


Abstract—Botnet is a serious threat for the Internet and

it has created great damage to the Internet. How to detect

botnet has become an ongoing endeavor research. Series of

methods have been discussed in recent research. However,

one of the remaining challenges is that the high

computational overhead. In this paper, a lightweight hybrid

botnet detection method is proposed. Considering the

features in the botnet data packets and the characteristic of

employing DGA (Domain Generation Algorithm) domain

names to connect to the botnet, two sensors are designed

and deployed individually and parallelly. Signature

detection is used on the gateway sensor to dig out known bot

software and deep learning based techniques are used on

the DNS (Domain Name Server) server sensor to find DGA

domain names. With this method, the computational

overhead would be shared by the two sensors and

experiments are conducted and the results indicate that the

method is effective in detecting botnet.

Keywords—Botnet, Network Security, Machine

Learning, Detection.

I. INTRODUCTION
ITH the rapid development of information technology,

the Internet has become indispensable in everyday life.
As reported by Strategy Analytics, the number of devices
connected to Internet has reached 22 billion by the end of 2018.
Great economic benefits are also brought by the development of
Internet. It is predicted that the digital market will rise to 4500
billion dollars in 2021. However, huge benefit carries huge risk
and various network attack paradigms have yet to merge. The
botnet is one kind of the most serious.

Botnet, which refers to a network consists of plenty of
computing nodes infected by bot-ware and a C&C (command
and control) server which is controlled by the attacker, is a huge
threat to network security in nowadays [1]. With the numerous
computational power, the botnet is capable of launching a
massive attack on Internet. One C&C server is able to control
thousands of infected computing nodes to launch massive
attacks such as DDoS (Distributed Denial of Services). It is
reported that in 2017, 5187 instructions were sent by C&C
servers per day and 114 instructions were sent by a single C&C
server. Globally, the attack from botnet has reached 28 million
in a month and about 6 TB of network bandwidth was used to
perform the attack activities. Furthermore, with the rapid
development of the Internet of Things (IoT), IoT is becoming a
new carrier of botnets. Mirai, which is the most famous IoT
botnet, used to make the most severe DDoS attack in 2016 [2].
Billions are lost with the attacks launched by botnets.

Therefore, it is important to identify botnet victims in the
Internet. To address the threats brought by botnets, researchers
have done a lot of research. Network traffic or network flow
characteristics are most popular for botnet detection. Due to the
bots in botnet exploit network to communicate and negotiate,
some malicious activities are hiding in network traffic. The key
to detect botnet is to find out the features of malicious activities.
For example, N-EDPS system exploits traffic signatures to
detect known bot software by checking the outbound traffic [3].
This system can be integrated into Snort, an open-sourced
intrusion detection system. Another way of using network traffic
is anomaly detection. Soniya and Wilscy developed a method
which can filter normal traffic from all network traffic and
dynamic pattern analysis will be applied to the rest traffic to
discover suspicious network activities [4]. BotMiner is a 2-step
botnet mining and detecting system [5]. In the first step,
BotMiner would filter some traffic based on some learned

A lightweight hybrid detection method for botnet
Wei Ma123*, Xing Wang4, Jiguang Wang1, Qianyun Chen1

1School of Information Engineering, North China University of Water Resources and Electric Power,
Zhengzhou, 450046

China
2School of Information science and technology, Zhengzhou Normal University,

Zhengzhou, 450044
China

3School of Information Engineering, Zhengzhou University,
Zhengzhou, 450001

China
4Hangzhou Hikvision Digital Technology Co., Ltd.,

Hangzhou, 310000
China

Received: February 28, 2021. Revised: July 23, 2021. Accepted: August 10, 2021. Published: August 12, 2021.

W

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 960

knowledge out of all network traffic and clustering will be
applied to the rest traffic. In the second step, anomaly detection
is carried out on the clusters generated in step one. Similar
features between clusters are used to discover botnet.
Fedynyshyn et al. proposes a method which classifies types of
C&C messages [6]. Features are extracted from different types
of messages and they are used to detect botnet. This method
doesn’t need to check the payload of the data packet, hence it
can detect encrypted C&C traffic. Considering the characteristic
that the wide application of HTTP in C&C servers, Xiong et al.
designed a botnet detection system based on HTTP [7]. This
system will verify every web request and only authorized
websites are allowed to visit. This system will prevent terminal
nodes from connecting to the C&C server, but it’s only useful
for HTTP based botnet. Wurzinger et al. proposes a prior
knowledge free method to detect botnet [8]. By calculating the
similarity between normal network traffic and abnormal traffic,
this method is able to find out the deviation of abnormal traffic.
Alike abnormal traffic will be located and analyzed to check it is
botnet traffic or not. And recently, ML (Machine Learning)
based methods were adopted in botnet detection with network
traffic or network flow features [9]. For example, graph-based
methods for botnet detection and feature clustering [10], [11].
Deep packet inspection (DPI) was integrated with ML to detect
botnet [12]. And deep learning was adopted for a hybrid
detection method in IoT environment [13].

Most of the network traffic based botnet detecting method
need prior knowledge to detect known bot software. Only a few
methods are prior knowledge free but the performance of false
positive rate and false negative rate are poor.

Another kind of botnet detecting method is DGA (Domain
Generation Algorithm, DGA) based. Bot software always uses
dynamic domain names to tell victim hosts how to connect to
C&C servers and DGA is used to generate those domain names.
In the early time, researchers would submit the resolved DGA
domain name to some ranking site such as malware domain list.
However, DGA is able to generate thousands of domain names
but only a few of them are picked out for bot software to make
use of. Methods are developed to detect DGA domain names.
Antonakakis et al. uses the combination of clustering algorithms
and classification algorithms to detect known DGA domain
names and dig out unknown domain names [14]. Kazumichi et
al. exploits DNS (Domain Name Server) traffic and blacklist to
detect unknown malicious domain names [15]. It assumes that
when an unknown domain appears frequently with a known
malicious domain name at the same time, then this unknown
domain name should be malicious as well. Sharifnya and Abadi
proposed a reputation based botnet discovery method by
calculating an activity matrix for every DNS request, and the
hosts with the lowest reputation will be identified as botnet hosts
[16]. Lee and Lee uses failed DNS request data to discover
unknown types of the botnet [17]. DGA based methods and
meanwhile, to monitor DNS activities is a heavyweight task for
the host to detect botnet.

However, there are still some flaws for both kinds of the

methods. Firstly, for traffic or flow based methods, prior
knowledge is needed to detect known bot software. Only a few
methods are prior knowledge free but the performance of false
positive rate and false negative rate are poor. Secondly, for
DGA based methods, they always based on DNS activities and
multiple dimensions of data are used but domain names
themselves are not getting enough attention. And thirdly and
most importantly, the computational overhead of current
methods is high due to that monitoring no matter network traffic
or DNS activities is a heavyweight task for the host.
Considering the imperfection of current methods, we propose a
lightweight hybrid detection method for botnet by combining
the traffic base method and DGA based method in this paper.
This method takes advantage of network traffic and DGA
domain name and the contributions of this paper are:

A method is designed with which we examine the outbound
network traffic to discover known bot software based on prior
knowledge.

DNS requests will be resolved to find out abnormal domain
names, and the two steps are deployed on different positions to
reduce the computational overhead and consequently make the
method lightweight.

Experiments are conducted and the performance is evaluated
for the proposed method.

This paper is organized as follows: The first section
introduces the background and promotions with the working
patterns of botnet in section 2. The design principles and overall
design are discussed in section 3. In section 4, we introduce
detailed implementations and evaluated the method with
experiments. In the end, the conclusion is given in section 5.

II. WORKING PATTERNS OF THE BOTNET

Despite the diversity of botnet or bot software, there are some
mutual working patterns. A botnet controller, which is an
attacker or hacker, always controls the botnet in a unique way.
The typical architecture of a botnet is shown in Figure 1, and
there are four stages in the control flow.

Victim

Contro ller C&C Server

Victim

Victim

Botnet

Controller C&C Server

Victim

Victim

Victim

Botnet
Fig. 1. Botnet architecture

In stage 1, the victim host will be infected via some
vulnerability and binary applications of botnet will be download

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 961

by some script written by the controller.
In stage 2, once the bot software is installed in the victim host,

the victim will try to connect to the C&C server initiatively.
In stage 3, when the victim connects to the C&C server

successfully, the registration process will be done, which means
that the victim has joined the botnet officially.

In stage 4, the controller is able to send commands to the
registered victim host via the C&C server, such as launching an

attack and updating bot software.
The C&C server plays an important role in botnet

architecture. The controller doesn’t control or send commands
to the botnet directly but employ C&C server as a broker. Once
the connections between the botnet and C&C server failed, the
controller would lose control to the botnet. There are several
kinds of C&C connection structures, central structure, distribute
structure and hybrid structure, as shown in Figure 2.

C&C

Host

Host

Host

HostHost

Host

Host

Central structure

Host/
C&C

Host/
C&C

Host/
C&C

Host/
C&C

Host/
C&C

Distributed structure

Host C&C

Host

Host
C&C

Host

Host

Hybrid structure

Fig.2. C&C structures

The central structure is simple and no special communication

protocols are required. Every victim host connects to the C&C
server directly with some universal protocol, such as IRC (Inter
Relay Chat) and HTTP. The character of easy-to-use makes
central structure the most popular for a lot of bot software such
as Zeus and conficker. The biggest disadvantage of the central
structure is lacking robustness. Due to all hosts rely on one
single C&C server to communicate with the controller, the
entire botnet would be destroyed when the C&C server is dug
out. Relatively the distributed structure is more complex while
every host in the botnet is one C&C server at the same time. In
other words, it can be considered that there is no C&C server in
distributed structure or everyone is a C&C server. In distributed
structure, each host should connect to at least one another host
and the message will be broadcasted to entire network through
the support of P2P (Peer-to-Peer) protocol. Robustness can be
fulfilled easily in distributed structure but there are also
limitations. The complexity of the network will significantly
increase when more hosts join the network which brings many
more connections, which leads to high latency and unreliable
commands transmission. The hybrid structure is the
combination of the central structure and distributed structure,
where multiple C&C servers are connected with each other and
one C&C server takes charge of communicating with one
section of hosts. This structure combines the advantages of the
other two structures.

No matter what structure the botnet employs, it is important
for hosts to find and connect to the C&C server. Addresses of
C&C servers are hard-coded in bot software in early age while
DGA is always adopted in nowadays, due to hard-coded
addresses are easy to be dug out in network traffic and not
flexible enough. DGA will generate random domain names with
different input which is mostly the system time. To add

confusion, only a few of the generated domain names will be
registered in the DNS server and the rest of them will be
abandoned. Brought by the confusion, it would be hard for the
security to find out malicious domain names used to connect to
the C&C server. Even malicious domain names are successfully
located, it will be easy to generate a new batch of domain names
to get rid of restrictions. Hence, it is critical to detect DGA
domain names when hosts make a DNS request.

Another working pattern of botnet is network traffic itself. As
mentioned above, only a small number of bot software uses
private protocols, and most bot software uses common
protocols such as IRC and HTTP [18, 19]. The benefits of using
common protocols are easy to hide because private protocols
are easier to be discovered due to the rareness of new protocols.
However, some signatures of botnet may be hidden in protocol
communications. To avoid signature extraction, bot software
always utilizes techniques encrypting, hiding or confusing the
payload of communications [20, 21]. Therefore, it’s necessary
to confront those techniques when analyzing network traffic.

III. DESIGN OF THE PROPOSED METHOD

A. Design principles

The botnet detection method proposed by this paper should
be able to detect botnet traffic and be designed based on the
following principles.

Real-Time: The method should detect botnet or bot activities
with very low latency. The principle of real-time indicates that
the method should be able to complete detection in limited time.

Reliability: The method should detect botnet from different
dimensions. Sensors, or checkpoints, should be deployed in
different places to avoid single point failure.

Economy: The method should not add too much overhead to

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 962

the hosts due to the computational power of the hosts may be
limited.

B. Architecture and overall design

The method aims to detect the bot activities when hosts are
trying to connect to C&C servers by employing both DGA
detection and network traffic detection. To fulfill the principle
of reliability, DGA detection and network traffic detection

should be deployed in different places in the network. Focusing
on the domain names, DGA detection could be deployed on the
domain name server while network traffic detection could be
deployed on the network gateway or router because it inspects
the data packet. The architecture of the proposed method is
illustrated in Figure 3.

Sensor

GW

DNS Server

C&C Server

C&C Server

C&C Server
Sensor

DNS Server

GW

GW

DNS Server

Internet

Fig. 3. The architecture of the proposed method

With this logical architecture, the host connects to the

Internet via a gateway (GW). And the host also requests DNS
service using the same gateway. What is noteworthy is that GW
and DNS servers in this architecture are logical components,
which means that they can be independent components and
integrated or even integrated with the host. However, for the
reason of economy, we design them with two independent
components in the proposed method. Two different sensors are
deployed in GW and DNS servers, sensor for network traffic
and sensor for DNS server.

Sensor for network traffic (GW Sensor)
The sensor for network aims to detect and analyze the

network traffic. As the only data channel for the host, GW is
able to capture every data packet sent from the host. Hence the
GW sensor works like a packet filtering firewall and examines
every data packet when the packet arrives at the GW to fulfill
the principle of real-time. The network traffic sensor detects not
only layer-3 and layer-4 (network layer and transport layer in
TCP/IP architecture) but also layer-5 (Application layer) traffic.
Note that most bot software uses common protocols, we exploit
signature detection to find out known bot activities.
Furthermore, to avoid the impact from hiding or confusing
techniques and relieve the computational pressure, payload-free
signatures are adopted in the method. The signatures are
extracted from two specific network packets, the initial packet
of the network flow and the attack command packet.

Initial packet, which is the first packet sent from victim host
to the C&C server. It is used to register the victim on the C&C

server.
Attack command packet, which is used as the command sent

from the C&C server. Following a simple protocol, the victim
will launch an attack according to the attack command packet.

The features extracted from the two kinds of packets are able
to identify the know bot software with the prior knowledge. The
specific features will be discussed in the implementation
section.

Sensor for DGA (DNS Sensor)
Based on the character that the host always uses DGA to find

and connect to the C&C server, the DNS sensor aims to
intercept every DNS request and check the target domain name
malicious or not. The generated domain names, which also
consist of letters and digits as normal domain names, always
present some character characteristics, such as length, the
number of special characters, the ratio of digits to letters, etc.
These characteristics can be used for feature extraction in
machine learning algorithm. In our method, a deep learning
based scheme is used in the proposed by exploiting the
long-short term memory (LSTM) neural network. LSTM is a
special type of recurrent neural network which is able to capture
time-sequenced features of the input. In LSTM, 3 gates are
introduced to control the states of neurons. The first gate, forget
gate, controls how much state 1tC  in the last time will be
reserved to the state tC in current time:

  1,) t f t t ff W h x b  

where tx is the current input and 1th  is the output from the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 963

last hidden layer.
fW and

fb are trainable parameters in the
neural network. The second gate, input gate, determines what
information from the input should be updated into the neurons’
state:

  1,t i t t ii W h x b  

  1tanh ,t C t t Cc W h x b 

And the update process is:
1t t t t tC f C i c   

The last gate, output gate, is responsible for generating the
output value

th based on 1th 
 and

tx :

  1,t o t t oo W h x b  

 tanht t th o C 
With those three gates LSTM is able to make up for some

flaws of traditional recurrent neural network such as
remembering long term information of the input. Meanwhile,
comparing with machine learning algorithms, LSTM is a deep
learning algorithm which is able to extract features
automatically without feature engineering. Even the features are
changed, LSTM is still capable of correcting and adopting.

With sufficient training set (domain simples), it would be more
accurate and more efficient for this deep learning method than
traditional machine learning methods.

LSTM is adopted to train a classifier to distinguish the
normal domain names and the DGA domain names. In the
proposed method, the classifier is pre-trained offline with
collected DGA domain names and the detection process is
online to reduce the computational overhead in real-time. The
performance of the classifier is important, and the performance
is evaluated from a set of metrics in the implementation and
evaluation section.

IV. IMPLEMENTATION AND EVALUATION

A. Workflow of the method

With the proposed method, to ensure the principle of
reliability, the two sensors would work individually and
parallelly. No matter the victim host is sending bot network
packets or requesting to visit DGA domain names, sensors will
be able to detect and respond accordingly. The workflow of the
proposed method is shown in Figure 4.

Host to be
detected

GW sensor DNS sensor

Safe serverMalicious
traffic?

DGA domain
name?

Yes Yes

No No

Forward packets Finished DNS requests

Fig. 4. Workflow of the method

There are 6 steps in the work flow:
The host to be detected would send outbound network traffic,

may be data packets, DNS requests, or both.
If the outbound network traffic contains data packets, the

packets will be sent to the GW where the GW sensor can capture
and analyze them.

Meanwhile, if the outbound network traffic contains DNS
requests, the DNS sensor deployed on the DNS server will be
able to capture the requests and analyze them.

The features of known bot traffic are hardcoded in the GW
sensor. When the features match the captured network traffic, a
“malicious traffic” trigger will be pulled.

The trained LSTM classifier is deployed within the DNS
sensor and every DNS request would be determined as

requesting a DGA domain name or not. When a DGA request is
discovered, a “DGA request” trigger will be pulled and the
request will be reformed.

A “safe server” is deployed in the network. The safe server is
a web server with a simple warning webpage. The trigger
information, such as “malicious traffic” and “DGA request”
would be sent to this safe server by the sensors and the warning
information would be given by the safe server.

Moreover, because the two sensors work in parallel, the
detection performance of the method should be implemented
and evaluated separately.

B. Implementation and evaluation of GW sensor

We analyzed three bot software families which are popular in
China, “xingtian”, “nightguard” and “network nuclear weapon”,

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 964

to verify that whether the signatures of the data packet can be
used to detect botnet or not. In our experiments, we captured the
initial packets when the victim host was connecting to C&C
server for the first time and command packets sent from C&C
server. Those packets were analyzed to find patterns to detect
corresponding bot software. Due to that different bot software
launches different types of attacks, experiments and analyses
were made individually.

Xingtian
Firstly, we captured and analyzed the features of initial

packets of xingtian, as shown in Table 1.

Table 1. Features of xingtian’s initial packets
Indicator length Offset in the payload
Host OS 64 4
Memory size 32 68
CPU frequency 32 100
Bandwidth 32 132

As we captured, the total length of the initial packet is 238

bytes in which 184 bytes are payload carrying the information
including host operating system, memory size of the host, CPU
frequency of the host and the network bandwidth of the host.
Furthermore, a significant signature of the initial packet is at the
beginning of the initial packet with the content “b0 00 00 00 77
00 00 00 04 08 00 00”.

Secondly, xingtian is able to launch attacks from two layers,
transportation layer such as TCP-SYN attack and UDP
flooding, and application layer such as infinite CC. Hence, we
captured and analyzed the command packets, summarized in
Table 2.

Table 2. Features of xingtian’s command packets

Type Minimize
packet length

Minimize
payload length

Offset in
payload

TCP-SY
N 86 32 4

UDP
flooding 86 32 4

Infinite
CC 92 38 4

Different from the initial packets, the command packets are

with variable length because the attack payload, which is not
with a fixed length, is integrated with the packet. For TCP-SYN
attack and UDP flooding attack, the minimum payload is 32
bytes and the minimize is 86 length, while the infinite CC is with
the numbers of 38 and 92. The attack identifier, which is also
integrated with the payload, starts from the offset value of 4 and
with a 4 bytes length.

Nightguard
The length of the initial packet of nightguard is 834 bytes and

in which 780 bytes is payload. Unlike xingtian, nightguard only
collects the information of host OS with an offset value 4 in the
payload. What is similar is that nightguard also has a signature

at the beginning of the packet with the content “55 55 09 00”.
Night performs attacks of TCP-SYN, UDP flooding and infinite
CC as well, and the features of nightguard are summarized in
Table 3.

Table 3. Features of nightguard

Type Packet
length

Payload
length

Offset in
payload

Initial 834 780 0
TCP-SY

N 834 780 416

UDP
flooding 834 780 416

Infinite
CC 834 780 640

The length of command packets of nightguard is fixed as 834

and so is the payload with a length of 780. Hence the packet
length can be used as a feature to detect nightguard.

Network nuclear weapon
The length of the initial packet of network nuclear weapon is

1090 bytes with a 1036 bytes payload including host OS,
memory size, CPU frequency and host date and time. However,
the beginning of the initial packet is not constant. Network
nuclear weapon is also able to launch attacks of TCP-SYN,
UDP flooding and infinite CC, and we collected the features in
Table 4.

Table 4. Features of network nuclear weapon

Type Packet
length

Payload
length

Offset in
payload

Initial 1090 1036 0
TCP-SYN 1090 1036 136
UDP

flooding 1090 1036 136

Infinite
CC 1090 1036 136

The packet length and payload length are stable with network

nuclear weapon, which means that packet length can be used as
a feature as well.

Based on the features and signatures we collected,
experiments were taken to evaluate our method. The features we
used in the experiments include:

Signature in the initial packet;
Length of the initial packet;
Length of the commands packet;
Content of the targeted offset in the payload.
Due to that, not all features are applied to all bot software, we

only made use of parts of them when some feature was missing
in the bot software to be detected. The detection was
implemented with flask and WebSocket. Results of the
experiments are shown in Figure 5.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 965

1.0

0.9

0.8

0.7

1.0

0.9

0.8

0.7

D
et

ec
tio

n
ra

te
D

et
ec

tio
n

ra
te

50 100 300 500

50 100 300 500
Number of experiments

xt ng nnw

Fig. 5. Result of experiments on GW sensor

We designed two sets of experiments. In both sets, every bot

software was installed and commanded to launch different types
of attacks for 50, 100, 300 and 500 times to calculate the
detection rate in different situations. The difference between
two sets was that in the first set only the bot software was
allowed to connect to the Internet in the infected host while
there is some other software were connecting to the Internet to
make confusion in the second set. Due to that strict comparison
were conducted on the data packets based on the features, the
detection rate was the only evaluation metric. The results show
that firstly, different software benefited from different numbers
of features. Xingting (xt) only took advantage of 2 features, so
the detection rate was the lowest in all three. Nightguard (ng)
took advantage of all 4 features and the detection rate was the
highest while the network nuclear weapon (nnw) was in the
middle. Secondly, there was a slight change when the attack
times were different as shown in the figure. Thirdly, the
detection rate would change when the running environment
changed. Comparing with the first set, because of the existence
of confusion programs, the detection rate of the second set
decayed significantly. It is clear that using GW sensor alone is
not enough for detecting botnet, and DNS sensor is employed to
make up for the flaws.

C. Implementation and evaluation of DNS sensor

We adopted an LSTM neural network to realize the DNS
sensor. LSTM is able to take strings with variable length as an
input without feature engineering. It will capture the sequential
characteristics hidden in the domain name strings, and with
which we would be able to distinguish DGA domain names

from normal domain names.
The structure of LSTM adopted in the experiments was

simple, as illustrated in Figure 6. Each character in the input
domain name would be encoded into a vector, and in the
experiments, this part of work was done by an embedding layer
which is the first layer of the LSTM neural network. In the
embedding layer, the variable-length input will be encoded into
a vector with a fixed length of 128. The second layer of the
structure was the LSTM layer, the core layer in the structure.
LSTM layer took the 128-dimension vector generated from the
embedding layer as input, and generate a 1-diemension vector
for the next layer. The final layer, dense layer, took the output
from the LSTM layer and generated a value between 0 and 1
which was calculated by a sigmoid function. The output value of
the dense layer indicated the probability that the input domain
name being a DGA domain name.

Input domain names

Em bedding

LSTM

Dense

Fig. 6. LSTM structure in the experiments

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 966

The experiments were conducted based on a self-collected

dataset, includes 1 million normal domain names gathered from
Alexa and 100 000 DGA domain names gathered from the
Internet. 5% domain names of the dataset were held for
cross-validation and the rest of them were used to train the
neural network. It’s a binary classification problem to determine
a domain name DGA domain name or not, hence the following
metrics were used to evaluate the neural network.

(1) Precision
Precision is used to describe the proportion of true positive

samples to all predicted positive sample, which consists of false
positive samples and true positive samples. The equation for
calculating precision is:

Pr
TruePositive

ecision
TruePositive FalsePositive





 

(2) Recall rate
The recall rate is used to describe the proportion of true

positive samples to all positive samples. It is calculated with:

Re
TruePositive

call
TruePositive FalseNegative





 

(3) F1-score
F1-score is the harmonic mean of precision and recall rate to

balance them. It is a useful metric to evaluate the model,
calculated with:

1
Pr Re2
Pr Re

ecision call
F

ecision call


 



(4) Receiver operating characteristic curve, ROC curve
ROC (Receiver operating characteristic) curve utilizes both

true positive rate and false positive rate to evaluate the
classifier. True positive rate (TPR) is the proportion of true
positive samples to all positive samples, calculated with:

TruePositive
TPR

TruePositive FalseNegative





 

False positive rate (FPR) is the proportion of false positive
samples to all negative samples, calculated with:

FalsePositive
FPR

FalsePositive TrueNegative





 

Using FPR as horizontal axis and TPR as vertical axis,
dynamically adjusting TPR and FPR, a curve will be formulated
which is the ROC curve. To evaluate the ROC curve, AUC
(Area Under the Curve) is introduced. AUC is a value between 0
and 1. The bigger the AUC is, the better the classifier will be.

We implemented the experiments with Keras. After 100
epochs of training, the result was collected in Table 5.

Table 5. Evaluation for LSTM neural network

Type Precision Recall F1-scor
e

Amou
nt

Normal 0.9771 0.9787 0.9779 21986
DGA 0.9787 0.9771 0.9779 21988

Avg/tot 0.9779 0.9779 0.9779 43974

al

In the cross-validation, the volume of the test dataset is 43
974, in which 21 986 samples are normal domain names and 21
988 are DGA domain names. The results of precision, recall rate
and F1-score indicated that the performance of the neural
network was good. Furthermore, we also collect the numbers of
false positive samples and false negative samples, and with
those data, the ROC curve was illustrated in Figure 7.

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

TP
R

FPR

LSTM(AUC=0.99)

Fig. 7. ROC curve of the experiments

In the experiments, the numbers of true positive, false

negative, false positive and true negative are 21519, 467, 504
and 21 484. And accordingly, the AUC of the ROC curve is
0.9931. With the combination of DNS sensor and GW sensor, it
would be more efficient and reliable for the proposed method.

D. Discussion

The discussion is based on the the design principles proposed
in section 3.1.

Discussion on real-time principle: Although the training
process would take some time, it is offline. The detecting
process is almost real-time. For the GW sensor, it would extract
simple features such as packet length and payload length from
the outbound network traffic, and the time consumption is little.
For the DNS sensor, with the trained LSTM classifier, the
classification process can determine the requested domain name
malicious or not immediately. Therefore, the real-time principle
is fulfilled.

Discussion on reliability principle: The GW sensor and the
DNS sensor are deployed on two different locations which are
separated from each other logically. Hence, the two sensors
would work individually and without overlap between them. It
is clear that even one of the sensors fails or crashes, the other
one would be functioning without influence. The single point
failure can be avoided with the proposed method and the
principle of reliability can be assured.

Discussion on economy principle: With the proposed
method, tasks such as data collection, analysis and detection are
performed by the sensors, and the hosts in the network won’t

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 967

take any additional computational overhead. And in fact, the
entire detecting process is transparent for the hosts. Hence, any
kind of hosts, no matter generic computers or IoT devices which
are resource constrained, is applicable to the prosed method.
And meanwhile, the logical separation of two sensors also
reduces the computational overhead of the individual sensor,
and that is the reason that we call this method “lightweight”. The
economy principle is also fulfilled.

Furthermore, the availability of the proposed method should
be discussed as well. The performance of GW sensor is shown
in Figure 5 and the performance of the DNS sensor is shown in
Figure 7. It can be seen that the performance of GW sensor is
not so good. However, note that the proposed method is a
two-armed method, which means the overall performance
depends not only on one sensor but depends on both sensors.
The performance of DNS sensor is good, and the hybrid method
combing the two sensors would achieve a good performance as
well.

V. CONCLUSION
As a huge threat on the Internet, botnets have gained a lot of

attention. Based on the principles of real-time, reliability and
economy, a lightweight hybrid detection method is proposed in
this paper. Two sensors are deployed separately on network
gateway and DNS server. Features extracted from data packets
are employed for gateway sensor and deep learning technique
are adopted for DNS sensor. Results of the experiments indicate
that the method is efficient.

ACKNOWLEDGEMENTS
This paper is supported by Henan Programs for Science and

Technology Development (182102210329); Henan Key
Research Projects of Universities (20A413008) and Legal
Theory Research Project in Justice Department of the People’s
Republic of China (17SFB3020).

References
[1] S.S.C. Silva, R.M.P. Silva, R.C.G. Pintob, et al., "Botnets:

A survey," Computer Networks, vol. 57, no. 2, pp.378-403,
Feb. 2013.

[2] M. Antonakakis, T. April, M. Bailey, et al., "Understanding
the Mirai botnet," SEC'17: Proceedings of the 26th
USENIX Conference on Security Symposium, pp.
1093-1110, 2017.

[3] S. Behal, S.B. Amanpreet, K. Krishan, "Signature-based
botnet detection and prevention," Proceedings of
International Symposium on Computer Engineering and
Technology, Panjab University, Chndiagarh, 2010.

[4] B. Soniya, M. Wilscy, "User traffic profile for traffic
reduction and effective bot C&C detection," IJ Network
Security, vol.16, no. 1, pp. 46-52, 2014.

[5] G. Gu, R. Perdisci, J. Zhang, et al., "BotMiner: Clustering
analysis of network traffic for protocoland
structure-independent botnet detection," 17th USENIX
Security Symposium, pp. 139-154, 2008.

[6] G. Fedynyshyn, M.C. Chuah, G. Tan, "Detection and
classification of different botnet C&C channels,"
International Conference on Autonomic and Trusted
Computing. Springer, Berlin, Heidelberg, 2011.

[7] H.J. Xiong, P. Malhotra, D. Stefan, et al., "User-assisted
host-based detection of outbound malware traffic.
International Conference on Information and
Communications Security," Springer, Berlin, Heidelberg,
2009.

[8] P. Wurzinger, L. Bilge, T. Holz, et al., "Automatically
generating models for botnet detection," European
symposium on research in computer security. Springer,
Berlin, Heidelberg, 2009.

[9] A. Nazir, R.A. Khan, "Network intrusion detection:
Taxonomy and machine learning applications," Machine
Intelligence and Big Data Analytics for Cybersecurity
Applications. Springer, Cham, pp. 3-28, 2021.

[10] A.A. Daya, M.A. Salahuddin, N. Limam, et al., 2020.
BotChase: Graph-based bot detection using machine
learning. IEEE Transactions on Network and Service
Management, vol. 17, no.1, pp. 15-29, 2020.

[11] S. Chowdhury, M. Khanzadeh, R. Akula, et al., "Botnet
detection using graph-based feature clustering," Journal of
Big Data, vol. 4, no. 1, pp. 1-23, 2017.

[12] W. Wang, Y.Y. Shang, Y.Z. He, et al., "BotMark:
Automated botnet detection with hybrid analysis of
flow-based and graph-based traffic behaviors," Information
Sciences, vol.511, pp.284-296, 2020.

[13] S.I. Popoola, B. Adebisi, M. Hammoudeh, et al., "Hybrid
deep learning for botnet attack detection in the
internet-of-things networks," IEEE Internet of Things
Journal, vol. 8, no. 6, pp.4944-4956, 2020.

[14] M. Antonakakis, R. Perdisci, Y. Nadji, et al., "From
throw-away traffic to bots: Detecting the rise of
DGA-based malware," Presented as part of the 21st
{USENIX} Security Symposium ({USENIX} Security 12),
2012.

[15] S. Kazumichi, I. Keisuke, T. Tsuyoshi, et al., 2012.
"Extending black domain name list by using co-occurrence
relation between DNS queries," IEICE Transactions on
Communications, vol. 95, no. 3, pp. 794-802, 2012.

[16] R. Sharifnya and M. Abadi, "A novel reputation system to
detect DGA-based botnets," International Econference on
Computer & Knowledge Engineering IEEE, pp. 417-423.,
2013.

[17] J. Lee, H. Lee, "GMAD: Graph-based malware activity
detection by DNS traffic analysis," Computer
Communications, vol. 49, pp. 33-47, 2014.

[18] J. Nazario, "Blackenergy Ddos Bot Analysis," Arbor,2007.
[19] D. Plohmann, E. Gerhards-Padilla, "Case study of the

miner botnet," 2012 4th International Conference on Cyber
Conflict (CYCON 2012). IEEE, 2012.

[20] S. Specht and R. Lee, "Taxonomies of distributed denial of
service networks, attacks, tools and countermeasures,"
CEL2003-03, Princeton University, Princeton, NJ, USA,
2003.

[21] N. Falliere, "SALITY: Story of a peer-to-peer viral
network," Rapport technique, Symantec Corporation 32,
2011.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 968

Wei Ma, born in December 1985, male, doctor, lecturer. He
graduated from Henan Normal University with a bachelor's
degree in computer science and technology in 2008; He
graduated from Beijing Jiaotong University with a master's
degree in information security in 2011; He graduated from
Beijing Jiaotong University in 2016 with a doctorate in
information security. He is currently a postdoctoral researcher
with Zhengzhou University and Zhengzhou Normal University,
and a teacher with North China University of Water Resources
and Electric Power. He has published 20 articles in international
journals and conferences. His research interests include trusted
computing, IoT security and cloud computing.

Contribution of individual authors to the

creation of a scientific article (ghostwriting

policy)
Botnet poses a serious threat to the Internet and causes great
harm to the Internet. How to detect botnet proposed by Wei Ma
and Xing Wang has become an ongoing research. They
proposed a lightweight hybrid botnet detection method. Jiguang
Wang and Qianyun Chen designed two sensors according to the
characteristics of Botnet packets and the characteristics of using
DGA (domain generation algorithm) domain name to connect
botnets. They did experiments and concluded that this method
can effectively detect botnets. Wei Ma wrote the first draft, and
Xing Wang and Jiguang Wang reviewed and edited the article.
All authors have read and agreed to the publication of the
manuscript.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.103 Volume 15, 2021

E-ISSN: 1998-4464 969

