
 

 

 
Abstract—An adaptive directional cubic convolution 

interpolation method for integrated circuit (IC) chip defect 

images is proposed in this paper, to meet the challenge of 

preserving edge and texture information. In the proposed method, 

Otsu thresholding technique is employed to distinguish strong 

edge pixels from weak ones and texture regions, and estimate the 

direction of strong edges, adaptively. Boundary pixels are pre-

interpolated using the original bicubic interpolation method to 

help improve the interpolation accuracy of the interior pixels. The 

experimental results of both classic test images and IC chip defect 

images demonstrate that the proposed method outperforms the 

competing methods with better edge and texture preservation, 

interpolation quality, more natural visual effect of the 

interpolated images and reasonable computational time. The 

proposed method can provide high quality IC chip images for 

defect detection and has been successfully applied on practical 

vision inspection for IC chips. 
Keywords—image interpolation; integrated circuit chip; Otsu 

thresholding; bicubic                 

I. INTRODUCTION 
utomated vision inspection on integrated circuit (IC) chip 
packages plays an overwhelmingly important role during 
the final testing process, which ensures the quality and 

reliability of the packages and the circuits. The quad flat no-
lead (QFN) package is a typically desirable IC chip package 
for high speed and high power components, benefiting from its 
electrical and thermal performance [1]. However, different 
types of defects may appear on the surface of QFN packages, 
which will certainly seriously affect the packages’ stability and 
durability. Therefore, defect detection is performed to detect 
and further classify these defect products in vision inspection 
[2]. One important factor that affects the defect detection 

 
 

accuracy is the resolution of the target images. High resolution 
(HR) defect images can provide more details of the defect 
regions and better perceptual quality for both machine vision 
and manual review. Since sensor and optics manufacturing 
technology are limited and demand more cost in IC chip 
packages vision inspection, image interpolation becomes 
feasible and promising by estimating unknown pixel values in 
the HR image, from known pixel values in its corresponding 
low resolution (LR) image [3]. 

Classical polynomial-based interpolation methods include 
bilinear [4], bicubic [5], and cubic spline interpolation [6], 
which are also known as non-adaptive image interpolation 
methods. These methods are preferable because of their 
computational simplicity. However, image pixels are treated 
indiscriminately, geometric regularities and discontinuities are 
disregarded in LR images in these methods. As a result, 
undesirable artifacts such as blurring, blocking and ringing 
around edges tend to occur frequently [7]. To remedy these 
disadvantages, several adaptive image interpolation methods 
have been proposed and applied to different image 
superresolution scenarios in recent years [8-16]. Missing 
pixels in HR images are estimated by using edge information 
in LR images, i.e., geometric regularity, which refers to the 
smoothness constraint along the edge orientation as opposed to 
the sharpness constraint across the edge orientation [14]. In [14] 
Li and Orchard proposed a new edge-directed interpolation 
(NEDI) method, in which edges orientation is estimated 
implicitly by exploiting their geometric duality property 
between the LR and HR covariance. Simulation results have 
proved that NEDI better preserves the geometric regularity and 
generates higher visual quality images compared with those of 
bilinear and bicubic, however, the burden of computational 
complexity still remains a tough task. Stankevich et al. [15] 
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proposed an subpixel-shifted satellite image superresolution 
method based on the correlation algorithms, statistical 
regularization, and filtering in frequency domain. The spatial 
resolution of large-size satellite images can be improved by a 
reasonable result of 48.7%. However, the processing 
efficiency of the proposed method still needs optimizing. Zhou 
et al. [16] proposed the directional cubic convolution (DCC) 
interpolation algorithm, in which the gradients of two 
orthogonal directions are compared to estimate local edge 
strength and direction in local window, and then the missing 
pixels are interpolated via cubic convolution interpolation 
along the estimated edge direction for strong edges. Missing 
pixels along weak edges or in texture regions are interpolated 
by combining the two orthogonal directional gradients and the 
specific parameters are determined experimentally. As a result, 
the interpolation quality varies in edge preserving in different 
images. 

In this paper, we propose an adaptive directional cubic 
convolution (ADCC) interpolation method that employs Otsu 
thresholding to distinguish strong edge pixels from weak ones 
and texture regions, and estimate the direction of strong edges, 
adaptively. ADCC is then applied to perform image 
interpolation on IC chip, typically, QFN package defect 
images. The remainder of this paper is organized as follows. 
Section 2 provides an overview of DCC. Section 3 presents the 
ADCC. Section 4 presents the related experiments and results 
analysis. Finally some conclusion are made in section 5.  

II. DIRECTIONAL CUBIC CONVOLUTION INTERPOLATION 
As adopted in most of the methods, DCC algorithm firstly 

expands the original LR image 
lI  with the size of H W  into 

an HR image 
hI  with the size of 2 -1 2 -1H W（ ）（ ）, for a 

scaling factor of 2, where 
l h( ) (2 1 2 1)I i, j I i , j   , 1 i H  , 

1 j W  . As shown in Fig.1 and Fig.2, the original pixels 
from the LR image are denoted in solid black circles, while the 
missing pixels are in white squares and circles. All the missing 
pixels in the HR image are interpolated in two stages. In stage 
1, pixels in white circles with coordinates of (2 2 )i, j  are 
interpolated as shown in Fig.1. Then in stage 2, pixels in 
squares can be interpolated based on pixels in solid black 
circles from the LR image and pixels in solid gray circles 
calculated in stage 1, as shown in Fig.2. Two types of missing 
pixels are interpolated in stage 2, denoted in gray squares with 
coordinates of (2 2 +1)i, j , and black squares with coordinates 
of (2 +1 2 )i , j . 

A. Interpolation stage 1 

In stage 1, in a 7×7 neighborhood with the central 
coordinates of (2 2 )hI i, j  denoted in white squares, the two 
orthogonal directional gradients in the diagonal 45° and 135° 
are calculated as in Eq.(1) and Eq.(2), as shown in Fig.1(a) and 
(b), respectively.  
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Since the gradient along the edge is smaller, the edge 
direction can be estimated using the ratio of the above two 
orthogonal directional gradients as 
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where the threshold T  is set to 1.15 based on Kodak color 
images [17] interpolation experiments. 

Missing pixels in this stage can be calculated by the four 
known pixels along the detected edge and the cubic 
convolution kernel =[ 1,9,9, 1] /16f    [5], as shown in 
Fig.1(c). The missing pixels p  along the 45° diagonal 
direction are calculated as 

1p  in Eq.(4) while 135° as 
2p  in 

Eq.(5). 
T

1 1
T[ (2 3,2 3), (2 1,2 1), (2 1,2 1), (2 3,2 3)]h h h h

p f v
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Non-strong-edge pixels p  are calculated by combining 
1p  

and 
2p  with weights 

1w  and 
2w , as in Eq.(6), where k  is set 

to 5 experimentally to adjust the weights of the two 
interpolation coefficients. 
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B. Interpolation stage 2 

Pixels (2 2 )hI i, j  interpolated in stage 1 are considered as 
known pixels in this stage, denoted in solid gray circles, and 
are involved in the same calculation process of (2 2 1)hI i, j   
and (2 1 2 )hI i , j . In this stage, the edge detection and pixel 
interpolation are identical for both directions and similar to the 
previous stage. In a 5×5 neighborhood, the vertical and 
horizontal gradients are calculated as in Eq.(7) and Eq.(8), 
shown in Fig.2(a) and (b), respectively. 
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Missing pixels in this stage can be calculated by the four 
known pixels along the detected edge as shown in Fig.2(c). 
The missing pixels p  along the vertical direction are 
calculated as 

1p  in Eq.(9) while horizontal as 
2p  in Eq.(10). 

For non-strong-edge pixels in this stage, the calculation is 
similar to Eq.(6) in the previous stage. 

T
1 1
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Fig.1. Edge direction determination and missing pixel value computation in stage 1 in DCC; a) gradients in 45° direction; b) 
gradients in 135° direction; and c) missing pixel calculation along 45° and 135° directions. 

 

Fig.2. Edge direction determination and missing pixel value computation in stage 2 in DCC; a) gradients in vertical direction; 
b) gradients in horizontal direction; and c) missing pixel calculation along vertical and horizontal directions. 

 

III. ADAPTIVE DIRECTIONAL CUBIC CONVOLUTION 
INTERPOLATION 

A. Adaptive threshold selection 
From the above DCC process, obviously, the quality and 

accuracy of edge detection and interpolation heavily depend 
on the selection of threshold T  and k . In [16], experiments 
are carried out based on 24 Kodak color images [17], to 
determine the average best T  from 1 to 1.15 and k  from 1 to 
6, according to the average peak signal-to-noise ratio (PSNR). 
As the results reveal, the effect on DCC by different k  seems 
limited, and PSNR gets maximized by =5k . On the contrary, 
when T  varies, PSNR values change in a wide range, which 
indicates that the selection of parameter T  has a remarkable 
influence on DCC. When T  is fixed to 1.15, it will lead to 
large deviation among different types of LR images. For 

instance, the original QFN package defect image is shown in 
Fig.3(a). Large quantity of non-edge pixels are mistakenly 
detected as strong edge pixels using DCC, as shown in Fig.3(b). 
These pixels on weak edges or in texture regions then will be 
interpolated as on strong edges, which will lead to degradation 
of the interpolated image especially on weak edges and in 
texture regions. In other words, DCC using fixed threshold  T  
may introduces directional artifacts in certain texture regions 
and it lacks preservation of weak edges and texture regions. 

Thresholding is an effective and widely used technique in 
image segmentation and edge detection, to separate objects 
from the background. Otsu thresholding[18] is one of the most 
well-known thresholding techniques because of its simplicity 
and efficiency. Otsu thresholding obtains the threshold that 
maximizes variance between classes.  

Supposing that the global threshold t  is used to separate the 
image into the object class with the pixel range of [0, ]t and the 
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background class with the pixel range of [ 1, 1]t L  , where 

L  denotes the gray level. Let the number of pixel value i  be 

in , and the total pixels number be 
1

0
=

L

i

i

N n




 . The probability 

ip  of the occurrence of pixel value i can be defined as in 
Eq.(11), 

 
i

i

n
p

N
                                       (11) 

The bi-level Otsu function is defined as the sum of variance 
of the object class and the background class, as in Eq.(12), 

2 2 2
1 1 T 2 2 T( ) ( )( ( ) ) ( )( ( ) )B t t t t t             (12) 

where 
T  denotes the mean intensity of the input image, 

determined as in Eq.(13), 
1  and 

2  denote the mean levels 
of the two classes, determined as in Eq.(14) and Eq.(15), 

1  
and 

2  denote the probability of the two classes, defined as in 
Eq.(16) and Eq.(17). 

1

T
0

L

i

i

ip




                                   (13) 

1 1
0

( ) / ( )
t

i

i

t ip t 


                            (14) 

1

2 2
1

( ) / ( )
L

i

i t

t ip t 


 

                            (15) 

1
0

( )
t

i

i

t p


                                    (16) 

1

2
1

( )
L

i

i t

t p


 

                                  (17) 

The optimal threshold *t  is configured by maximizing the 
objective function using 

 * 2

0 1
max ( )B

t L
t arg t

  
                          (18) 

In order to increase the accuracy of strong edge pixels 
detection and edge direction determination, Otsu thresholding 
technique is employed and the adaptive threshold *t  by 
Eq.(18), is used to replace the fixed parameter T  to compare 
the two orthogonal gradients in local neighborhood around the 
missing pixel. In such a way, Eq.(3) in the original DCC is 
replaced by Eq.(19). 

*
135 45
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45 135

if ,  the pixel (2 ,2 ) is on 45  strong edge

else if ,  the pixel (2 ,2 ) is on 135  strong edge

else the pixel (2 ,2 ) is on weak edge or in texture region
end 
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G G t I i j

G G t I i j

I i j

  


 





(19) 

Edge detection results of the same QFN package defect 
image using adaptive threshold are shown in Fig.3(c). 
Compared with the original DCC, our proposed adaptive 
threshold selection method is able to detect strong edge pixels 
more efficiently. 

 

Fig.3. Comparison of edge detection using DCC and the proposed method; a) the original QFN package defect image; b) 
edges detected using DCC; and c) edges detected using the proposed method. 

B. Method description 

The boundary pixels haven’t been taken into consideration 
in the original DCC. To address this issue, in the early stage of 
the proposed ADCC, boundary pixels are interpolated by the 
original bicubic algorithm [5], which will help improve the 
interpolation accuracy of the interior pixels. The detailed 
description of the proposed ADCC method for a scaling factor 
of 2 are given as follows. The interpolation for a scaling factor 
2n  can be achieved by performing the following method by n  
times, iteratively. 

Step 1. Calculate the global optimal threshold *t  for the 
original LR image lI , as in Eq.(18); 

Step 2. Expand the original LR image lI  with the size of 

H W  into the HR image 
hI  with the size of 

2 -1 2 -1H W（ ）（ ）, where l h( ) (2 1 2 1)I i, j I i , j   , 1 i H  , 

1 j W  ; 
Step 3. Interpolate the boundary pixels using the original 

bicubic algorithm [5] ; 
Step 4. Perform interpolation stage 1. Perform edge 

detection and then pixel value calculation of all the missing 
pixels (2 2 )hI i, j , as in Eq.(1), Eq.(2), Eq.(19), Eq.(4), Eq.(5), 
Eq.(6); 

Step 5. Perform interpolation stage 2. Perform edge 
detection and then pixel value calculation of all the missing 
pixels (2 2 1)hI i, j   and (2 1 2 )hI i , j , similar to Step 4, as in 
Eq.(7), Eq.(8), Eq.(19), Eq.(9), Eq.(10), Eq.(6); 

(a) (b) (c)
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Step 6. Output the HR image 
hI  with all the missing pixels 

interpolated. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 
The proposed ADCC will be compared with the other four 

representative interpolation method in this section, which are 
bilinear [4], bicubic [5], NEDI [14] and the original DCC [16], 
both subjectively and objectively. All the five methods are 
implemented and experiments are conducted in MATLAB 
R2015b on a personal computer with 2.9 GHz CPU, 16 GB 
RAM. Six test images are used to conduct the experiments, 
including Kodak03, Kodak08, Kodak14 from Kodak Gray 
Image Set [17], and three typical QFN package defect images, 
denoted as QFN1, QFN2, QFN3, as shown in Fig.4. 

 

Fig.4. Test images; a) Kodak03 (768×512); b) Kodak08 
(768×512); c) Kodak14 (768×512); d) QFN1 (214×216, the 

same as Fig.3(a)); e) QFN2 (212×212); and f) QFN3 
(214×214). 

A. Qualitative Analysis 

To evaluate and compare the visual effects of the 
interpolated images using different interpolation methods, 
Kodak08 and QFN1 are downsampled with a factor of 4 and 
then interpolated to the original size. Local images of the two 
interpolation results using different methods are shown in 
Fig.5 and Fig.6, marked with red boxes. 

It can be obtained from the local images of the interpolation 
results that bilinear and bicubic can preserve weak edges and 
texture regions, such as the house windows regions in 
Kodak08, black plastic encapsulated package and central 
bonding pad regions in QFN1. However, blurry and blocking 
artifacts are introduced around the diagonal edges, such as the 
house roof regions in Kodak08 and the diagonal scratch defect 
regions in QFN1, as shown in Fig.5(c), (d) and Fig.6(c), (d). 

The NEDI preserves edges better than bilinear and bicubic but 
suffers a certain level of pixilation effect, as shown in Fig.5(e), 
and Fig.6(e). The DCC and the proposed ADCC are better able 
to preserve edges and structural information, and have better 
visual quality than the other three methods. However, several 
pixels on weak edges and in texture region, such as the house 
roof regions in Kodak08 and central bonding pad texture 
regions in QFN1, are detected and interpolated as strong edges 
and thus slight directional artifacts and ringing effect can be 
observed in DCC, as shown in Fig.5(f), and Fig.6(f). 
Compared with the other four methods, the proposed ADCC 
provides the best natural-looking image interpolation results, 
in terms of detail preservation and edge smoothness. 

 

Fig.5. Interpolation results of Kodak08; a) the original 
image; b) its original local image; c) bilinear; d) bicubic; e) 

NEDI; f) DCC; and g) ADCC. 
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Fig.6. Interpolation results of QFN1; a) the original image; 
b) its original local image; c) bilinear; d) bicubic; e) NEDI; f) 

DCC; and g) ADCC. 

B. Quantitative analysis 

Since the original HR images of the six test images are 
known, PSNR and structural similarity (SSIM)[19] can be 
measured to evaluate the performance of the five interpolation 
methods objectively, via the original HR images and the 
interpolated HR images, which are similar to the qualitative 
analysis but a downsampling factor of 2.  

PSNR is defined as in Eq.(20), 
255PSNR(dB) 20lg( )

RMSE
                (20) 

where 

2

1 1

1 [ ( , ) ( , )]
M N

i j

RMSE I i j I i j
MN  

         (21) 

and I , I  are the original HR image and the interpolated 
image, with the size of M N , respectively. A higher PSNR 
value indicates a better interpolation quality. 

SSIM is defined as in Eq.(22), 
SSIM( ) [ ( )] [ ( )] [ ( )]x,y l x, y c x, y s x, y           (22) 

where x  and y  are the original HR image and the 
interpolated image,  ,   and   are positive constants to 
adjust the relative importance of the three components ( )l x, y , 

( )c x, y  and ( )s x, y , which denote the luminance comparison, 
the contrast comparison and the structure comparison, defined 
as in Eq.(23), Eq.(24), Eq.(25), respectively, 
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where 
x , 

y  are the mean intensity, 
x  and 

y  are the 

standard deviation, 
xy  is the correlation coefficient of the 

two images. 2
1 1( )C K L , 2

2 2( )C K L  and 2
3 3( )C K L  are 

three small positive constants, where L  denotes the gray level 
and 

1 1K , 
2 1K , and 

3 1K  are three small constants. 
A higher SSIM value indicates better structural similarity. 

To reduce the boundary effect in the original DCC, 
described in section 3, the border of four pixels are excluded 
during the PSNR and SSIM calculation. The experimental 
results of PSNR, SSIM and computational time are shown in 
Table 1, Table 2 and Table 3, respectively. The best results are 
presented in bold. 

From Table 1 and Table 2, the proposed ADCC significantly 
outperforms bilinear, bicubic, NEDI in terms of PSNR and 
SSIM, and outperforms the original DCC with slight margin, 
which indicates that the proposed ADCC achieves better 

interpolation quality, less distortion and better structural 
similarity for both classic test images and IC chip defect 
images.  

In terms of computational time, from Table 3, bilinear and 
bicubic present lower computational time among other 
methods, but at the expense of poor interpolation quality in 
terms of both edge and texture preservation. Considering the 
fact that the proposed ADCC performs the boundary pixels 
bicubic pre-interpolation and Otsu thresholding, the time gap 
between DCC and ADCC is slight and acceptable. 

As the application of the proposed ADCC in practical vision 
inspection for IC chip packages, IC chip images are 
interpolated online for a scaling factor of 2, e.g. QFN chip 
images from the size of 212×212 to the size of 413×413, to 
improve the perceptual quality and provide more details of 
defect regions. In the follow-up inspection process, the 
interpolated HR IC chip images indeed improve the accuracy 
and efficiency of the IC chip defect detection and classification. 

Table 1. PSNR (dB) results of the interpolated HR images 

Image Bilinear Bicubic NEDI DCC ADCC 

Kodak03 33.600 33.690 31.675 34.186 34.187 

Kodak08 22.480 22.356 19.624 22.465 22.485 

Kodak14 28.376 28.479 25.490 28.733 28.746 

QFN1 28.472 28.476 25.814 28.587 28.612 

QFN2 28.203 28.149 24.806 28.231 28.284 

QFN3 26.700 26.650 24.477 26.778 26.810 

Table 2. SSIM results of the interpolated HR images 

Image Bilinear Bicubic NEDI DCC ADCC 

Kodak03 0.9693 0.9692 0.9641 0.9707 0.9711 

Kodak08 0.9004 0.8994 0.8438 0.9009 0.9010 

Kodak14 0.9407 0.9435 0.9114 0.9440 0.9442 

QFN1 0.8365 0.8376 0.7756 0.8392 0.8404 

QFN2 0.8260 0.8246 0.7505 0.8242 0.8250 

QFN3 0.8091 0.8080 0.7462 0.8089 0.8107 

Table 3. Computational time (s) of the interpolated HR 

images 

Image Bilinear Bicubic NEDI DCC ADCC 

Kodak03 0.0126 0.0171 8.8642 2.0708 1.9984 
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Kodak08 0.0138 0.0168 9.0952 1.8631 1.9538 

Kodak14 0.0162 0.0229 9.6447 1.9861 1.9741 

QFN1 0.0053 0.0065 1.0330 0.2209 0.2244 

QFN2 0.0043 0.0047 0.9653 0.2219 0.2239 

QFN3 0.0069 0.0068 1.0618 0.2237 0.2294 

 

V. CONCLUSION  
In this paper, an adaptive directional cubic convolution 

interpolation method for IC chip defect images is proposed. In 
the presented method, the fixed threshold parameter in edge 
detection in the original DCC is replaced by the adaptive 
threshold, which is calculated using Otsu thresholding 
technique, to distinguish strong edge pixels from weak ones 
and texture regions, and estimate the direction of strong edges, 
adaptively. Boundary pixels are pre-interpolated using the 
original bicubic interpolation method to help improve the 
interpolation accuracy of the interior pixels. The experimental 
results of both classic test images and IC chip defect images 
demonstrate that the proposed ADCC outperforms the 
competing methods in terms of edge and texture preservation, 
interpolation quality and natural visual effect of the 
interpolated images. The proposed method can provide high 
quality IC chip images for defect detection and has been 
successfully applied on practical vision inspection for IC chips. 
Future works should be focused on reducing the computational 
complexity and further improving the operational efficiency of 
the proposed method. 
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