝑖 | 𝑖 ∈ 𝐽𝑀} be the original pixel
subdivision of the screen 𝑴; here 𝑀 = 𝑚1 × 𝑚2.
Two pixels are considered adjacent if they have a
common side. A connected union of any set of
neighboring pixels will be called a cell. The
collection of such cells will be denoted by ℳ. In
particular, all pixels 𝐶𝑖 are also included in this
collection, since they are a special case of a cell. The
pixels are called original cells. For clarity, we can
assume that screen 𝑴 lies in the quadrant of the
coordinate plane with the integer sides of length 𝑚1
and 𝑚2 located on the 𝑥 and 𝑦 axes, when 𝑥 > 0,
𝑦 > 0 (it is clear that in this case one of the vertices
of this rectangle is at the origin coordinates). We
associate a certain natural number with each original
cell (i.e., pixel). Let us accept this number as the cell
brightness. Thus, a piecewise constant function with
positive integer values is given on the ℳ. We denote
it as 𝑓(𝑡), where

 𝑓(𝑡) > 0 ∀𝑡 ∈ 𝑴. (1)

As 𝑓(𝑡) we take a linear combination of difference
ratios in mutually perpendicular directions. The
coefficients of these linear combinations are
inversely proportional to the side lengths of
elementary rectangles (pixels).
Further we deal with the sequential enlargement of
this subdivision by combining adjacent cells into one
cell. The enlargement process will essentially depend
on the function 𝑓(𝑡). Let 𝜔 ∈ ℳ. Let 𝑚𝑒𝑠 𝜔 be
the area of set 𝜔. Consider the set function defined
by the relation

𝜑𝑓 (𝜔) = max
 𝑡∈𝜔

𝑓(𝑡)𝑚𝑒𝑠 𝜔. (2)

Obviously, the function 𝜑𝑓 has the following
monotonicity property:

𝜔′, 𝜔’’ ∈ ℳ, 𝜔’ ⊂ 𝜔’’ ⇒ 𝜑𝑓(𝜔′) ≤ 𝜑𝑓(𝜔′′). (3)
We will enlarge the original subdivision 𝐶 in
successive steps, uniting the group of cells of the
mentioned subdivision so that the result is contained

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.92 Volume 15, 2021

E-ISSN: 1998-4464 837

in the collection ℳ (equivalent formulation: the set
of interior points of the resulting union must be
homeomorphic to the open circle). Thus, in the next
step, another enlargement cell appears. The
enlargement of the resulting cell can be continued by
attaching the cell of the original subdivision, if the
attached cell has not yet taken part in the enlargement
(i.e., was not attached). At each step of the
enlargement, the set of cells of the original
subdivision splits into two sets.
There are two types of sets. Set 𝑪̃ = {𝑪𝑖}𝑖∈𝐽 is the
set of those cells of the original subdivision that has
not yet participated in the enlargement. The second
set is 𝑪̂ = {𝑪𝒊}𝒊∈𝑱̂ of cells that have already
participated in the enlargement. The cells of the first
set are called admissible, and the cells of the second
set are called excluded. It is clear that 𝑪̃∪𝑪̂ = 𝑪, 𝑪̃
∩𝑪̂ = ∅, 𝐽∪𝐽 = 𝐽𝑀, 𝐽∩𝐽 = ∅. Due to the steps above,
the sets 𝑪̂, 𝐽 will expand, and the sets 𝑪̃, 𝐽 will
shrink. The end of the enlargement process
corresponds to the case when 𝑪̃ = ∅, 𝐽 = ∅, 𝑪̂ = 𝑪, 𝐽
= 𝐽𝑀. To describe this process, we introduce the
operation of an elementary cell enlargement.
Let the cell 𝜔 already be constructed. If for 𝜔 there
exists at least one neighboring cell from 𝑪̃, then the
set 𝐼′ = {𝑖 ′} ⊂ 𝐽 of indices 𝑖′satisfying the
condition

𝑪𝑖′ ≈ 𝜔, 𝜑𝑓 (𝜔 ∪ 𝑪𝑖′) ≤ 𝜑𝑓(𝜔 ∪ 𝑪𝑖)
 ∀𝑪𝑖 ≈ 𝜔 (4)

is not empty. Let 𝑖0 be the minimum index in the set
𝐼′,

 𝑖0 = min
𝑖′∈𝐼′

{𝑖′}, 𝜔+ = 𝜔 ∪ 𝑪𝑖0
 (5)

The operation of the elementary enlargement of the
cell 𝜔 is the process of joining cells 𝜔 and 𝑪𝑖0

; the
result of this union is denoted by 𝜔+, 𝜔+ = 𝜔 ∪
𝐶𝑖0

. If cell 𝜔 has neighbors in set 𝑪̃, then cell 𝜔 is
called extensible. If 𝜔 has no neighboring cells in
set 𝑪̃, then this cell is called a limit cell. It follows
from what has been said that the operation of
elementary enlargement can be applied to a cell that
has neighbors in set 𝑪̃.
Consider a sequence of elementary extensions, using
the sign “: =” to denote the renaming of the variables
in question. Let us start with cell 𝑪0 of the original
subdivision. The corresponding algorithm is written
as follows.

 0. We set 𝜔 ∶= 𝑪0, 𝑪̃ : = 𝑪, 𝐽 := 𝐽𝑀, 𝑪 ̂ : = ∅, 𝐽 ̂
: = ∅.
 1. If 𝜔 is extensible, that is, 𝜔 has at least one
neighboring cell in 𝑪̃, then according to (3) - (4) we

find 𝑖0, 𝜔+. Put 𝑪̃ := 𝑪̃\𝑪𝑖0
 , 𝐽 := 𝐽\{𝑖0}, 𝑪 ̂ := 𝑪 ̂ ∪

𝑪𝑖0
 , 𝐽 ̂ := 𝐽 ̂∪ {𝑖0}, 𝜔:= 𝜔+ and go to the beginning

of the cycle (that is, to step 1.).

 2. Otherwise (namely, when 𝜔 is a limit cell, that
is, when 𝜔 has no neighboring cells in 𝑪̃), the
sequence of elementary extensions is complete.
Now it is clear that the operation of the described
algorithm for a connected manifold ends with one
cell, which turns out to be a limit cell. Thus, as the
result of the operation of the algorithm, the enlarged
cell subdivision 𝐷 of the connected manifold 𝑴
consists of one cell 𝐷0 = ⋃ 𝑪𝑖′𝑖∈𝐽𝑀

, and 𝑪̃ =

 ∅, 𝐽 = ∅, 𝑪 ̂ = 𝑪, 𝐽 ̂ = 𝐽𝑀. The described algorithm
is the basis for a more complex algorithm that allows
some approximation properties to be taken into
account. The algorithm described below will be
called an approximation. By definition we put

𝜀∗ = max
𝑖∈𝐼

𝜑𝑓 (𝑪𝑖), 𝜀∗∗ = 𝜑𝑓(𝑴) . (6)

Let the number 𝜀 be from the interval (𝜀∗, 𝜀∗∗)

𝜀 ∈ (𝜀∗, 𝜀∗∗) . (7)

In contrast to the previous algorithm, where the
enlargement of the cell was terminated by the
exhaustion of all cells of the original subdivision in
the approximation algorithm, the enlargement of cell
𝜔 can stop earlier. The cell may turn out to be
expandable, but its enlargement stops if the double
inequality holds

 𝜑𝑓 (ω) ≤ ε < 𝜑𝑓 (𝜔+). (8)

Inequality (8) is called the 𝜀 -criterion for stopping
the enlargement. In what follows, the numbers of
such cells that satisfy criterion (8) are accumulated in
the set 𝐽0, and the numbers of limit cells are
accumulated in set 𝐽1 . At first, both sets are
considered empty. Let's start describing this
algorithm.

ALGORITHM (A)
0. We set 𝐽 := 𝐽𝑀, 𝑗: = 0 (thus, we put 𝑪̃ := 𝑪, 𝑪̂ :=
∅, 𝐽 := ∅, 𝐽0 ∶= ∅, 𝐽1 ∶= ∅).
1. Define 𝑖0 = min

i∈ 𝐽
{𝑖} .

2. Assign 𝜔: = 𝑪𝑖0
 (thus, we put 𝐽 := 𝐽\{𝑖0}, 𝐽 := 𝐽∪

{𝑖0}, 𝑪̃:= 𝑪̃\𝑪̃ 𝑖0
, 𝑪̂ := 𝑪̂ ∪ 𝑪̂𝑖0

; at the beginning of
the algorithm, we have 𝑖0 = 0, 𝜔: = 𝑪0).
 3. We analyze cell 𝜔: it is expandable or a limit
cell.
3.0. If 𝜔 is extensible, then we find 𝑖0 again (see (4) -
(5)) and define 𝜔+.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.92 Volume 15, 2021

E-ISSN: 1998-4464 838

3.0.0. If (8) holds, then we put, 𝐽0: = 𝐽0 ∪ {𝑗} ,here
{𝑗} are the stopped expandable cells, and go to 4.
3.0.1. If (8) is not satisfied, then we put 𝜔: = 𝜔+, 𝐽:

= 𝐽 \ { 𝑖0}, 𝐽 ̂ : = 𝐽 ̂ ∪ { 𝑖0}, 𝑪̃ : = 𝑪̃ \ 𝑪𝑖0
, 𝑪 ̂ : =𝑪 ̂ ∪

𝑪𝑖0
, and go to 3.1. If 𝜔 is a limit cell, then we find 𝐽1:

= 𝐽1 ∪ {𝑗}, (and, therefore, go to 4).

4. Make the assignments 𝑫𝑗 : = 𝜔; 𝑗: = 𝑗 + 1;
and use the (previously defined) cell type ω and
(earlier founded) number 𝑖0.
 4.0. If 𝜔 is an expandable cell, then we go to 2 (we
emphasize once again that we know the number 𝑖0).
 4.1. If 𝜔 is a limit cell, then we find out whether 𝐽 is
empty.
4.1.0. If 𝐽 ≠ ∅ (that is, 𝐽 is not empty), then we go
to 1.
4.1.1. If 𝐽 = ∅ (i.e., 𝐽 is empty), then we go to 5.

 5. END (the end of the algorithm).

The resulting enlargement is denoted 𝑏𝑦 𝑫 (𝑓, 𝜀) =
 {𝑫𝑗 | 𝑗 ∈ 𝐽𝐾 }, where 𝐾 = | 𝐽0 | + | 𝐽1|, 𝐽𝐾 =

 𝐽0 ∪ 𝐽1. According to the algorithm which obtained
it, the following properties hold: 1) for cells 𝑫𝑗with
indices from set 𝐽0, the inequality

𝜑
𝑓
(𝑫𝑗) ≤ 𝜀 < 𝜑

𝑓
(𝑫𝑗

+) ∀𝑗 ∈ 𝐽0 (9)

holds,
 2) for cells 𝑫𝒋with indices from set 𝐽1 the inequality

 𝜑𝑓 (𝑫𝑗) ≤ 𝜀 (10)
holds.
 Definition. A cellular subdivision 𝑫 with properties
(9) - (10) is called an adaptive enlargement defined
by the triple (𝑪, 𝑓, 𝜀).
Thus, the following statement is true.

Theorem 1. Under conditions (6) - (7), the adaptive
subdivision defined by the triple (𝑪, 𝑓, 𝜀) is realizable
and uniquely determined. Moreover, the set of cells
satisfying condition (9) is not empty,

𝐽0 ≠ ∅ (11)
Proof. The unambiguous definiteness of the adaptive
subdivision follows from the unambiguousness of
algorithm (A). To prove realizability, note that the
algorithm starts from cell 𝑪0. In view of assumptions
(6) - (7), the inequality 𝜑

𝑓
(𝑪0) ≤ 𝜀 < 𝜑

𝑓
(𝐌) holds.

Due to the monotonicity property of the function 𝜑
𝑓
,

the sequential enlargement of this cell will certainly
lead to a situation where the result 𝜔 of such an
enlargement will still satisfy the condition 𝜑

𝑓
(𝜔) ≤

 𝜀, and the addition of the next cell 𝑪𝑖0
 of the original

subdivision 𝑪 will lead to an extension 𝜔+ : = 𝜔 ∪

 𝑪𝑖0
, for which the inequality 𝜀 < 𝜑𝑓(𝜔+) is valid.

So, the realizability of the algorithm and relation (11)
are proved. This completes the proof.
Remark. For 𝑛 = 1, algorithm (A) turns into the
algorithm described in [19].
 Further options for compressing and enlarging
images will be discussed in the following sections.

III. SPLINE APPROXIMATION
In the previous paper, this feature of the
approximation with the splines of the third order of
approximation of the rapid change function was
eliminated in a more complicated way. Here we
describe a simple algorithm for solving the problem
of going beyond the boundaries of the allowed range
of variation of numbers when using splines of the
second and third orders of approximation.
The theorems about the approximation with splines
of the second and third order were proved in [16].
For the convenience of the reader, we present the
formulations of these theorems here.
Let a grid of nodes {𝑥𝑗} be constructed on the
interval [𝑎, 𝑏].
 Polynomial splines of the second order of
approximation are well studied (see [16], [17]). Basic
spline formulas can be given by the formulas

𝜔𝑗(𝑥) =
𝑥 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1

, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],

 𝜔𝑗+1(𝑥) =
𝑥 − 𝑥𝑗

𝑥𝑗+1 − 𝑥𝑗

, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1].

Here 𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥) are the basis functions. On the
interval [𝑥𝑗 , 𝑥𝑗+1], we construct an approximation of
the function 𝑢(𝑥) by the formula:

𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥).

This type of approximation can be applied to solving
the problem of image enlargement as follows. We
assume that 𝑢(𝑥𝑗) and 𝑢(𝑥𝑗+1) are the values of the
intensity of the red color in pixels of the row with
numbers 𝑗 and 𝑗 + 1 of the original image. Our task
is to enlarge the image by adding one or two pixels in
a row with red intensity values. In this case, we use
the values of the intensity of the red color in pixels
with numbers 𝑗 and 𝑗 + 1. The color intensity in the
added pixels is calculated by the formula: 𝑈(𝑥) =

𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),
Let us investigate the application and the polynomial
spline approximation, in addition to the non-
polynomial spline approximation ([16], [17], [18]).

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.92 Volume 15, 2021

E-ISSN: 1998-4464 839

 In this case we obtain 𝜔𝑗(𝑥𝑗 + 𝑡ℎ) =
𝑠𝑖𝑛(ℎ−𝑡ℎ)

𝑠𝑖𝑛(ℎ)
,

𝜔𝑗+1(𝑥𝑗 + 𝑡ℎ) =
𝑐𝑜𝑠(𝑡ℎ)

𝑠𝑖𝑛(ℎ)
 when 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 𝑥 =

𝑥𝑗 + 𝑡ℎ, ℎ = 𝑥𝑗+1 − 𝑥𝑗 , 𝑡 ∈ [0,1].
We put

𝑈𝑇(𝑥𝑗 + 𝑡ℎ) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥𝑗 + 𝑡ℎ)
+𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥𝑗 + 𝑡ℎ), 𝑥𝑗 + 𝑡ℎ ∈ [𝑥𝑗 , 𝑥𝑗+1].

In the case of the splines of the third order of
approximation, we distinguish between right and left
approximations. Apply basis spline approximation
near the beginning of the row

𝜔𝑗
𝑅(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)
, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],

𝜔𝑗+1
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗+2)
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],

𝜔𝑗+2
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+2 − 𝑥𝑗+1)(𝑥𝑗+2 − 𝑥𝑗)
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],

𝑈𝑅(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗

𝑅(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1
𝑅 (𝑥) +

𝑢(𝑥𝑗+2)𝜔𝑗+2
𝑅 (𝑥). (12)

We apply the basic spline approximation near the end
of the line

𝜔𝑗
𝐿(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗−1)
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],

𝜔𝑗+1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+1 − 𝑥𝑗−1)(𝑥𝑗+1 − 𝑥𝑗)
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],

𝜔𝑗−1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗−1 − 𝑥𝑗+1)(𝑥𝑗−1 − 𝑥𝑗)
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],

𝑈𝐿(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗

𝐿(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1
𝐿 (𝑥) +

𝑢(𝑥𝑗−1)𝜔𝑗−1
𝐿 (𝑥). (13)

Theorem 2 estimates the approximation error on the
grid interval [𝑥𝑗 , 𝑥𝑗+1]. Denote ∥ 𝑢 ∥[𝑐,𝑑]=

max
𝑥∈[𝑐,𝑑]

|𝑢(𝑥)|.

 Theorem 2. Let function 𝑢(𝑥) be such that 𝑢 ∈
𝐶2[𝑎, 𝑏]. We construct the approximation 𝑈 with the
splines of the second order. Then for 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]
we have:
 ∥ 𝑢 − 𝑈 ∥[𝑥𝑗,𝑥𝑗+1]≤ 𝐾ℎ2 ∥ 𝑢′′ ∥[𝑥𝑗,𝑥𝑗+1], 𝐾 = 1/8.
Theorem 3. Let 𝑢 ∈ С3[𝑎, 𝑏].To approximate the
function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], with spline (13), , the
following inequality is valid:

|𝑢(𝑥) − 𝑈𝐿(𝑥)| ≤ 𝐾ℎ3 ∥ 𝑢′′′ ∥[𝑥𝑗−1,𝑥𝑗+1].

To approximate the function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],
with spline (12), the following inequality is valid:

|𝑢(𝑥) − 𝑈𝑅(𝑥)| ≤ 𝐾ℎ3 ∥ 𝑢′′′ ∥[𝑥𝑗,𝑥𝑗+2].

Proof. It is easy to notice that 𝑈𝑗
𝑅 is an interpolation

polynomial of the third degree, and 𝑥𝑗 , 𝑥𝑗+1 are the
interpolation nodes, 𝑈𝑗

𝑅(𝑥𝑗) = 𝑢(𝑥𝑗), 𝑈𝑗
𝑅(𝑥𝑗+1) =

𝑢(𝑥𝑗+1), 𝑈𝑗
𝑅(𝑥𝑗+2) = 𝑢(𝑥𝑗+2). Using the remainder

term we get
𝑢(𝑥) − 𝑈𝑗

𝑅(𝑥) =
𝑢′′′(𝜏)

3!
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥 −

𝑥𝑗+2).
It follows that

max
𝑥∈[𝑥𝑗,𝑥𝑗+2]

|𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥)| ≤

0.385

3!
 ℎ3 max

[𝑥𝑗,𝑥𝑗+2]
|𝑢′′′|.

Thus, 𝐾 ≈ 0.064167.

 We can also use the trigonometric splines:

𝜔𝑗(𝑥) =
𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗+1 2⁄)𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗+2 2⁄)

𝑠𝑖𝑛(𝑥𝑗 2⁄ − 𝑥𝑗+1 2⁄)𝑠𝑖𝑛(𝑥𝑗 2⁄ − 𝑥𝑗+2 2⁄)
,

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],

𝜔𝑗+1(𝑥) =
𝑠𝑖𝑛 (

𝑥
2

−
𝑥𝑗

2
) 𝑠𝑖𝑛 (

𝑥
2

−
𝑥𝑗+2

2
)

𝑠𝑖𝑛 (
𝑥𝑗+1

2
−

𝑥𝑗

2
) 𝑠𝑖𝑛 (

𝑥𝑗+1

2
−

𝑥𝑗+2

2
)

,

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],

𝜔𝑗+2(𝑥) =
𝑠𝑖𝑛 (

𝑥
2

−
𝑥𝑗+1

2
) 𝑠𝑖𝑛 (

𝑥
2

−
𝑥𝑗

2
)

𝑠𝑖𝑛 (
𝑥𝑗+2

2
−

𝑥𝑗+1

2
) 𝑠𝑖𝑛 (

𝑥𝑗+2

2
−

𝑥𝑗

2
)

,

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],
𝑈𝑅𝑇(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥)

+ 𝑢(𝑥𝑗+2)𝜔𝑗+2(𝑥)

𝜔𝑗(𝑥) =
𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗+1 2⁄)𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗−1 2⁄)

𝑠𝑖𝑛(𝑥𝑗 2⁄ − 𝑥𝑗+1 2⁄)𝑠𝑖𝑛(𝑥𝑗 2⁄ − 𝑥𝑗−1 2⁄)
,

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],
𝜔𝑗+1(𝑥)

=
𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗−1 2⁄)𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗 2⁄)

𝑠𝑖𝑛(𝑥𝑗+1 2 −𝑥𝑗−1⁄ 2⁄)𝑠𝑖𝑛(𝑥𝑗+1 2⁄ − 𝑥𝑗 2⁄)
,

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],
𝜔𝑗−1(𝑥)

=
𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗+1 2⁄)𝑠𝑖𝑛(𝑥 2⁄ − 𝑥𝑗 2⁄)

𝑠𝑖𝑛(𝑥𝑗−1 2⁄ − 𝑥𝑗+1 2⁄)𝑠𝑖𝑛(𝑥𝑗−1 2⁄ − 𝑥𝑗 2⁄)
,

𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1].
𝑈𝐿𝑇(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥)

+ 𝑢(𝑥𝑗−1)𝜔𝑗−1(𝑥).
Let us consider the question of how to increase the
speed of image processing. First, you can reduce the
number of multiplicative operations. Let us go back
to the formula

𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥).
Here we have 4 multiplicative operations. We write
this expression in the form:

𝑈(𝑥) = 𝑢(𝑥𝑗)
𝑥 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1

+ 𝑢(𝑥𝑗+1)
𝑥 − 𝑥𝑗

𝑥𝑗+1 − 𝑥𝑗

=

(𝑥 − 𝑥𝑗)

(𝑥𝑗+1 − 𝑥𝑗)
(𝑢(𝑥𝑗+1) − 𝑢(𝑥𝑗)) + 𝑢(𝑥𝑗).

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.92 Volume 15, 2021

E-ISSN: 1998-4464 840

There are only two multiplicative operations in this
formula. Similarly, you can transform the formulas
for interpolation by splines of the third order of
approximation.

𝑈𝑅(𝑥)

= 𝑢(𝑥𝑗)
(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)

+ 𝑢(𝑥𝑗+1)
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗+2)

+ 𝑢(𝑥𝑗+2)
(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+2 − 𝑥𝑗+1)(𝑥𝑗+2 − 𝑥𝑗)
.

There are 12 multiplicative operations in this record.
Denote

𝐴 = (𝑥 − 𝑥𝑗+1) (𝑥𝑗 − 𝑥𝑗+2)⁄ ,
𝐵 = (𝑥 − 𝑥𝑗)/(𝑥𝑗+1 − 𝑥𝑗+2),
𝐶 = (𝑥 − 𝑥𝑗+2) (𝑥𝑗 − 𝑥𝑗+1)⁄ .

Now we have
𝑈𝑅(𝑥) = 𝑢(𝑥𝑗)𝐴𝐶 − 𝑢(𝑥𝑗+1)𝐵𝐶 + 𝑢(𝑥𝑗+2)𝐴𝐵.

There are 9 multiplicative operations in this record.
Now consider

𝑈𝐿(𝑥) = 𝑢(𝑥𝑗)
(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗−1)

+𝑢(𝑥𝑗+1)
(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+1 − 𝑥𝑗−1)(𝑥𝑗+1 − 𝑥𝑗)

+ 𝑢(𝑥𝑗−1)
(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗−1 − 𝑥𝑗+1)(𝑥𝑗−1 − 𝑥𝑗)
.

Denote 𝐷 = (𝑥 − 𝑥𝑗+1) (𝑥𝑗 − 𝑥𝑗−1)⁄ ,
𝐸 = (𝑥 − 𝑥𝑗) (𝑥𝑗+1 − 𝑥𝑗−1)⁄ ,
 𝐹 = (𝑥 − 𝑥𝑗−1) (𝑥𝑗 − 𝑥𝑗+1)⁄

𝑈𝐿(𝑥) = 𝑢(𝑥𝑗)𝐷𝐹 − 𝑢(𝑥𝑗+1)𝐹𝐸 + 𝑢(𝑥𝑗−1)𝐷𝐸.
In the RGB model, the intensities of the red, green
and blue colors range from 0 to 255. In this paper we
use local spline approximations of the second or the
third order of approximation when restoring a
compressed image. The approximation on each grid
interval uses the function values at the grid points. If
the function changes rapidly, the values of the
approximation of the rapid change function may go
beyond the boundaries of the interval [0, 255].
 The algorithm for constructing approximations
whose values do not go beyond the boundaries of the
range is as follows. When we use the approximation
with the left splines of the third order of
approximation, and the values of the approximation
go beyond the boundary on some grid interval, then
on this interval we apply the approximation with the
right splines. If this does not help, then we apply the
approximation with the splines of the second order of
approximation. An approximation in which the left or
right splines of the third order of approximation are
used on adjacent intervals, or splines of the second

order of approximation are used, will be called
mixed.
Consider, for example, the approximation of the
function 𝑢(𝑥) = 75(−sin(3.2 𝑥) + cos(1.2 𝑥))2 on
the interval [-1,1]. Let us construct a uniform grid
{𝑥𝑗} with a step ℎ = 1/3 on the interval [−1,1]. Let
us calculate the values 𝑢(𝑥𝑗) at the grid points. Now,
let us compare the approximations constructed using
linear and quadratic splines. First, we construct an
approximation with the splines of the second order of
approximation. The graph of the function 𝑢(𝑥) (blue)
and it’s approximation (red) with the second-order
splines is shown in Fig. 1, and the graph of the error
of approximation when the second-order splines used
is shown in Fig. 2.

Fig.1. The graph of the function 𝑢(𝑥) (blue) and it’s
approximation (red) with the second-order splines

Fig.2. The graph of the error of approximation when the

second-order splines are used

Now we construct an approximation with the splines
of the third order of approximation. The graph of the
function 𝑢(𝑥) (blue) and it’s approximation (red)
with the left third-order approximation splines is
shown in Fig. 3, and the error of approximation with
the left third-order spline approximation is shown in
Fig. 4.

Fig.3. The graph of the function 𝑢(𝑥) (blue) and it’s

approximation (red) with the left third-order approximation
splines

The values of the approximation with the left splines
takes negative values on the interval [1/3, 2/3]. To
solve this problem, we apply the approximation with
the right splines, using the same values of the
function on the interval [1/3, 2/3].

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.92 Volume 15, 2021

E-ISSN: 1998-4464 841

 The graph of the function 𝑢(𝑥) (blue) and it’s
approximation (red) with the left and right third-order
approximation splines is shown in Fig. 5. The error
of the approximation using the left and right splines
is shown in Fig.6.

Fig.4. The graph of the error of approximation when the

left third-order spline approximation is used

Fig.5. The graph of the function 𝑢(𝑥) (blue) and it’s

approximation (red) with the left and right third-order
approximation splines

Fig.6. The graph of the error of approximation when the

left third-order spline approximation is used

Table 1 shows the maxima in the absolute values of
the actual approximation errors of the function 𝑢(𝑥)
in the interval [-1,1] when ℎ = 0.01. Table 2 shows
the maxima in the absolute values of the theoretical
approximation errors of the function 𝑢(𝑥) in the
interval [-1,1] when ℎ = 0.01. To construct the
approximation, the spline approximations 𝑈(𝑥) of
the second order of approximation and the left spline
approximations of the third orders were used.

Table 1 The maxima in the absolute values of the actual
approximation errors of the function 𝑢(𝑥) in the interval [-
1,1].

𝑢(𝑥) 𝑈(𝑥) 𝑈𝐿(𝑥)
75(cos(1.2 𝑥)

− sin(3.2 𝑥))2

0.39387 10−1 0.10668 10−2

1/(1+25𝑥2) 0.62227 10−3 0.372323 10−4

Table 2 The maxima in the absolute values of the
theoretical approximation errors of the function 𝑢(𝑥)
in the interval [-1,1].

𝑢(𝑥) 𝑈(𝑥) 𝑈𝐿(𝑥)

75(cos(1.2 𝑥)

− sin(3.2 𝑥))2

0.39409 10−1 0.10678 10−2

1/(1+25𝑥2) 0.625 10−3 0.729462 10−4

Note that the use the trigonometric splines can give a
smaller error in the approximation, compared to
polynomial splines. The second column of Table 3
gives the errors of approximation with the
trigonometric splines of the second order of
approximation, and the third column gives the errors
of approximation with the trigonometric splines of
the third order of approximation.
Table 3 The maxima in the absolute values of the actual
approximation errors of the function 𝑢(𝑥)

in the interval [-1,1].
𝑢(𝑥) 𝑈𝑇(𝑥) 𝑈𝐿𝑇(𝑥)

75(cos(1.2 𝑥)

− sin(3.2 𝑥))2

0.3619 10−1 0.1026 10−2

1/(1+25𝑥2) 0.6098 10−3 0.3706 10−4

The presented results show that by applying the
spline interpolation correctly, it is possible to
construct an approximation whose values do not go
beyond the specified range. Tables 1, 2, 3 confirm
that the obtained actual results of the approximation
are consistent with the theoretical ones.

IV. EXPERIMENTS
 The experiment used the painting Road with

Cypress and Star by Van Gogh [20]. The result of the
magnification is shown in Figures 7, 8. Figure 7
shows the original image. Figure 8 shows a part of
the enlarged image.

Figure 7. The original image (Van Gogh)

Let us consider how we can parallelize the process of
enlarging an image. We will use the concept of
geometric parallelism. In the case of splines of the
second order of approximation, parallelization can be

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.92 Volume 15, 2021

E-ISSN: 1998-4464 842

organized both along several vertical or horizontal
stripes (see Figure 9), and along four squares, starting
from the vertices (see Figure 10).

Figure 8. A part of the enlarged image (Van Gogh)

As we know, the range of the color channel is as
follows: from 0 to 255. Note that when using splines
of the third order of approximation, the value may be
higher than 255 or less than 0. In this case, the
developed program makes the appropriate correction.
The experiment was performed on a 13821808
image in the jpg format on the intel core i5 8250U
processor. The average time for 5 measurements was
measured directly. Image enlargement time (file
reading, reduction and saving in jpg format are not
taken into account), the time is indicated for
optimized spline formulas with fewer multiplicative
operations.
Operations in python were performed directly using
the language, without using the NumPy library.
The execution time on Python 3.6 using a spline of
the second order of approximation turned out to be
48.4 sec.

Figure 9. Рarallelization can be organized along four

squares, starting from the vertices

Figure 10. Рarallelization can be organized along several

vertical or horizontal stripes

The execution time on C++ 11 using the polynomial
splines of the second order of approximation turned
out to be 0.392 sec. The execution time on C++ 11
using the polynomial splines of the polynomial third
order of approximation turned out to be 0.908 sec.

The experiments were performed on parallelization
for 4 threads in С++11. The polynomial splines of
the second order of approximation turned out to be
0.274 sec. The polynomial splines of the third order
of approximation turned out to be 0.562 sec.

Figure 11. The original imagе

The results of the program are shown in Fig. 11-13.
The original image is shown in Fig. 11. Columns
and rows of pixels were removed through one. Figure
12 shows the result of the reconstruction using the
polynomial splines of the second order of
approximation. Figure 13 shows the result of
reconstruction using the polynomial quadratic
splines.

Figure 12. The reconstruction using splines of the second

order of approximation

Note that the computation time according to the
optimized formulas (with fewer operations) gives a
reduction in the computation time even in the case of
using splines of the second order of approximation.
The original image Figure 14 and the reconstruction
using the polynomial splines of the third order of
approximation are shown in Fig.15. The execution
time on Python 3.8 using a spline of the second order
of approximation turned out to be 4.31 sec. Here the
modified form (with the least number of operations)
of the splines were used. The reconstruction using the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.92 Volume 15, 2021

E-ISSN: 1998-4464 843

polynomial splines of the second order of
approximation is shown in Fig.10. The execution
time on Python 3.8 using a spline of the second order
of approximation turned out to be 3.46 sec. Here the
modified form (with the least number of operations)
of the splines were used.

Figure 13. The reconstruction using quadratic splines

Figure 14. The original image

Figure 15. The reconstruction using polynomial splines of
the third order of approximation

The disadvantages of using spline approximations of
the third order of approximation include the fact that
in some cases an excess of the permissible value is
observed. In this case, we have to make an
appropriate amendment.

Figure 16. The reconstruction using splines of the second
order of approximation

 The calculations used Numpy library for Рython.
The experiment was performed on a 512х image
in jpg format on the Intel core i7 3170k processor.

Figure 17. The reconstruction using the trigonometric

splines

The execution time when Julia used the polynomial
splines of the second order of approximation turned
out to be 241 ms. The execution time when Julia
used the polynomial splines of the third order of
approximation turned out to be 345ms. The execution

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.92 Volume 15, 2021

E-ISSN: 1998-4464 844

time when Julia used the trigonometric splines of the
third order of approximation turned out to be 568ms.
Julia 1.5.3 used the Julia Images library for the
image manipulation. The tests were run on an Intel
Core i5-8265U processor.
Polynomial splines show more acceptable results
when applied.
An image with a size of 4032 3024 was processed.
Figure 17 shows part of a double-zoomed image
using the third-order trigonometric splines.
We have investigated the features of image
enlargement in several programming languages. The
slowest process was in python. The fastest way is to
use splines of the second order of approximation. For
a better image, polynomial splines can be
recommended. Parallelization on several threads (for
example 4) speeds up the process. Note that a multi-
threaded Python application performs worse than a
single-threaded one.

ACKNOWLEDGMENT
Acknowledgment This paper was prepared with the
support by a grant from St. Petersburg State
University Event 3 (Pure ID 75207094)

References
[1] A.A.Golitsyn, “Application of image

interpolation algorithms in thermal surveillance
devices,” 2020 1st International Conference
Problems of Informatics, Electronics, and Radio
Engineering, PIERE 2020, paper 09314695,
2020, pp. 155-159.

[2] M.S.Devi, R.Suguna, P.K. Lbungdim, S.
Kondapalli, S.K. Ambashta, D.Akhil, “Systematic
image zooming and panning of graphical images
using fractional replication,” Journal of
Computational and Theoretical Nanoscience, vol.
17 (1) , 2020, pp. 519-525.

[3] Z.Han, X.Wu, M. Chi, , J.Tang, L.Yang, “A
Novel Approach to Transform Bitmap to Vector
Image for Data Reliable Visualization
considering the Image Triangulation and Color
Selection,” Security and Communication
Networks, paper 8871588, 2020.

[4] J. Ji, B. Zhong, K.-K. Ma, “Image Interpolation
Using Multi-Scale Attention-Aware Inception
Network,” IEEE Transactions on Image
Processing, vol. 29, paper 9210165, 2020, pp.
9413-9428.

[5] V. Skala, M. Cervenka, “Novel RBF
Approximation Method Based on Geometrical
Properties for Signal Processing with a New RBF
Function: Experimental Comparison,”
Informatics, 2019, pp.357-362.

[6] V.Ramadevi, K.Manjunatha Chari, ”FPGA
realization of an efficient image scalar with

modified area generation technique,” Multimedia
Tools and Applications, vol.78 (16), 2019, pp.
23707-23732.

[7] V.Skala, S.A.A. Karim, E.A. Kadir, “Scientific
Computing and Computer Graphics with GPU:
Application of Projective Geometry and Principle
of Duality,” International Journal of Mathematics
and Computer Science, vol.15, No.3, 2020,
pp.769-777.

[8] W.Khalaf, D.Zaghar, N.Hashim, “Enhancement
of curve-fitting image compression using
hyperbolic function,” Symmetry, vol. 11 (2),
paper 291, 2019.

[9] M. Petö, F.Duvigneau, S.Eisenträger, “Enhanced
numerical integration scheme based on image-
compression techniques: application to fictitious
domain methods,” Advanced Modeling and

Simulation in Engineering Sciences, vol. 7 (1),
paper 21, 2020.

[10] H.N.Zaynidinov, I.Yusupov, J.U.Juraev, J.S.
Jabbarov, “Applying two-dimensional piecewise-
polynomial basis for medical image processing,”
International Journal of Advanced Trends in

Computer Science and Engineering, vol. 9 (4),
paper 156, 2020, pp. 5259-5265.

[11] H. Zaynidinov, J. Juraev, U.Juraev, “Digital
image processing with two-dimensional Haar
wavelets,” International Journal of Advanced

Trends in Computer Science and Engineering,
vol. 9 (3), 2020, pp. 729-2734.

[12] Roumen Kountchev, Rumen Mironov,
Roumiana Kountcheva, “Complexity Evaluation
of Tensor Decomposition through 3D Inverse
Spectrum Pyramid in Respect of Deterministic
Orthogonal Transforms,” WSEAS Transactions
on Signal Processing, vol. 15, 2019, pp. 142-148.

[13] Roumen Kountchev, Roumiana Kountcheva,
“Image Segmentation based on Adaptive Mode
Quantization and 2D,” Histograms Analysis
WSEAS Transactions on Signal Processing, vol.
15, 2019, pp. 121-128.

[14] Luqman Hakim, Muhammad Ihsan Zul,
“Implementation of Discrete Wavelet Transform
on Movement Images and Recognition by
Artificial Neural Network Algorithm,” WSEAS
Transactions on Signal Processing, vol. 15, 2019,
pp. 149-154.

[15] Farzam Kharajinezhadian, Saeid Rashidi, “A
Multimodal Authenticationfor Biometric
Verification System using Palmprints and
Fingers,” WSEAS Transactions on Signal
Processing, vol. 15, 2019, pp. 129-141, Art. #16.

[16] I.G. Burova, E.F.Muzafarova, I.I.
Narbutovskikh, “Approximation by the third-
order splines on uniform and non-uniform grids
and image processing,” WSEAS Transactions on
Mathematics, vol.19, 2020, pp. 65-73.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.92 Volume 15, 2021

E-ISSN: 1998-4464 845

https://www.scopus.com/record/display.uri?eid=2-s2.0-85063299397&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85063299397&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85063299397&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85084291582&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85084291582&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85084291582&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85084291582&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85090182443&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85090182443&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85087351922&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85087351922&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85087351922&origin=resultslist

[17] I.G. Burova, “On left integro-differential splines
and Cauchy problem,” International Journal of
Mathematical Models and Methods in Applied
Sciences, vol.9, 2015, pp. 683-690.

[18] Yu.K. Dem'yanovich, “Embedded Spaces of
Trigonometric Splines and Their Wavelet
Expansion,” Math. Notes, vol. 78 (5), 2005, pp.
615-630.

[19] Yuri K. Demjanovich, “On Complexity of
Adaptive Splines,” International Journal of
Curcuits, System and Signal Processing, vol.14,
2020, pp.607-615.

[20]https://en.wikipedia.org/wiki/Road_with_Cypres
s_and_Star

Creative Commons Attribution License 4.0

(Attribution 4.0 International , CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_
US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.92 Volume 15, 2021

E-ISSN: 1998-4464 846

https://en.wikipedia.org/wiki/Road_with_Cypress
https://en.wikipedia.org/wiki/Road_with_Cypress
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

