International Journal of Circuits, Systems and Signal Processing

   
E-ISSN: 1998-4464
Volume 15, 2021

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of NAUN Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Main Page

Submit a paper | Submission terms | Paper format

 


Volume 15, 2021


Title of the Paper: A Customer Clustering Algorithm for Power Logistics Distribution Network Structure and Distribution Volume Constraints

 

Authors: Jianying Zhong, Jibin Zhu, Yonghao Guo, Yunxin Chang, Chaofeng Zhu

Pages: 1051-1056 

DOI: 10.46300/9106.2021.15.113     XML

Certificate

Abstract: Customer clustering technology for distribution process is widely used in location selection, distribution route optimization and vehicle scheduling optimization of power logistics distribution center. Aiming at the problem of customer clustering with unknown distribution center location, this paper proposes a clustering algorithm considering distribution network structure and distribution volume constraint, which makes up for the defect that the classical Euclidean distance does not consider the distribution road information. This paper proposes a logistics distribution customer clustering algorithm, which improves CLARANS algorithm to make the clustering results meet the constraints of customer distribution volume. By using the single vehicle load rate, the sufficient conditions for logistics distribution customer clustering to be solvable under the condition of considering the ubiquitous and constraints are given, which effectively solves the problem of logistics distribution customer clustering with sum constraints. The results state clearly that the clustering algorithm can effectively deal with large-scale spatial data sets, and the clustering process is not affected by isolated customers, The clustering results can be effectively applied to the distribution center location, distribution cost optimization, distribution route optimization and distribution area division of vehicle scheduling optimization.