International Journal of Circuits, Systems and Signal Processing

E-ISSN: 1998-4464
Volume 15, 2021

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of NAUN Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Main Page

Submit a paper | Submission terms | Paper format


Volume 15, 2021

Title of the Paper: Adaptive Coordinated Control Strategy of Multi Manipulator System based on Multi-Agent


Authors: Nianen Zhu, Jiang Han, Lian Xia, Hui Liu

Pages: 1159-1164 

DOI: 10.46300/9106.2021.15.126     XML


Abstract: With people's increasing awareness of life and the increasing complexity of exploration in unknown environment, a single robot can not meet the increasing demand, including the price, flexibility and efficiency of robots. As a common mechanical control system in industrial production instead of human production, multi manipulator system can be applied in complex environment, multi task and other conditions. In order to settle the coordinated control fault of multi manipulator system, we study adaptive coordinated control strategy with the help of multi-agent research method in this paper, which can simplify the complexity of the problem and design an efficient and feasible system control protocol. The complex items in the multi manipulator system are treated as non affine systems. Using the design idea of non affine algorithm, combined with implicit function theorem and median theorem, the non affine system is transformed into affine systems, the controller is separated, and a distributed adaptive control strategy is designed. The results indicate that manipulator systems can effectively track the active manipulator system in finite time and the significance of the algorithm is proven by MATLAB simulation analysis.