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Abstract—Aiming at the problems of poor 

segmentation effect, low efficiency and poor robustness 

of the Ransac ground segmentation algorithm, this paper 

proposes a radar segmentation algorithm based on Ray-

Ransac. This algorithm combines the structural 

characteristics of three-dimensional lidar and uses ray 

segmentation to generate the original seed point set. The 

random sampling of Ransac algorithm is limited to the 

original seed point set, which reduces the probability 

that Ransac algorithm extracts outliers and reduces the 

calculation. The Ransac algorithm is used to modify the 

ground model parameters so that the algorithm can 

adapt to the undulating roads. The standard deviation of 

the distance from the point to the plane model is used as 

the distance threshold, and the allowable error range of 

the actual point cloud data is considered to effectively 

eliminate the abnormal points and error points. The 

algorithm was tested on the simulation platform and the 

test vehicle. The experimental results show that the lidar 

point cloud ground segmentation algorithm proposed in 

this paper takes an average of 5.784 milliseconds per 

frame, which has fast speed and good precision. It can 

adapt to uneven road surface and has high robustness. 
 

Keywords—Ground segmentation, lidar, Ray-Ransac 

algorithm, point cloud. 

I. INTRODUCTION 
In driverless technology, the use of lidar to construct a 

point cloud map is an important part. It is an important basis 
for completing high-precision maps, path planning, and other 
advanced intelligent tasks in the later stage. How to remove 
the interference from the ground and other obstacles during 
the composition process has become one of the research 
hotspots of scholars at home and abroad. 

Yang et al., Yang et al., and Zhang et al. converted the 
original point cloud data into two-dimensional feature 
images and separated the road surface using traditional 
image segmentation methods [1-3]. In the process of point 
 

 

cloud conversion, this method loses the information of point 
cloud height and reduces the accuracy of ground separation. 

Montemerlo et al. used the distance between three-
dimensional data rings to determine whether a single three-
dimensional point belongs to the ground area [4]. Byun et 

al., Zhu and Liu used Markov random field to complete the 
ground segmentation [5-6]. Kammel and Pitzer proposed a 
ground detection method based on the maximum elevation 
difference of point clouds in the grid. If the maximum 
elevation difference of the grid is less than a certain 
threshold, the grid will be marked as the ground area [7]. 
Although the grid-based detection method is relatively 
stable, the detection accuracy of this method depends on the 
grid size. Compared with the original 3 cm point cloud 0.2 
cm data accuracy, the accuracy of the grid algorithm is 
lower. Moosmann et al. performed ground segmentation 
based on the unevenness of the measured points in 
cylindrical coordinates [8]. Himmelsbach et al. rasterized the 
three-dimensional data in the form of polar coordinates and 
performed nonparametric ground fitting for each sector. 
Ground points and non ground points were separated by 
calculating the distance between a single point and the fitted 
line [9]. The Random Sample Consensus (Ransac) ground 
segmentation algorithm obtains the fitting plane parameters by 
iterative method and uses the distance from the point to the 
fitted plane as the segmentation index to distinguish ground 
points and non-ground points [10-11]. The algorithm is very 
sensitive to the distance threshold. Unreasonable setting of 
the distance threshold will lead to over-segmentation and 
under-segmentation. The traditional sample selection method 
of Ransac ground segmentation algorithm is random 
sampling in the overall sample containing a large number of 
external points. A large number of external points lead to the 
increase of algorithm iteration times, long algorithm time 
and low efficiency [12].  

Aiming at the problems of poor segmentation effect, low 
efficiency and poor robustness of the Ransac ground 
segmentation algorithm, this paper proposes a ground 
segmentation of lidar point cloud based on Ray-Ransac 
algorithms. This algorithm uses the ray segmentation method 
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to extract the original set of ground seed points (near-ground 
points or suspected ground points), and then uses the Ransac 
algorithm to complete the fitting and parameter modification 
of the ground model [13-17]. The standard deviation of the 
distance from the point to the plane model is used as the 
distance threshold. Whether the orthogonal projection 
distance from the seed point set to the revised ground model 
is less than the set distance threshold is judged. If it is less 
than the threshold, the point is classified as a ground point, 
otherwise it is a non-ground point to complete the ground 
point cloud segmentation. 

II. ALGORITHM PRINCIPLE OF RAY-RANSAC 
Ransac algorithm is a method of estimating high-precision 

mathematical model parameters from data containing a large 
number of external points by iterative methods. It has the 
characteristics of high robustness and easy implementation 
[18-19]. The Ransac algorithm has a basic assumption, that 
is, the sample data contains both internal point data that 
conforms to the model description and external point or 
outlier point data that are far from the normal range and 
cannot adapt to the mathematical model [20]. 

In the Ransac algorithm, the sample selection method is to 
randomly sample the overall sample containing a large 
number of outliers. The random sampling method will 
inevitably bring uncertainty to the sampling result. The 
existence of a large number of outliers will increase the 
number of algorithm iterations, take too long time and 
inefficient. Therefore, when applying this algorithm to the 
ground segmentation of Lidar point cloud, this paper 
improves the selection of the Ransac algorithm's sampling 
samples, and limits the samples randomly sampled by the 
Ransac algorithm to the original seed point set generated by 
the ray method. 

The flowchart of the Ray-Ransac algorithm proposed in 
this paper is shown in Fig. 1. 
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Fig. 1 flowchart of the Ray-Ransac 
 

A. Preprocessing 

(1) Downsampling 
In order to reduce the amount of data processed by the 

point cloud in the later period, the original point cloud data 
output by the lidar was down-sampled. This article uses the 
voxel grid filter method (Voxel Grid Filter) to downsample 
the original point cloud [21]. The size of the downsampled 
voxel grid is set to 5 cm, that is, the Voxel Grid Filter 
divides the lidar input point cloud with a small cube with a 
size of 5 cm × 5 cm × 5 cm. The shape of the small cube is 
used to represent all the points of the cube, and these points 
are retained as the output of downsampling. 

(2) Clipping and near-point filtering of Lidar point cloud 
In the process of segmenting the ground, it is necessary to 

pay attention to the ground points and near-ground points. 
For the data above the point of interest, it can be cropped 
and filtered to reduce the calculation amount of later point 
cloud data processing. The actual installation of the lidar on 
the vehicle in this paper is shown in Fig. 2. The lidar 
installation height is 68 cm, and the point clouds above 50 
cm are cut out. At the same time, the invalid points of the 
lidar output are eliminated. In order to avoid interference 
from lidar data, such as reflections on the car, the data 
smaller than the body radius of 35 cm is removed in this 
paper. The near-point data range is shown by the white 
triangle mark in Fig. 2. 
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Fig. 2 lidar installation on unmanned vehicles 
 

The four steps of downsampling, eliminating invalid 
points, cropping non-interest points, and removing near 
points are all pre-processing steps of the ground 
segmentation algorithm. Lidar original point cloud and pre-
processed point cloud are shown in Fig. 3 and Fig. 4, 
respectively. 

 

 
 

Fig. 3 original point cloud 
 

 
 

Fig. 4 pre-processed point cloud 
 

B. Ray method to extract the original seed point set 

Three-dimensional lidar has the characteristics of fixed 
angle and corresponding line number of laser emission. This 
paper uses this characteristic to design a new method of 
selecting the original seed point set-ray method. In this 
paper, the lidar uses VLP-16 lidar. The internal line numbers 
and angular distributions are shown in Table I. The lidar 
scan lines with even line numbers are extracted as rays. 

 

 
 

Table I. VLP-16 lidar line number and angle distribution 
 

Line number angle 
0 -15° 
1 1° 
2 -13° 
3 3° 
4 -11° 
5 5° 
6 -9° 
7 6° 
8 -7° 
9 9° 

10 -5° 
11 11° 
12 -3° 
13 13° 
14 -1° 
15 15° 

 
The points on the ray are sorted according to the radius 

distance, and the longitudinal section of two adjacent rings 
generated is shown in Fig. 5. 
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Fig. 5 schematic diagram of longitudinal section of two adjacent rays 
of a lidar 

 
OB is the ground; OP is the installation height of the lidar 

from the ground; PA and PB are adjacent rays emitted by the 
lidar. When there are no obstacles on the ground, the b point 
generated by the lidar PB rays will coincide with the B point, 
and ∠bAB is equal to 0°; When there are obstacles on the 
ground or the lidar scans to the edge of the road, the PB rays 
will land on Point b, and ∠bAB is not equal to 0°. Based on 
this, it can be determined whether the point scanned by the 
lidar is near-ground or non-close-ground by judging whether 
the size of ∠bAB is within the angle threshold range. Non-
near-ground points are excluded, and the remaining points are 
used as the original seed point set Pr. 

C. Ransac algorithm for ground separation 

The core idea of Ransac algorithm is randomness and 
hypothesis. Randomness is the random selection of sampling 
data based on the probability of correct data appearing. 
Randomness simulation can approximate the correct result. 
Hypothesis is to assume that the selected sampling data are 
all correct data, then these correct data are used to calculate 
the corresponding model, and the remaining data are used to 
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evaluate the model. In this paper, the steps of using Ransac 
algorithm to separate the ground are as following: 

(1) Randomly extract subsets 
This paper mainly focuses on the ground segmentation 

problem. The ground is a simple plane. The description plane 
needs at least 3 points. Therefore, a subset Ps of 3 points is 
randomly selected from the original seed point set Pr. 

(2) Build parametric models and solve 
The description of the ground model composed of the subset 

Ps is shown in (1): 
0   ax by cz d                                

(1) 
p1(x1,y1,z1), p2 (x2,y2,z2) and p3 (x3,y3,z3) are let to be three 

points in the subset Ps . The normal vector of the plane formed 
by p1, p2, p3 is: 

1 2 2 3

2 1 2 1 2 1

3 1 3 1 3 1

 

   

  

  

n p p p p

i j k

x x y y z z

x x y y z z

ai bj ck

                            

(2) 
Formula (2) is calculated. The determinant is expanded. The 

point equation of the plane model is solved. Then the point 
equation is expanded. The equivalent coefficient method is 
used to solve the ground model parameters a, b, c, and d. 

(3) Model checking and parameter updating 
After obtaining the initial ground model parameters, the 

point cloud Psl remaining in the original seed point set is used 
to test the model and complete the update of the model 
parameters. The test method is to calculate the distance dp 
from the point in the point cloud Psl to the orthogonal 
projection of the ground model. The standard deviation of the 
distance from the point to the plane model is used as the 
distance threshold df. Whether the projection distance dp is 
less than the set plane distance threshold df is judged. If dp < df, 
the point belongs to the ground. Otherwise, the point is marked 
as a non-ground point to complete the ground point cloud 
segmentation. The distance threshold df takes into account 
the allowable error range of the actual point cloud data and 
can effectively eliminate abnormal points and error points. 
Finally, the number of ground points under the ground model 
is counted, that is, the number of internal points of the Ransac 
algorithm. If the number of internal points is greater than the 
set threshold, all internal points are used to recalculate the 
ground model parameters. If it is less than the set threshold, 
steps (1) to (3) are repeated. If the number of repetitions is 
greater than the set iteration threshold k, the calculation of 
model parameters is stopped. 

(4) Calculation of iteration number k  
p is let to be the probability that n points in the original seed 

point set Pr are all interior points, and w is let to be the 
probability that the internal point is randomly selected in the 
original seed point set Pr each time. w is expressed as: 

Inner points of the original seed point set
the original seed point set

w         (3) 

Assuming that wn represents the probability of selecting the 
inner point each time in n random selections, 1-wn represents 
the probability of selecting the outer point at least once in n 
random selections. The model established in this case is 
considered to be an error model, so the probability of an error 
in k iterations can be expressed as: 

 1 
k

n

kp w                                
(4) 

Formula (4) is equal to 1-p to obtain (5): 

 1 1  
k

np w                            
(5) 

Logarithms on both sides to get (6): 

                                        

 
log 1
log 1




 n

p
k

w
                                 

(6) 

III. ALGORITHM SIMULATION AND RESULTS 
The algorithm proposed in this paper was first tested on a 

simulation platform. The main parameters of the hardware 
platform configuration are a 4-core CPU, a frequency of 2.6 
GHz, a graphics card of NVIDIA GEFORCE 720 M, and a 
memory of 8 GB. First, a simulation environment based on 
Gazebo is set up, as shown in Fig. 6. The blue is the test 
vehicle model, and a VLP-16 lidar is mounted on it. 

 

 
 

Fig. 6 gazebo simulation environment 
 

After the simulation environment is established, the raw 
data of the lidar can be seen in the visualization window of 
rviz as shown in Fig. 7. Fig. 8 is a schematic diagram of 
ground segmentation using the original Ransac algorithm to fit 
the plane. The white points in the figure represent the non-
ground point cloud Pn and the purple points represent the 
ground point cloud Pg. The point cloud image after the ground 
segmentation using the Ray-Ransac algorithm is shown in Fig. 
9. White represents the non-ground point cloud, and red 
represents the ground point cloud. 
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Fig. 7 lidar raw data map 
 

 
 

Fig. 8 point cloud image after Ransac segmentation 
 

 
 

Fig. 9 point cloud image after Ray-Ransac segmentation 
 

The pure ground segmented by Ransac and Ray-Ransac 
algorithm is shown in Fig. 10. In the figure, white is the 
ground segmented by Ransac algorithm, and purple is the 
ground segmented by Ray-Ransac. It can be seen from the 
figure that at the near point, the two algorithms have the same 
segmentation effect. However, at the far point, Ransac 
algorithm recognizes the bottom of the house as the ground, 
resulting in wrong segmentation. Because Ray-Ransac 
algorithm uses ray segmentation method to generate the 
original seed point set, the random sampling samples of 
Ransac algorithm are only limited to the original seed point 
set, which reduces the probability of extracting outliers by 
Ransac algorithm. In addition, Ray-Ransac uses the standard 
deviation of the distance from the point to the plane model as 
the distance threshold and considers the allowable error range 
of the actual point cloud data, which can effectively eliminate 
abnormal points and error points. Therefore, the Ray-Ransac 
algorithm can well separate ground and non-ground obstacles 
at far points. 

 

 
 

Fig. 10 schematic ground segmentation by two algorithms 
 

Fig. 11 shows the simulation time of ground segmentation 
by Ransac and Ray-Ransac. After calculation, the average time 
for ground segmentation using Ransac algorithm is 6.746 
milliseconds, and the average time for ground segmentation 
using Ray-Ransac algorithm is 2.194 milliseconds, which is 
66.1% less than the average time for ground segmentation 
using Ransac algorithm. 

 

 
Fig. 11 algorithm simulation takes time 

 

IV.  ACTUAL ROAD TEST AND RESULTS 
The environment during the actual road test is more 

complicated, and the collected 3D point clouds are no longer 
regular concentric circles. At this time, the ground 
segmentation results are prone to problems such as excessive 
segmentation or insufficient segmentation [22]. The computer 
configuration of the road test is the same as that of the 
simulation environment. The unmanned vehicle used is shown 
in Fig. 12, and the raw data image of the lidar is shown in Fig. 
13. 
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Fig. 12 road-tested unmanned vehicles 
 

 
 

Fig. 13 the raw data image of the lidar point cloud 
 

The measured ground separation results of Ransac and Ray-
Ransac algorithms are shown in Fig. 14 and Fig. 15. It can be 
seen from Fig. 14 that when Ransac was used to segment the 
ground during road test, the ground was separated from non-
ground points at a distant point. At the same time, a large 
number of point clouds on the sidewalk were also divided into 
the ground, as shown in the blue box mark in Fig. 14. Since the 
Ray-Ransac algorithm uses the ray segmentation method to 
generate the original seed point set, and takes the standard 
deviation of the distance from the point to the plane model as 
the distance threshold, this method can restrict the Ransac 
algorithm random sampling sample to the original seed point 
set, reducing the probability of the Ransac algorithm extracting 
external points, taking into account the allowable error range 
of the actual point cloud data, and can effectively eliminate 
abnormal points and error points. When the Ray-Ransac 
algorithm is used, the phenomenon of erroneous separation of 
far points is eliminated, and the point cloud of erroneous 
separation on the sidewalk is also greatly reduced. 

 

 
 

(a) Ransac ground segmentation map 
 

 
 

(b) ground after Ransac algorithm 
Fig. 14 ground separation results after Ransac road-tested  

 

 
 

(a) ray-Ransac ground segmentation map 

 
 

(b) ground after Ray-Ransac algorithm 
Fig. 15 ground separation results after Ray-Ransac road-tested 

 
When the unmanned vehicle encounters the deceleration 

zone as shown in Fig. 16, the Ray-Ransac algorithm can still 
separate the ground better, and the separation result is shown 
in Fig. 17. 

 
 

Fig. 16 unmanned vehicle passes speed bump 
 

 
 

Fig. 17 results of ground separation when passes speed bump 
 
From the observation of the actual road separation results, it 

can be known that the ground segmentation algorithm 
proposed in this paper can accurately segment the ground 
when it encounters uneven roads such as deceleration zones. 
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The time consumption of the algorithm during road actual 
test is shown in Fig. 18. It can be found from the figure that the 
average time consumption of the algorithm during road actual 
test is increased compared with the simulation time, and the 
average time is about 2.87 times of the simulation time. The 
reason for the increase in time consumption is that when the 
actual road test is performed, the data of the lidar is no longer 
the simulation data during the simulation, but the actual three-
dimensional point cloud data of the lidar collected in real time. 
The Ray-Ransac algorithm completes the ground segmentation 
in the industrial computer according to the collected real-time 
three-dimensional point cloud of the lidar. Therefore, the 
algorithm time consuming of the road test is affected by the 
communication rate of the laser radar device. However, the 
average time taken to segment the ground using the Ray-
Ransac algorithm is still much lower than the average time 
taken using the Ransac algorithm, with the average time 
reduced from 18.463 milliseconds to 5.784 milliseconds, 
which is 68.7% less than the average time for ground 
segmentation using Ransac algorithm. 

 
 

Fig. 18 time consumption of Ray-Ransac algorithm for road test 

V. CONCLUSIONS 
Ground segmentation is a key step in environmental 

perception, and its performance will directly affect the 
subsequent autonomous obstacle avoidance and path planning 
of unmanned vehicles. 

This paper proposes a lidar ground segmentation algorithm 
based on Ray-Ransac. The algorithm first preprocesses the 
lidar point cloud, then uses the ray method to select the 
original seed point set. The random sampling samples of 
Ransac algorithm are limited to the original seed point set, 
which reduces the probability of Ransac algorithm extracting 
external points. The Ransac algorithm is used to modify the 
ground model parameters and completes the discrimination 
between ground points and non-ground points. The standard 
deviation of the distance from the point to the plane model is 
used as the distance threshold, and the allowable error range 
of the actual point cloud data is considered to effectively 
eliminate the abnormal points and error points. After the 
ground segmentation is completed, the final point cloud 
segmentation results are published in the ROS system. 

The simulation and road test results show that compared 
with the Ransac ground segmentation algorithm, using the 
Ray-Ransac ground segmentation algorithm proposed in this 
paper, the ground segmentation of lidar point cloud has fast 
speed and good accuracy. At the same time, the algorithm can 
also adapt to uneven road surfaces and has high robustness. 
Based on the ground segmentation, unmanned vehicles can 
complete autonomous obstacle avoidance and path planning, 
which provides an important guarantee for the precise control 
and safe operation of unmanned vehicles. 

Although the algorithm in this paper can adapt to uneven 
roads, it needs to be further improved due to the need to 
iteratively fit multiple planes when facing complex ground 
with large undulations. In the future, the prior information of 
the radar laser point cloud will be used to guide data sampling 
and iteratively estimate the ground model quickly, optimize the 
algorithm flow, and further improve the calculation efficiency. 
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