
 

 

 
Abstract—Retinal fundus images are increasingly used 

by ophthalmologists both manually and without human 

intervention for detecting ocular diseases. Poor quality 

retinal images could lead to misdiagnosis or delayed 

treatment. Hence, a picture quality index was a crucial 

measure to ensure that the obtained images from 

acquisition system were suitable for reliable medical 

diagnosis.  
In this paper, a no-reference retinal image quality 

assessment based on wavelet transform is presented. A 

multiresolution Daubechies (db2) wavelet at level 4 was 

employed to decompose an original image into detail, and 

approximation sub-bands for extracting the sharpness 

information. The sharpness quality index was calculated 

from the entropy of the sub-bands. 

          The proposed measure was validated by using 

images from the High-Resolution Fundus (HRF) dataset. 

The experimental results show that the proposed index 

performed more consistent with human visual perception 

and outperformed the Abdel-Hamid et al method. 

 

Keywords—Image quality index, wavelet, entropy, 

retinal image. 

I. INTRODUCTION 
etinal images are widely used to diagnose by 
ophthalmologists both with manual and without human 

intervention to identify and care for various eye diseases. 
Diagnosis accuracy is highly dependent on the quality of retinal 
images. The image can be degraded not only by capturing 
devices but also by aberrations caused by optical defects; 
especially, for the cloudy retinal image taken from cataract 
patient. Cataracts are the cause of cloudy vision where objects 
are obscured, blurred, and appear milky [1] [2]. This degraded 
image quality leads to incorrect diagnosis or delayed treatment. 
In this paper, a sharpness quality index is proposed for 
measuring and grading the color retinal images.  

There are three categories of image quality measures: (1) 
full-reference approaches [3] [4], (2) reduced-reference 
approaches [5]; and (3) no-reference approaches [6] [7] [8] [9]. 
Full and reduced-reference approaches need the reference 

image for assessing the quality of the distorted image. 
Unfortunately, in retinal image acquisition, the reference 
images are not available. In this case, the no-reference approach 
suits best.  

No-reference retinal image quality assessment (RIQA) 
algorithms compute a numeric quality index that is related to 
the visibility of the anatomical details in the retinal image. It 
has been conducted by many researchers. Crété-Roffet et al. [7] 
proposed a no-reference perceptual blur metric by measuring 
the relative difference of the luminance variation between the 
input image and the image burring version, which is achieved 
by convolving the input image with a low-pass filter. The more 
an image is blurred the less relative variation there is. Bahrami 
and Kot [8] proposed a no-reference image sharpness quality 
assessment by using a standard deviation of weighted 
maximum local variation (MLV) distribution to measure 
sharpness. However, the both quality assessment methods could 
not use to order the sharpness quality from the best to poor 
quality. 

Recently, wavelet transform has been applied in most 
applications, such as steganography [10] and data compression 
[11] [12], especially in RIQA algorithms. Nirmala et al. [13] 
proposed a wavelet weighted blood vessel distortion to measure 
the green channel for quantification of the diagnostic 
information loss. The small and large blood vessels can be 
easily detected at levels 2 and 3 of the multiresolution wavelet 
filter process. However, this measure is not suitable for the 
cloudy retinal image of patients with a cataract.  

Abdel-Hamid et al. [9] proposed a no-reference RIQA 
to assess the sharpness of the retinal images by employing the 
wavelet entropy [14]. The quality index (Qr) is calculated by 
dividing the entropy of the detail sub-bands, which is equivalent 
to the information of image sharpness, by the wavelet entropy 
of the approximation sub-bands, which is equivalent to the 
information of image background. Next, an image homogeneity 
parameter was considered to account for reduced image quality 
due to the nonvisible structures in the adequately illuminated 
regions of the retinal image. However, the border region 
between the region of interest (ROI) of retinal image and its 
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black background leads to a problem through incorrect 
measurements. 

This paper is motivated by the method of Abdel-
Hamid et al. to overcome the drawbacks, it might be not correct 
order the image quality in HRF dataset. We study to design a 
quality index, which could sort the image quality of the dataset 
by the proposed index with corresponding to human vision 
system. The proposed index is developed to measure both the 

contrast and sharpness. Our image quality index is more 
consistent with human visual perception, and it could 
outperform the Abdel-Hamid et al method.   

The paper proceeds as follows: the image database is 
introduced in Section II. The proposed method is described in 
Section III, our experimental results appear in Section IV, and 
discussion in Section V. Finally, the last paragraph introduces 
the main conclusions drawn.  

 
II. Materials 

A high-resolution fundus (HRF) image database [15] 
is applied to this work. The dataset images are captured with 18 
image pairs of the same eye from 18 human subjects using a 
Canon CR-1 fundus camera with the Field of View (FOV) of 
45°. For each pair, the quality of one image is good sharpness, 
whereas another is poor with slight blurs on the blood vessel 
and thus the image acquisition normally had to be repeated. 
Both bad and good images share approximately the same field 
of view. Therefore, the dataset images used for evaluation 
contain 18 bad and 18 good quality images.  

  

  
                (a) Input image         (b) Cropped image 

 

  
     (c) Before remove border             (d) Removed border.    
Fig. 1 Preprocessing step consisting of cropping ROI, and  
removing the border regions between the ROI and background. 
 

III. The proposed method 
The high-quality retinal images are suitable for 

diagnosis. It easy to see the lesions that occur in the 
photographs. RIQA algorithm is therefore required in order to 

evaluate the image quality. Our RIQA method was designed to 
select the high-quality images. The proposed method consists 
of two steps. The first step supplies to preprocess the images 
consisting of cropping the ROI and removing the border 
between a background and the ROI as seen in Fig. 1. In Fig. 1, 
the input image has the size 3456 × 5184 pixels, after cropping 
the size of image is 3260 × 3266 pixels. From our study, the 
border between ROI and the background region appears after 
wavelet decomposition process as seen in Fig. 1(c). In our case, 
the border is noise, which is a cause to the method of Abdel-
Hamid et al. unable to sort image quality of the dataset. Thus, 
in our method the border of all sub-band is removed as shown 
in Fig. 1(d). 

In the second step, the quality index employed wavelet 
transform to objectively assess the sharpness of anatomical 
structures of the retinal images. Multiresolution Daubechies 
(db2) wavelet filter is used to decompose the input image into 
horizontal (H) and vertical (V) detail sub-bands corresponding 
with the sharpness information of image foreground, and an 
approximation sub-band (A) corresponding with the image 
background.  

The proposed quality index, 𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠, can be 
calculated by dividing the entropy of H and V by A at level 4 as 
given: 

 

𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 =
𝐸(𝐻)+𝐸(𝑉)

𝐸(𝐴)
  (1) 

 
where 𝐸(𝐻), 𝐸(𝑉), and 𝐸(𝐴) are the wavelet Shannon entropies 
of the horizontal, vertical and approximation sub-bands, 
respectively. The wavelet Shannon Entropy for each sub-band 
in Equation (1) is calculated using the following equation: 
 

𝐸(𝐶) = |∑ 𝑙𝑜𝑔(𝐶𝑖
2)𝑁

𝑖=1 | (2) 
 

where N is the number of coefficients in the wavelet sub-band, 
𝐶 is the wavelet coefficient of Db2 at level 4 and 𝐶𝑖 is the 
wavelet coefficient having an index i within the respective sub-
bands. 

To show that level 4 of wavelet multiresolution 
decomposition with db2 suits to measure the image sharpness, 
especially the cloudy retinal image, the image 1_bad.jpg from 
the HRF dataset is decomposed as shown in Fig. 2. This image 
is obscured and appears milky. Fig. 2 demonstrates the output 
results derived from each level of multi-scale Daubechies 
wavelet transform decomposition process. At level 1, the input 
image was first downsized by 2 and then decomposed with db2 
resulting in an approximation sub-band 𝐴1, and three detailed 
sub-bands, the horizontal 𝐻1 , vertical 𝑉1 , and diagonal 𝐷1. 
By using the same process in level 1, all obtained sub-band 
outputs 𝐶𝑖, can be expressed as  𝐶𝑖 = {𝐴𝑖 , 𝐻𝑖, 𝑉𝑖, 𝐷𝑖} where 
𝑖 is the scale level from 1 to 5.   

As mentioned in the introduction section, the study by 
Nirmala et al. [13] suggested that the small and large blood 
vessels can be easily seen at the second and third level. 
However, their study is not comprehensive in blurred regions 
that appear in the cloudy retinal images. 
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By wavelet multiresolution decomposition with db2 in 
Fig. 2, the blurred regions in the partial image appeared clearly 
at H4 and H5. Those regions reduce the image sharpness and 
lead to the loss of the necessary anatomical structure details 

required for accurate interpretation. To determine the 
information quality of H4 (204 × 204 resolution) and H5 with 
(102 × 102 resolution), the H4 and H5 of Fig. 2 were magnified 
as shown in Fig. 3.  

 
Fig. 2 Tree diagram of wavelet multiresolution decomposition with db2 from level 1 to 5. 
 

From Fig. 3, it is clearly seen that the blood vessel in 
H4 provides much more details and continuity than H5. This 
result shows that the coefficients of H4 sub-band has 
comparatively higher impact than H5 sub-band. 

 
Fig. 3 Comparison of the detail information of H4 and H5. 

Moreover, the horizontal detail sub-band of blood 
vessels is greater than the vertical, therefore, the information in  
H4 suits the most to measure the image sharpness. Fig. 4 shows 
a comparison of H4 between the blurred and sharp images. The 
H4 corresponding to Fig. 4 (a) and (b) are shown in (c) and (d), 
respectively.  

Fig. 4 indicates that the H4 sub-band provided an 
obvious difference between the blurred and sharp image. This 

is the main reason why the proposed quality index calculated 
the entropy of approximation and detailed sub-bands at level 4. 

  
              (a) 3_bad.jpg                           (b) 3_good.jpg 

  
          (c) H4 of image (a)                    (d) H4 of image (b) 
Fig. 4 Level 4 horizontal detail sub-band: H4 of blurry (a, c) 
and sharp (b, d) retinal image from HRF. 
 

IV. Experimental Results 

To evaluate the performance of our method, all images 
from the HRF dataset are used to compute the sharpness index 
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with 𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 and Abdel-Hamid et al. method, 𝑄𝑟. Table 1 
shows  𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠  and 𝑄𝑟  values which are sorted by 
descending order. The first three columns comprise the order, 
filename, and sharpness index from the proposed method, 
respectively, while the last three columns are formulated by the 

Abdel-Hamid et al. method. To compare the characteristics of 
the indexes, Fig. 5 depicts the graph of each image pair: bad and 
good from Table 1.  Considering the line graphs of 
𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 , the quality index of good images remains 
constantly above all bad images.  

Table 1 Comparison of 𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 and 𝑄𝑟 value by using HRF dataset. 
The proposed method Abdel-Hamid et al. method [16] [17] 

Order Filename 𝑸𝒔𝒉𝒂𝒓𝒑𝒏𝒆𝒔𝒔 Order Filename 𝑸𝒓 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

 

12_good.JPG 
18_good.JPG 
9_good.JPG 
17_good.JPG 
8_good.JPG 
11_good.JPG 
16_good.JPG 
3_good.JPG 
4_good.JPG 
15_good.JPG 
13_good.JPG 
5_good.JPG 
14_good.JPG 
10_good.JPG 
7_good.JPG 
17_bad.JPG 
5_bad.JPG 
7_bad.JPG 
12_bad.JPG 
18_bad.JPG 
8_bad.JPG 
4_bad.JPG 
1_good.JPG 
9_bad.JPG 
11_bad.JPG 
14_bad.JPG 
15_bad.JPG 
13_bad.JPG 
16_bad.JPG 
3_bad.JPG 
10_bad.JPG 
1_bad.JPG 
2_good.JPG 
6_good.JPG 
6_bad.JPG 
2_bad.JPG 

 

0.6588 
0.6559 
0.6559 
0.6446 
0.6446 
0.6384 
0.6373 
0.6340 
0.6315 
0.6238 
0.6094 
0.6074 
0.6012 
0.5940 
0.5921 
0.5693 
0.5682 
0.5679 
0.5674 
0.5513 
0.5338 
0.5283 
0.5264 
0.5139 
0.5119 
0.4854 
0.4804 
0.4718 
0.4629 
0.4557 
0.4407 
0.4261 
0.4221 
0.3953 
0.3783 
0.3141 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 

12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

29 
30 
31 
32 
33 
34 
35 

36 
 

2_good.JPG 
5_good.JPG 
16_good.JPG 
12_good.JPG 
17_good.JPG 
8_good.JPG' 
12_bad.JPG 
5_bad.JPG 
11_bad.JPG 

18_bad.JPG 

18_good.JPG 

9_good.JPG 
16_bad.JPG 
13_good.JPG 
11_good.JPG 

14_good.JPG 
9_bad.JPG 
15_good.JPG 
15_bad.JPG 
10_good.JPG 
14_bad.JPG 
8_bad.JPG 
13_bad.JPG 
2_bad.JPG 
3_good.JPG 
17_bad.JPG 
1_good.JPG 
4_bad.JPG 

7_good.JPG 
10_bad.JPG 
6_good.JPG 
6_bad.JPG 
7_bad.JPG 
1_bad.JPG 
4_good.JPG 

3_bad.JPG 
 

0.1864 
0.0910 
0.0850 
0.0843 
0.0706 
0.0706 
0.0700 
0.0690 
0.0687 

0.0683 

0.0655 

0.0655 
0.0626 
0.0624 
0.0622 

0.0605 
0.0590 
0.0561 
0.0521 
0.0495 
0.0453 
0.0452 
0.0443 
0.0434 
0.0400 
0.0378 
0.0323 
0.0302 

0.0287 
0.0270 
0.0259 
0.0251 
0.0246 
0.0172 
0.0167 

0.0122 
 

 
When considering line graphs of 𝑄𝑟, the graph lines 

of good and bad images have interfered. The results 
accumulated in Table 1, appear that the proposed method 
performs better than the Abdel-Hamid et al. method as most 
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good images ranked higher and when compare with the same x 
images, there is no x_bad.jpg images with the 𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 
values higher than x_good.jpg images. In contrast, some 
x_bad.jpg images highlighted in bold in Table 1, give higher 

𝑄𝑟 values than x_good.jpg such as the 𝑄𝑟 values of 
4_good.jpg in the 35th order (0.0167) is less than 𝑄𝑟 values of 
4_bad.jpg (0.0302). 

 

                      
Fig. 5 The line graph of the quality index between the proposed and Abdel-Hamid et al. method  
            for the same pair of good and bad images. 

 
Fig. 6 shows the comparison of 𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 and 𝑄𝑟 

for the same pair of images, 4_good.jpg and 4_bad.jpg with 
𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠  = 0.6315 and 0.5283 while 𝑄𝑟  = 0.0167 and 
0.0302, respectively. It can be seen that 4_good.jpg resulted in 
a greater 𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 value than the 4_bad.jpg image while the 

4_good.jpg image presented a smaller 𝑄𝑟 value less than 
4_bad.jpg. These results show that the proposed method 
provides more appropriate order than the Abdel-Hamid et al. 

method.

 

   
                                                   (a) 4_good.JPG                                                       (b) 4_bad.JPG 
                                      𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠=0.6315, 𝑄𝑟=0.0167                      𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 =0.5283, 𝑄𝑟 =0.0302 

Fig. 6 Sharpness index comparison between 𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 and 𝑄𝑟. 
 

Fig. 7 highlights the images 12_good.JPG and 
2_good.JPG from the HRF dataset with their image histograms 
where image 12_good.JPG reaches the maximum quality index 
of the proposed method (𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠=0.6588) and image 
2_good.JPG reaches the maximum quality index of the Abdel-

Hamid et al. method (𝑄𝑟=0.1864). Although the image 
2_good.JPG image provides great sharpness its contrast is quite 
low as seen in the image histogram. In addition, the image with 
low contrast should not be used for enhancement because the 
enhancement results in undesirable image tone and color 
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balance. As a result, the image with low contrast should not 
have a high-quality index. 

 

  
 

                              (a) 12_good.JPG                                                                             (b) 2_good.JPG 
                   𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠=0.6588 [Order=1]                                                 𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠=0.4221 [Order =33]                
                   𝑄𝑟=0.0843 [Order = 4]                                                               𝑄𝑟=0.1864 [Order = 1]             
Fig. 7 Images with their image histograms that reached the maximum 𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 and 𝑄𝑟. 

Fig. 8 and Fig. 9 illustrated some photographs for 
visualize evaluation, which sorted from high to low quality 
indexes by using 𝑄𝑟 and 𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠, respectively. The 
photographs were selected by the same order at 1, 8, 15, 22, 29, 
and 36 as seen in Table 1. As seen in Fig. 8, the sequence of 

images sorted by the 𝑄𝑟 value have several conflicts when 
comparing with the sequence that are sorted by  𝑄𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 in 
Fig. 9. 

 
 

 

     
  (a) 2_good.JPG, 0.1864                        ( b) 5_bad.JPG, 0.0690                      (c) 11_good.JPG, 0.0622 

     
                (d) 8_bad.JPG, 0.0452                           (e) 7_good.JPG, 0.0287                  (f) 3_bad.JPG, 0.0122 

Fig. 8 Example of image sequence sorted by Qr. 
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                          (a) 12_good.JPG, 0.6588              (b) 3_good.JPG, 0.6340               (c) 7_good.JPG, 0.5921 

   
               (d) 4_bad.JPG, 0.5283             (e) 16_bad.JPG, 0.4629                 (f) 2_bad.JPG, 0.3141 
Fig. 9 Example of image sequence sorted by Qsharpness. 

However, three good-quality images in Fig. 10 
obtained a metric score lower than 0.5921. Although those three 
images are classified as good quality image [15] perception-
wise, they look unsatisfactory and show low correlation with 

human evaluations. Fig. 10 (a) appears an edge haze around the 
circular border which directly affect the image sharpness while 
many dark regions in Fig. 10 (b) and (c) are caused by non-
uniform illumination. 

 

   
                          (a) 1_good.JPG, 0.5264           (b) 2_good.JPG, 0.4221                (c) 6_good.JPG, 0.3953 

Fig. 10 Example of good quality images with low Qsharpness value. 
 

V. Discussion 
The Qsharpness index could be used in the quality evaluation 
procedure. Good quality images are accepted for further 
diagnosis by ophthalmologists, while bad quality images are 
rejected, and re-imaging is required. From Table1, images from 
order one to fifteen are good quality images. Hence, the 
minimum Qsharpness value for a good quality image should be 
0.6. As seen from Fig. 10, when Qsharpness less than 0.6, those 
regions obscure the anatomical structures in the image.  All 

artifacts in those three images decrease the quality of image [18] 
[19] and affect to the Qsharpness index. 
 

VI. Conclusion 
A no-reference wavelet-based quality index was proposed to 
measure the sharpness of the color retinal images. The 
sharpness index is deduced from the ratio between the structural 
image in horizontal and vertical details and the blurriness in 
approximation sub-band, which is calculated by db2 at the 4th 
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level with the energy entropy. The index can measure the image 
quality as demonstrated in the results. Good and bad images 
could be compared as shown in Fig. 5; on the other hand, image 
quality could be arranged as reported in Table I. From the 
quality arrangement by our index, the retinal photographs can 
be used for diagnosis when the Qsharpness  value is greater than 
or equal to 0.6. 
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