
 

 

 
Abstract—Botnet is a serious threat for the Internet and 

it has created great damage to the Internet. How to detect 

botnet has become an ongoing endeavor research. Series of 

methods have been discussed in recent research. However, 

one of the remaining challenges is that the high 

computational overhead. In this paper, a lightweight hybrid 

botnet detection method is proposed. Considering the 

features in the botnet data packets and the characteristic of 

employing DGA (Domain Generation Algorithm) domain 

names to connect to the botnet, two sensors are designed 

and deployed individually and parallelly. Signature 

detection is used on the gateway sensor to dig out known bot 

software and deep learning based techniques are used on 

the DNS (Domain Name Server) server sensor to find DGA 

domain names. With this method, the computational 

overhead would be shared by the two sensors and 

experiments are conducted and the results indicate that the 

method is effective in detecting botnet. 

 

Keywords—Botnet, Network Security, Machine 
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I. INTRODUCTION 
ITH the rapid development of information technology, 

the Internet has become indispensable in everyday life. 
As reported by Strategy Analytics, the number of devices 
connected to Internet has reached 22 billion by the end of 2018. 
Great economic benefits are also brought by the development of 
Internet. It is predicted that the digital market will rise to 4500 
billion dollars in 2021. However, huge benefit carries huge risk 
and various network attack paradigms have yet to merge. The 
botnet is one kind of the most serious. 

 
 

Botnet, which refers to a network consists of plenty of 
computing nodes infected by bot-ware and a C&C (command 
and control) server which is controlled by the attacker, is a huge 
threat to network security in nowadays [1]. With the numerous 
computational power, the botnet is capable of launching a 
massive attack on Internet. One C&C server is able to control 
thousands of infected computing nodes to launch massive 
attacks such as DDoS (Distributed Denial of Services). It is 
reported that in 2017, 5187 instructions were sent by C&C 
servers per day and 114 instructions were sent by a single C&C 
server. Globally, the attack from botnet has reached 28 million 
in a month and about 6 TB of network bandwidth was used to 
perform the attack activities. Furthermore, with the rapid 
development of the Internet of Things (IoT), IoT is becoming a 
new carrier of botnets. Mirai, which is the most famous IoT 
botnet, used to make the most severe DDoS attack in 2016 [2]. 
Billions are lost with the attacks launched by botnets. 

Therefore, it is important to identify botnet victims in the 
Internet. To address the threats brought by botnets, researchers 
have done a lot of research. Network traffic or network flow 
characteristics are most popular for botnet detection. Due to the 
bots in botnet exploit network to communicate and negotiate, 
some malicious activities are hiding in network traffic. The key 
to detect botnet is to find out the features of malicious activities. 
For example, N-EDPS system exploits traffic signatures to 
detect known bot software by checking the outbound traffic [3]. 
This system can be integrated into Snort, an open-sourced 
intrusion detection system. Another way of using network traffic 
is anomaly detection. Soniya and Wilscy developed a method 
which can filter normal traffic from all network traffic and 
dynamic pattern analysis will be applied to the rest traffic to 
discover suspicious network activities [4]. BotMiner is a 2-step 
botnet mining and detecting system [5]. In the first step, 
BotMiner would filter some traffic based on some learned 
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knowledge out of all network traffic and clustering will be 
applied to the rest traffic. In the second step, anomaly detection 
is carried out on the clusters generated in step one. Similar 
features between clusters are used to discover botnet. 
Fedynyshyn et al. proposes a method which classifies types of 
C&C messages [6]. Features are extracted from different types 
of messages and they are used to detect botnet. This method 
doesn’t need to check the payload of the data packet, hence it 
can detect encrypted C&C traffic. Considering the characteristic 
that the wide application of HTTP in C&C servers, Xiong et al. 
designed a botnet detection system based on HTTP [7]. This 
system will verify every web request and only authorized 
websites are allowed to visit. This system will prevent terminal 
nodes from connecting to the C&C server, but it’s only useful 
for HTTP based botnet. Wurzinger et al. proposes a prior 
knowledge free method to detect botnet [8]. By calculating the 
similarity between normal network traffic and abnormal traffic, 
this method is able to find out the deviation of abnormal traffic. 
Alike abnormal traffic will be located and analyzed to check it is 
botnet traffic or not. And recently, ML (Machine Learning) 
based methods were adopted in botnet detection with network 
traffic or network flow features [9]. For example, graph-based 
methods for botnet detection and feature clustering [10], [11]. 
Deep packet inspection (DPI) was integrated with ML to detect 
botnet [12]. And deep learning was adopted for a hybrid 
detection method in IoT environment [13]. 

Most of the network traffic based botnet detecting method 
need prior knowledge to detect known bot software. Only a few 
methods are prior knowledge free but the performance of false 
positive rate and false negative rate are poor. 

Another kind of botnet detecting method is DGA (Domain 
Generation Algorithm, DGA) based. Bot software always uses 
dynamic domain names to tell victim hosts how to connect to 
C&C servers and DGA is used to generate those domain names. 
In the early time, researchers would submit the resolved DGA 
domain name to some ranking site such as malware domain list. 
However, DGA is able to generate thousands of domain names 
but only a few of them are picked out for bot software to make 
use of. Methods are developed to detect DGA domain names. 
Antonakakis et al. uses the combination of clustering algorithms 
and classification algorithms to detect known DGA domain 
names and dig out unknown domain names [14]. Kazumichi et 
al. exploits DNS (Domain Name Server) traffic and blacklist to 
detect unknown malicious domain names [15]. It assumes that 
when an unknown domain appears frequently with a known 
malicious domain name at the same time, then this unknown 
domain name should be malicious as well. Sharifnya and Abadi 
proposed a reputation based botnet discovery method by 
calculating an activity matrix for every DNS request, and the 
hosts with the lowest reputation will be identified as botnet hosts 
[16]. Lee and Lee uses failed DNS request data to discover 
unknown types of the botnet [17]. DGA based methods and 
meanwhile, to monitor DNS activities is a heavyweight task for 
the host to detect botnet. 

However, there are still some flaws for both kinds of the 

methods. Firstly, for traffic or flow based methods, prior 
knowledge is needed to detect known bot software. Only a few 
methods are prior knowledge free but the performance of false 
positive rate and false negative rate are poor. Secondly, for 
DGA based methods, they always based on DNS activities and 
multiple dimensions of data are used but domain names 
themselves are not getting enough attention. And thirdly and 
most importantly, the computational overhead of current 
methods is high due to that monitoring no matter network traffic 
or DNS activities is a heavyweight task for the host. 
Considering the imperfection of current methods, we propose a 
lightweight hybrid detection method for botnet by combining 
the traffic base method and DGA based method in this paper. 
This method takes advantage of network traffic and DGA 
domain name and the contributions of this paper are: 

A method is designed with which we examine the outbound 
network traffic to discover known bot software based on prior 
knowledge. 

DNS requests will be resolved to find out abnormal domain 
names, and the two steps are deployed on different positions to 
reduce the computational overhead and consequently make the 
method lightweight. 

Experiments are conducted and the performance is evaluated 
for the proposed method. 

This paper is organized as follows: The first section 
introduces the background and promotions with the working 
patterns of botnet in section 2. The design principles and overall 
design are discussed in section 3. In section 4, we introduce 
detailed implementations and evaluated the method with 
experiments. In the end, the conclusion is given in section 5. 

II. WORKING PATTERNS OF THE BOTNET 

Despite the diversity of botnet or bot software, there are some 
mutual working patterns. A botnet controller, which is an 
attacker or hacker, always controls the botnet in a unique way. 
The typical architecture of a botnet is shown in Figure 1, and 
there are four stages in the control flow. 
 

Victim

Contro ller C&C Server

Victim

Victim

Botnet

Controller C&C Server

Victim

Victim

Victim

Botnet  
Fig. 1. Botnet architecture 

In stage 1, the victim host will be infected via some 
vulnerability and binary applications of botnet will be download 
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by some script written by the controller.  
In stage 2, once the bot software is installed in the victim host, 

the victim will try to connect to the C&C server initiatively. 
In stage 3, when the victim connects to the C&C server 

successfully, the registration process will be done, which means 
that the victim has joined the botnet officially. 

In stage 4, the controller is able to send commands to the 
registered victim host via the C&C server, such as launching an 

attack and updating bot software. 
The C&C server plays an important role in botnet 

architecture. The controller doesn’t control or send commands 
to the botnet directly but employ C&C server as a broker. Once 
the connections between the botnet and C&C server failed, the 
controller would lose control to the botnet. There are several 
kinds of C&C connection structures, central structure, distribute 
structure and hybrid structure, as shown in Figure 2. 

C&C

Host

Host

Host

HostHost

Host

Host

Central structure

Host/
C&C

Host/
C&C

Host/
C&C

Host/
C&C

Host/
C&C

Distributed structure

Host C&C

Host

Host
C&C

Host

Host

Hybrid structure

 
Fig.2. C&C structures 

 
The central structure is simple and no special communication 

protocols are required. Every victim host connects to the C&C 
server directly with some universal protocol, such as IRC (Inter 
Relay Chat) and HTTP. The character of easy-to-use makes 
central structure the most popular for a lot of bot software such 
as Zeus and conficker. The biggest disadvantage of the central 
structure is lacking robustness. Due to all hosts rely on one 
single C&C server to communicate with the controller, the 
entire botnet would be destroyed when the C&C server is dug 
out. Relatively the distributed structure is more complex while 
every host in the botnet is one C&C server at the same time. In 
other words, it can be considered that there is no C&C server in 
distributed structure or everyone is a C&C server. In distributed 
structure, each host should connect to at least one another host 
and the message will be broadcasted to entire network through 
the support of P2P (Peer-to-Peer) protocol. Robustness can be 
fulfilled easily in distributed structure but there are also 
limitations. The complexity of the network will significantly 
increase when more hosts join the network which brings many 
more connections, which leads to high latency and unreliable 
commands transmission. The hybrid structure is the 
combination of the central structure and distributed structure, 
where multiple C&C servers are connected with each other and 
one C&C server takes charge of communicating with one 
section of hosts. This structure combines the advantages of the 
other two structures. 

No matter what structure the botnet employs, it is important 
for hosts to find and connect to the C&C server. Addresses of 
C&C servers are hard-coded in bot software in early age while 
DGA is always adopted in nowadays, due to hard-coded 
addresses are easy to be dug out in network traffic and not 
flexible enough. DGA will generate random domain names with 
different input which is mostly the system time. To add 

confusion, only a few of the generated domain names will be 
registered in the DNS server and the rest of them will be 
abandoned. Brought by the confusion, it would be hard for the 
security to find out malicious domain names used to connect to 
the C&C server. Even malicious domain names are successfully 
located, it will be easy to generate a new batch of domain names 
to get rid of restrictions. Hence, it is critical to detect DGA 
domain names when hosts make a DNS request. 

Another working pattern of botnet is network traffic itself. As 
mentioned above, only a small number of bot software uses 
private protocols, and most bot software uses common 
protocols such as IRC and HTTP [18, 19]. The benefits of using 
common protocols are easy to hide because private protocols 
are easier to be discovered due to the rareness of new protocols. 
However, some signatures of botnet may be hidden in protocol 
communications. To avoid signature extraction, bot software 
always utilizes techniques encrypting, hiding or confusing the 
payload of communications [20, 21]. Therefore, it’s necessary 
to confront those techniques when analyzing network traffic. 

III. DESIGN OF THE PROPOSED METHOD 

A. Design principles 

The botnet detection method proposed by this paper should 
be able to detect botnet traffic and be designed based on the 
following principles. 

Real-Time: The method should detect botnet or bot activities 
with very low latency. The principle of real-time indicates that 
the method should be able to complete detection in limited time. 

Reliability: The method should detect botnet from different 
dimensions. Sensors, or checkpoints, should be deployed in 
different places to avoid single point failure.  

Economy: The method should not add too much overhead to 
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the hosts due to the computational power of the hosts may be 
limited. 

B. Architecture and overall design 

The method aims to detect the bot activities when hosts are 
trying to connect to C&C servers by employing both DGA 
detection and network traffic detection. To fulfill the principle 
of reliability, DGA detection and network traffic detection 

should be deployed in different places in the network. Focusing 
on the domain names, DGA detection could be deployed on the 
domain name server while network traffic detection could be 
deployed on the network gateway or router because it inspects 
the data packet. The architecture of the proposed method is 
illustrated in Figure 3. 

Sensor

GW

DNS Server

C&C Server

C&C Server

C&C Server
Sensor

DNS Server

GW

GW

DNS Server

Internet

 
Fig. 3. The architecture of the proposed method 

 
With this logical architecture, the host connects to the 

Internet via a gateway (GW). And the host also requests DNS 
service using the same gateway. What is noteworthy is that GW 
and DNS servers in this architecture are logical components, 
which means that they can be independent components and 
integrated or even integrated with the host. However, for the 
reason of economy, we design them with two independent 
components in the proposed method. Two different sensors are 
deployed in GW and DNS servers, sensor for network traffic 
and sensor for DNS server. 

Sensor for network traffic (GW Sensor) 
The sensor for network aims to detect and analyze the 

network traffic. As the only data channel for the host, GW is 
able to capture every data packet sent from the host. Hence the 
GW sensor works like a packet filtering firewall and examines 
every data packet when the packet arrives at the GW to fulfill 
the principle of real-time. The network traffic sensor detects not 
only layer-3 and layer-4 (network layer and transport layer in 
TCP/IP architecture) but also layer-5 (Application layer) traffic. 
Note that most bot software uses common protocols, we exploit 
signature detection to find out known bot activities. 
Furthermore, to avoid the impact from hiding or confusing 
techniques and relieve the computational pressure, payload-free 
signatures are adopted in the method. The signatures are 
extracted from two specific network packets, the initial packet 
of the network flow and the attack command packet. 

Initial packet, which is the first packet sent from victim host 
to the C&C server. It is used to register the victim on the C&C 

server. 
Attack command packet, which is used as the command sent 

from the C&C server. Following a simple protocol, the victim 
will launch an attack according to the attack command packet. 

The features extracted from the two kinds of packets are able 
to identify the know bot software with the prior knowledge. The 
specific features will be discussed in the implementation 
section. 

Sensor for DGA (DNS Sensor) 
Based on the character that the host always uses DGA to find 

and connect to the C&C server, the DNS sensor aims to 
intercept every DNS request and check the target domain name 
malicious or not. The generated domain names, which also 
consist of letters and digits as normal domain names, always 
present some character characteristics, such as length, the 
number of special characters, the ratio of digits to letters, etc. 
These characteristics can be used for feature extraction in 
machine learning algorithm. In our method, a deep learning 
based scheme is used in the proposed by exploiting the 
long-short term memory (LSTM) neural network. LSTM is a 
special type of recurrent neural network which is able to capture 
time-sequenced features of the input. In LSTM, 3 gates are 
introduced to control the states of neurons. The first gate, forget 
gate, controls how much state 1tC   in the last time will be 
reserved to the state tC  in current time: 

  1, ) t f t t ff W h x b    

where tx  is the current input and 1th   is the output from the 
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last hidden layer. 
fW  and 

fb  are trainable parameters in the 
neural network. The second gate, input gate, determines what 
information from the input should be updated into the neurons’ 
state: 

  1,t i t t ii W h x b    

  1tanh ,t C t t Cc W h x b   

And the update process is: 
1t t t t tC f C i c     

The last gate, output gate, is responsible for generating the 
output value 

th  based on 1th 
 and 

tx : 

  1,t o t t oo W h x b    

 tanht t th o C   
With those three gates LSTM is able to make up for some 

flaws of traditional recurrent neural network such as 
remembering long term information of the input. Meanwhile, 
comparing with machine learning algorithms, LSTM is a deep 
learning algorithm which is able to extract features 
automatically without feature engineering. Even the features are 
changed, LSTM is still capable of correcting and adopting. 

With sufficient training set (domain simples), it would be more 
accurate and more efficient for this deep learning method than 
traditional machine learning methods. 

LSTM is adopted to train a classifier to distinguish the 
normal domain names and the DGA domain names. In the 
proposed method, the classifier is pre-trained offline with 
collected DGA domain names and the detection process is 
online to reduce the computational overhead in real-time. The 
performance of the classifier is important, and the performance 
is evaluated from a set of metrics in the implementation and 
evaluation section. 

IV. IMPLEMENTATION AND EVALUATION 

A. Workflow of the method 

With the proposed method, to ensure the principle of 
reliability, the two sensors would work individually and 
parallelly. No matter the victim host is sending bot network 
packets or requesting to visit DGA domain names, sensors will 
be able to detect and respond accordingly. The workflow of the 
proposed method is shown in Figure 4. 

Host to be 
detected

GW sensor DNS sensor

Safe serverMalicious 
traffic?

DGA domain 
name?

Yes Yes

No No

Forward packets Finished DNS requests
 

Fig. 4. Workflow of the method 
 

There are 6 steps in the work flow: 
The host to be detected would send outbound network traffic, 

may be data packets, DNS requests, or both. 
If the outbound network traffic contains data packets, the 

packets will be sent to the GW where the GW sensor can capture 
and analyze them. 

Meanwhile, if the outbound network traffic contains DNS 
requests, the DNS sensor deployed on the DNS server will be 
able to capture the requests and analyze them. 

The features of known bot traffic are hardcoded in the GW 
sensor. When the features match the captured network traffic, a 
“malicious traffic” trigger will be pulled. 

The trained LSTM classifier is deployed within the DNS 
sensor and every DNS request would be determined as 

requesting a DGA domain name or not. When a DGA request is 
discovered, a “DGA request” trigger will be pulled and the 
request will be reformed. 

A “safe server” is deployed in the network. The safe server is 
a web server with a simple warning webpage. The trigger 
information, such as “malicious traffic” and “DGA request” 
would be sent to this safe server by the sensors and the warning 
information would be given by the safe server. 

Moreover, because the two sensors work in parallel, the 
detection performance of the method should be implemented 
and evaluated separately. 

B. Implementation and evaluation of GW sensor 

We analyzed three bot software families which are popular in 
China, “xingtian”, “nightguard” and “network nuclear weapon”, 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 964



 

 

to verify that whether the signatures of the data packet can be 
used to detect botnet or not. In our experiments, we captured the 
initial packets when the victim host was connecting to C&C 
server for the first time and command packets sent from C&C 
server. Those packets were analyzed to find patterns to detect 
corresponding bot software. Due to that different bot software 
launches different types of attacks, experiments and analyses 
were made individually. 

Xingtian 
Firstly, we captured and analyzed the features of initial 

packets of xingtian, as shown in Table 1. 
 

Table 1. Features of xingtian’s initial packets 
Indicator length Offset in the payload 
Host OS 64 4 
Memory size 32 68 
CPU frequency 32 100 
Bandwidth 32 132 

 
As we captured, the total length of the initial packet is 238 

bytes in which 184 bytes are payload carrying the information 
including host operating system, memory size of the host, CPU 
frequency of the host and the network bandwidth of the host. 
Furthermore, a significant signature of the initial packet is at the 
beginning of the initial packet with the content “b0 00 00 00 77 
00 00 00 04 08 00 00”. 

Secondly, xingtian is able to launch attacks from two layers, 
transportation layer such as TCP-SYN attack and UDP 
flooding, and application layer such as infinite CC. Hence, we 
captured and analyzed the command packets, summarized in 
Table 2. 

 
Table 2. Features of xingtian’s command packets 

Type Minimize 
packet length 

Minimize 
payload length 

Offset in 
payload 

TCP-SY
N 86 32 4 

UDP 
flooding 86 32 4 

Infinite 
CC 92 38 4 

 
Different from the initial packets, the command packets are 

with variable length because the attack payload, which is not 
with a fixed length, is integrated with the packet. For TCP-SYN 
attack and UDP flooding attack, the minimum payload is 32 
bytes and the minimize is 86 length, while the infinite CC is with 
the numbers of 38 and 92. The attack identifier, which is also 
integrated with the payload, starts from the offset value of 4 and 
with a 4 bytes length. 

Nightguard 
The length of the initial packet of nightguard is 834 bytes and 

in which 780 bytes is payload. Unlike xingtian, nightguard only 
collects the information of host OS with an offset value 4 in the 
payload. What is similar is that nightguard also has a signature 

at the beginning of the packet with the content “55 55 09 00”. 
Night performs attacks of TCP-SYN, UDP flooding and infinite 
CC as well, and the features of nightguard are summarized in 
Table 3. 
 

Table 3. Features of nightguard 

Type Packet 
length 

Payload 
length 

Offset in 
payload 

Initial 834 780 0 
TCP-SY

N 834 780 416 

UDP 
flooding 834 780 416 

Infinite 
CC 834 780 640 

 
The length of command packets of nightguard is fixed as 834 

and so is the payload with a length of 780. Hence the packet 
length can be used as a feature to detect nightguard. 

Network nuclear weapon 
The length of the initial packet of network nuclear weapon is 

1090 bytes with a 1036 bytes payload including host OS, 
memory size, CPU frequency and host date and time. However, 
the beginning of the initial packet is not constant. Network 
nuclear weapon is also able to launch attacks of TCP-SYN, 
UDP flooding and infinite CC, and we collected the features in 
Table 4. 

Table 4. Features of network nuclear weapon 

Type Packet 
length 

Payload 
length 

Offset in 
payload 

Initial 1090 1036 0 
TCP-SYN 1090 1036 136 
UDP 

flooding 1090 1036 136 

Infinite 
CC 1090 1036 136 

 
The packet length and payload length are stable with network 

nuclear weapon, which means that packet length can be used as 
a feature as well. 

Based on the features and signatures we collected, 
experiments were taken to evaluate our method. The features we 
used in the experiments include: 

Signature in the initial packet; 
Length of the initial packet; 
Length of the commands packet; 
Content of the targeted offset in the payload. 
Due to that, not all features are applied to all bot software, we 

only made use of parts of them when some feature was missing 
in the bot software to be detected. The detection was 
implemented with flask and WebSocket. Results of the 
experiments are shown in Figure 5. 
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Fig. 5. Result of experiments on GW sensor 

 
We designed two sets of experiments. In both sets, every bot 

software was installed and commanded to launch different types 
of attacks for 50, 100, 300 and 500 times to calculate the 
detection rate in different situations. The difference between 
two sets was that in the first set only the bot software was 
allowed to connect to the Internet in the infected host while 
there is some other software were connecting to the Internet to 
make confusion in the second set. Due to that strict comparison 
were conducted on the data packets based on the features, the 
detection rate was the only evaluation metric. The results show 
that firstly, different software benefited from different numbers 
of features. Xingting (xt) only took advantage of 2 features, so 
the detection rate was the lowest in all three. Nightguard (ng) 
took advantage of all 4 features and the detection rate was the 
highest while the network nuclear weapon (nnw) was in the 
middle. Secondly, there was a slight change when the attack 
times were different as shown in the figure. Thirdly, the 
detection rate would change when the running environment 
changed. Comparing with the first set, because of the existence 
of confusion programs, the detection rate of the second set 
decayed significantly. It is clear that using GW sensor alone is 
not enough for detecting botnet, and DNS sensor is employed to 
make up for the flaws. 

C. Implementation and evaluation of DNS sensor 

We adopted an LSTM neural network to realize the DNS 
sensor. LSTM is able to take strings with variable length as an 
input without feature engineering. It will capture the sequential 
characteristics hidden in the domain name strings, and with 
which we would be able to distinguish DGA domain names 

from normal domain names.  
The structure of LSTM adopted in the experiments was 

simple, as illustrated in Figure 6. Each character in the input 
domain name would be encoded into a vector, and in the 
experiments, this part of work was done by an embedding layer 
which is the first layer of the LSTM neural network. In the 
embedding layer, the variable-length input will be encoded into 
a vector with a fixed length of 128. The second layer of the 
structure was the LSTM layer, the core layer in the structure. 
LSTM layer took the 128-dimension vector generated from the 
embedding layer as input, and generate a 1-diemension vector 
for the next layer. The final layer, dense layer, took the output 
from the LSTM layer and generated a value between 0 and 1 
which was calculated by a sigmoid function. The output value of 
the dense layer indicated the probability that the input domain 
name being a DGA domain name. 
 

Input domain names

Em bedding

LSTM

Dense
 

Fig. 6. LSTM structure in the experiments 
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The experiments were conducted based on a self-collected 

dataset, includes 1 million normal domain names gathered from 
Alexa and 100 000 DGA domain names gathered from the 
Internet. 5% domain names of the dataset were held for 
cross-validation and the rest of them were used to train the 
neural network. It’s a binary classification problem to determine 
a domain name DGA domain name or not, hence the following 
metrics were used to evaluate the neural network. 

(1) Precision 
Precision is used to describe the proportion of true positive 

samples to all predicted positive sample, which consists of false 
positive samples and true positive samples. The equation for 
calculating precision is: 

Pr
TruePositive

ecision
TruePositive FalsePositive





 

 

(2) Recall rate 
The recall rate is used to describe the proportion of true 

positive samples to all positive samples. It is calculated with: 

Re
TruePositive

call
TruePositive FalseNegative





 

 

(3) F1-score 
F1-score is the harmonic mean of precision and recall rate to 

balance them. It is a useful metric to evaluate the model, 
calculated with: 

1
Pr Re2
Pr Re

ecision call
F

ecision call


 


 

(4) Receiver operating characteristic curve, ROC curve 
ROC (Receiver operating characteristic) curve utilizes both 

true positive rate and false positive rate to evaluate the 
classifier. True positive rate (TPR) is the proportion of true 
positive samples to all positive samples, calculated with: 

TruePositive
TPR

TruePositive FalseNegative





 

 

False positive rate (FPR) is the proportion of false positive 
samples to all negative samples, calculated with: 

FalsePositive
FPR

FalsePositive TrueNegative





 

 

Using FPR as horizontal axis and TPR as vertical axis, 
dynamically adjusting TPR and FPR, a curve will be formulated 
which is the ROC curve. To evaluate the ROC curve, AUC 
(Area Under the Curve) is introduced. AUC is a value between 0 
and 1. The bigger the AUC is, the better the classifier will be. 

We implemented the experiments with Keras. After 100 
epochs of training, the result was collected in Table 5. 
 

Table 5. Evaluation for LSTM neural network 

Type Precision Recall F1-scor
e 

Amou
nt 

Normal 0.9771 0.9787 0.9779 21986 
DGA 0.9787 0.9771 0.9779 21988 

Avg/tot 0.9779 0.9779 0.9779 43974 

al 
 

In the cross-validation, the volume of the test dataset is 43 
974, in which 21 986 samples are normal domain names and 21 
988 are DGA domain names. The results of precision, recall rate 
and F1-score indicated that the performance of the neural 
network was good. Furthermore, we also collect the numbers of 
false positive samples and false negative samples, and with 
those data, the ROC curve was illustrated in Figure 7. 
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Fig. 7. ROC curve of the experiments 

 
In the experiments, the numbers of true positive, false 

negative, false positive and true negative are 21519, 467, 504 
and 21 484. And accordingly, the AUC of the ROC curve is 
0.9931. With the combination of DNS sensor and GW sensor, it 
would be more efficient and reliable for the proposed method. 

D. Discussion 

The discussion is based on the the design principles proposed 
in section 3.1. 

Discussion on real-time principle: Although the training 
process would take some time, it is offline. The detecting 
process is almost real-time. For the GW sensor, it would extract 
simple features such as packet length and payload length from 
the outbound network traffic, and the time consumption is little. 
For the DNS sensor, with the trained LSTM classifier, the 
classification process can determine the requested domain name 
malicious or not immediately. Therefore, the real-time principle 
is fulfilled. 

Discussion on reliability principle: The GW sensor and the 
DNS sensor are deployed on two different locations which are 
separated from each other logically. Hence, the two sensors 
would work individually and without overlap between them. It 
is clear that even one of the sensors fails or crashes, the other 
one would be functioning without influence. The single point 
failure can be avoided with the proposed method and the 
principle of reliability can be assured. 

Discussion on economy principle: With the proposed 
method, tasks such as data collection, analysis and detection are 
performed by the sensors, and the hosts in the network won’t 
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take any additional computational overhead. And in fact, the 
entire detecting process is transparent for the hosts. Hence, any 
kind of hosts, no matter generic computers or IoT devices which 
are resource constrained, is applicable to the prosed method. 
And meanwhile, the logical separation of two sensors also 
reduces the computational overhead of the individual sensor, 
and that is the reason that we call this method “lightweight”. The 
economy principle is also fulfilled. 

Furthermore, the availability of the proposed method should 
be discussed as well. The performance of GW sensor is shown 
in Figure 5 and the performance of the DNS sensor is shown in 
Figure 7. It can be seen that the performance of GW sensor is 
not so good. However, note that the proposed method is a 
two-armed method, which means the overall performance 
depends not only on one sensor but depends on both sensors. 
The performance of DNS sensor is good, and the hybrid method 
combing the two sensors would achieve a good performance as 
well. 

V. CONCLUSION 
As a huge threat on the Internet, botnets have gained a lot of 

attention. Based on the principles of real-time, reliability and 
economy, a lightweight hybrid detection method is proposed in 
this paper. Two sensors are deployed separately on network 
gateway and DNS server. Features extracted from data packets 
are employed for gateway sensor and deep learning technique 
are adopted for DNS sensor. Results of the experiments indicate 
that the method is efficient. 

ACKNOWLEDGEMENTS 
This paper is supported by Henan Programs for Science and 

Technology Development (182102210329); Henan Key 
Research Projects of Universities (20A413008) and Legal 
Theory Research Project in Justice Department of the People’s 
Republic of China (17SFB3020). 

References   
[1] S.S.C. Silva, R.M.P. Silva, R.C.G. Pintob, et al., "Botnets: 

A survey," Computer Networks, vol. 57, no. 2, pp.378-403, 
Feb. 2013. 

[2] M. Antonakakis, T. April, M. Bailey, et al., "Understanding 
the Mirai botnet," SEC'17: Proceedings of the 26th 
USENIX Conference on Security Symposium, pp. 
1093-1110, 2017. 

[3] S. Behal, S.B. Amanpreet, K. Krishan, "Signature-based 
botnet detection and prevention," Proceedings of 
International Symposium on Computer Engineering and 
Technology, Panjab University, Chndiagarh, 2010. 

[4] B. Soniya, M. Wilscy, "User traffic profile for traffic 
reduction and effective bot C&C detection," IJ Network 
Security, vol.16, no. 1, pp. 46-52, 2014. 

[5] G. Gu, R. Perdisci, J. Zhang, et al., "BotMiner: Clustering 
analysis of network traffic for protocoland 
structure-independent botnet detection," 17th USENIX 
Security Symposium, pp. 139-154, 2008. 

[6] G. Fedynyshyn, M.C. Chuah, G. Tan, "Detection and 
classification of different botnet C&C channels," 
International Conference on Autonomic and Trusted 
Computing. Springer, Berlin, Heidelberg, 2011. 

[7] H.J. Xiong, P. Malhotra, D. Stefan, et al., "User-assisted 
host-based detection of outbound malware traffic. 
International Conference on Information and 
Communications Security," Springer, Berlin, Heidelberg, 
2009. 

[8] P. Wurzinger, L. Bilge, T. Holz, et al., "Automatically 
generating models for botnet detection," European 
symposium on research in computer security. Springer, 
Berlin, Heidelberg, 2009. 

[9] A. Nazir, R.A. Khan, "Network intrusion detection: 
Taxonomy and machine learning applications," Machine 
Intelligence and Big Data Analytics for Cybersecurity 
Applications. Springer, Cham, pp. 3-28, 2021. 

[10] A.A. Daya, M.A. Salahuddin, N. Limam, et al., 2020. 
BotChase: Graph-based bot detection using machine 
learning. IEEE Transactions on Network and Service 
Management, vol. 17, no.1, pp. 15-29, 2020. 

[11] S. Chowdhury, M. Khanzadeh, R. Akula, et al., "Botnet 
detection using graph-based feature clustering," Journal of 
Big Data, vol. 4, no. 1, pp. 1-23, 2017. 

[12] W. Wang, Y.Y. Shang, Y.Z. He, et al., "BotMark: 
Automated botnet detection with hybrid analysis of 
flow-based and graph-based traffic behaviors," Information 
Sciences, vol.511, pp.284-296, 2020. 

[13] S.I. Popoola, B. Adebisi, M. Hammoudeh, et al., "Hybrid 
deep learning for botnet attack detection in the 
internet-of-things networks," IEEE Internet of Things 
Journal, vol. 8, no. 6, pp.4944-4956, 2020. 

[14] M. Antonakakis, R. Perdisci, Y. Nadji, et al., "From 
throw-away traffic to bots: Detecting the rise of 
DGA-based malware," Presented as part of the 21st 
{USENIX} Security Symposium ({USENIX} Security 12), 
2012. 

[15] S. Kazumichi, I. Keisuke, T. Tsuyoshi, et al., 2012. 
"Extending black domain name list by using co-occurrence 
relation between DNS queries," IEICE Transactions on 
Communications, vol. 95, no. 3, pp. 794-802, 2012. 

[16] R. Sharifnya and M. Abadi, "A novel reputation system to 
detect DGA-based botnets," International Econference on 
Computer & Knowledge Engineering IEEE, pp. 417-423., 
2013. 

[17] J. Lee, H. Lee, "GMAD: Graph-based malware activity 
detection by DNS traffic analysis," Computer 
Communications, vol. 49, pp. 33-47, 2014. 

[18] J. Nazario, "Blackenergy Ddos Bot Analysis," Arbor,2007. 
[19] D. Plohmann, E. Gerhards-Padilla, "Case study of the 

miner botnet," 2012 4th International Conference on Cyber 
Conflict (CYCON 2012). IEEE, 2012. 

[20] S. Specht and R. Lee, "Taxonomies of distributed denial of 
service networks, attacks, tools and countermeasures," 
CEL2003-03, Princeton University, Princeton, NJ, USA, 
2003. 

[21] N. Falliere, "SALITY: Story of a peer-to-peer viral 
network," Rapport technique, Symantec Corporation 32, 
2011. 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 968



 

 

 
Wei Ma, born in December 1985, male, doctor, lecturer. He 
graduated from Henan Normal University with a bachelor's 
degree in computer science and technology in 2008; He 
graduated from Beijing Jiaotong University with a master's 
degree in information security in 2011; He graduated from 
Beijing Jiaotong University in 2016 with a doctorate in 
information security. He is currently a postdoctoral researcher 
with Zhengzhou University and Zhengzhou Normal University, 
and a teacher with North China University of Water Resources 
and Electric Power. He has published 20 articles in international 
journals and conferences. His research interests include trusted 
computing, IoT security and cloud computing. 
 
Contribution of individual authors to the 

creation of a scientific article (ghostwriting 

policy) 
Botnet poses a serious threat to the Internet and causes great 
harm to the Internet. How to detect botnet proposed by Wei Ma 
and Xing Wang has become an ongoing research. They 
proposed a lightweight hybrid botnet detection method. Jiguang 
Wang and Qianyun Chen designed two sensors according to the 
characteristics of Botnet packets and the characteristics of using 
DGA (domain generation algorithm) domain name to connect 
botnets. They did experiments and concluded that this method 
can effectively detect botnets. Wei Ma wrote the first draft, and 
Xing Wang and Jiguang Wang reviewed and edited the article. 
All authors have read and agreed to the publication of the 
manuscript. 
 

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 969




