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Abstract- Estimating the depth of the scene
from a monocular image is an essential step for
image semantic understanding. Practically, some
existing methods for this highly ill-posed issue
are still in lack of robustness and efficiency. This
paper proposes a novel end-to-end depth esti-
mation model with skip connections from a pre-
trained Xception model for dense feature extrac-
tion, and three new modules are designed to im-
prove the upsampling process. In addition, ELU
activation and convolutions with smaller kernel
size are added to improve the pixel-wise regres-
sion process. The experimental results show that
our model has fewer network parameters, a lower
error rate than the most advanced networks and
requires only half the training time. The evalu-
ation is based on the NYU v2 dataset, and our
proposed model can achieve clearer boundary de-
tails with state-of-the-art effects and robustness.

Keywords- Depth estimation, Transfer learn-
ing, Deep learning, Feature enhancement.

I. INTRODUCTION

The depth estimation of monocular images is vital
for computer vision tasks, which can be applied in many
fields, including detection[1], segmentation|[2], intelligent
control[3], and pose estimation[4]. Adequate applica-
tions in automated industry and driverless cars[5] rely
on the depth estimation method to measure 3D informa-
tion to achieve scene reconstruction[6]. In other words,
the depth is the distance between the camera and the
objects. The main job requires a solution that can make
good use of the plane details, shapes and prior knowl-
edge from two-dimensional RGB images to explore the
actual three-dimensional distance.

In recent years, depth estimation methods have made
some progress via deep learning due to the convolutional
neural network’s feature representation effect. The CNN
can help to understand RGB image semantic information
and translate it to an RGB-D image. Though the quan-
titative evaluation becomes better, the actual prediction
of depth maps still has low robustness and efficiency. At
some point, higher accuracy is relative because the re-
sults cannot correspond with the input images, which
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means the loss of origin information. Missing details
or low resolution may lead to divergence and incorrect
judgment of intelligent decisions for applied robots. The
main problems for depth estimation are the lack of spe-
cific details and inaccuracy for even areas; Therefore, we
hope to propose a novel method to optimize the depth
estimation model, maintaining both high-frequency in-
formation and object boundaries. Then, the balance of
the predicting effect and quantitative indicators can work
well at the same time.

We analyze recent excellent CNN depth estimation
models and propose a new design to make the model
can not only have good quantitative results but also en-
sure the depth map quality. It is difficult to normalize
the feature resolution from different convolutional lay-
ers for effective concatenation by skip connections. In
addition, the change in resolution may lead to higher er-
ror and convergence difficulty, so our main goal is to en-
hance transferred features efficiency, and normalize them
achieving state-of-the-art accuracy for depth estimation.
To realize our goal more efficiently, we actually add some
small kernel convolutions to reduce the computational
amount and other nonlinear functions to improve the re-
gression effect.

In this paper, we propose a model that exploits trans-
fer learning to recover high-quality depth maps. At the
same time, we concentrate on the monocular image depth
estimation in this research, and the experimental result
show our designed module availability. Comparison with
the state-of-the-art demonstrates the superiority of our
proposed method, which can help to address the classic
problems with predicting depth maps. Our main contri-
bution in this paper is as follows:

e We propose three effective feature normalization
modules to improve the feature aggregation process
at different resolutions and make the depth inference
more reliable.

e The proposed efficient end-to-end model for depth
estimation helps the predicting process to main-
tain both the efficiency and superior accuracy of the
state-of-the-art model.

e We introduce the Xception network as pre-trained
encoder to accelerate training. Extensive experi-
ments on NYU v2 demonstrate the superiority of
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Fig. 1: Main architecture of our proposed depth estimation method.

our proposed method both qualitatively and quan-
titatively.

II. RELATED WORK

In early depth estimation research, most studies were
based on traditional machine learning algorithms with
prior knowledge. Saxenal7] first defined a function to
reflect the pixelwise relationship to a three-dimensional
model and regress each pixel’s depth with a Markov ran-
dom field. Liu[8] proposed a discrete-continuous condi-
tional random field (CRF) model that deeply used the
pixelwise relationship and Gaussian regression to esti-
mate the specific depth. In the same year, Ladicky[9]
leveraged the theory that the image scale is inversely pro-
portional to its depth as the core reflects, and Wang[10]
proposed a nonlinear kernel function to estimate depth
and obtain the kernel function parameters through sam-
pling.

As a development of deep learning, the CNN performs
well in most computer vision tasks[39, 40, 41]. Eigen[11]
first introduced this network into the depth estimation
field by double-scale feature fusion, which consists of
coarse and refined parts. These two parts are designed
to extract global and local features. Before long, he im-
proved the network structure and fusion scale types of
features[12]. Liu[13] introduced CRF loss to optimize
the prediction training process, which relies on less prior
knowledge. As the research became deeper, the fully con-
volutional neural network[14] allowed dense estimation
tasks to perform better and be more widely applicable,
which was combined with CRF to optimize the training
results at the pixel level. For instance, Laina[l5] pro-
posed FCN with up projection and residual blocks. In
detail, many deep learning pixelwise problems are based
on CNN encoder-decoder models[14, 16] and have re-
cently made some progress. Through this typical archi-
tecture, the model can well study the depth information
from the input features in both supervised and unsuper-
vised scenes. The result in our experiment also shows
the superiority of the encoder-decoder architecture.

More recently, transfer learning has been applied in
many neural network scenes[17]; thus, we leverage large
image classification dataset pretrained models as the en-
coder for monocular input images. The pretrained mod-
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els have great feature extraction ability[18], and some
pretrained models have a great effect on maintaining spa-
tial resolution[19]. Additionally, transfer learning is very
convenient for the training process under the premise
that it can not only promise the effect of the encoding
but also the training efficiency. In our research, we re-
gard transferred model selection as essential because it
directly determines the quality of the captured seman-
tic features; thus, after a series of attempts and compar-
isons, we finally selected the most efficient model by con-
sidering less training time and demanding dataset scope.
Then, the model flexibility becomes more eco-efficient.

III. METHOD

A. Network Architecture

Our depth map prediction model is shown in fig. 1.
As a key component for extracting different features, the
frequently selected transfer learning CNN encoders in-
clude MobileNet[20] and ResNet[21]. The main criterion
for selection previously was the convenience of differ-
ent feature size combinations for feature normalization,
which was is usually difficult.

Above all, the actual feature capture effect for the
CNN model is essential, so it is inadvisable to ignore the
more complex models that can also perform well. For
instance, the Inception series is also a significant devel-
opment route. Therefore, in our experiment, we selected
the efficient Xception[22] as our encoder. Xception is
an extreme Inception V3 module[23], which not only
maintains accuracy with the latter but also simplifies
both parameters and module architecture. Furthermore,
Xception improves the traditional convolutional opera-
tion, and it is based on the hypothesis that separable
convolution with both channels and spatial correlations
can perform better.

Although the network can perform well in some
scenes, the decoder stacked by plain convolutions limits
the model effectiveness for depth estimation. Therefore,
we design the modules in the decoder parts to aggregate
transferred features and enhance performance. As illus-
trated in Fig.3, the upsampling is combined with zero-
padding operations to maintain the feature resolution.
This part consists of four upsampling operations with 3
types of modules. Our model leverages the ELU activa-

1166



INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

DOI: 10.46300/9106.2021.15.127

Volume 15, 2021

Table 1: Feature scale in our proposed architecture.

Input Xception

Module a Module b | Module ¢ | Depth map

640x480 | 317x237 159x119 80x60 40x30 20x15

40x30 80x60 160x120
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Fig. 2: The proposed feature enhancement modules.

tion function[24] as a replacement for ReLU and 2x2 and
1x1 convolutions to improve the regression process|[20].
The proposed module a M, can be formulated as follows:

M, = F1(Concat(Fy., Upsampling(Fy)), (1)

where F7 denotes 1x1 convolution and ReLLU operations,
F,. is the feature from the skip-connection and Fy is
the features from former decoder block. The proposed
module b M, can be formulated as follows:

M, = F1(Concat(Fy., Fo(Upsampling(Fy))), (2)

where F5 denotes 2 x 2 convolution and ReLLU operations.
And the module ¢ M, can be formulated as follows:

M. = F3(Fo(Concat(Fye, Fo(Upsampling(Fy)))), (3)

where F3 denotes ELU activation and 1 x 1 convolution
operations.

The encoder-decoder inferring process involves chang-
ing the feature resolution, and there will be some in-
formation loss during upsampling. Otherwise, the out-
put for the encoder and the input for the decoder are
low-resolution features that enhance the pixel-level re-
covery difficulty. The skip-connections shown in fig.1
helps the model reserve various original details from the
input RGB images and is a good strategy for image re-
construction and segmentation[2, 5, 6], such as U-Net[25]
and pixel2pixel[26]. Therefore, we use differently sized
features captured from Xception to directly connect to
the relevant decoder layers. Through concatenation, the
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feature maps can be a good supplement for the encoder-
decode model. Table 1 lists the feature scale in our pro-
posed architecture, and the features of first three scales
in Xception are aggregated into the decoder by the de-
signed normalizing modules. Thus, the feature scales can
be effectively unified in the decoder.

B. Loss Functions

The general loss function[11] reflects the depth esti-
mation pixel-wise regression degree between the ground-
truth depth image y and the predicted depth image 3. As
an essential content, the loss function can significantly in-
fluence the actual training process, especially the model
convergence speed. In our experiment, we define the
depth estimation loss function £ into two parts as fol-
lows:

ﬁ(y7 Q) - (1 - a)ﬁpizel(:% :&) + aEMS—SSIM (y> y) (4)

The first part Lpize(y,9) is based on L1 regularization
to calculate the divergence from the prediction to the
ground-truth in the pixel value level.

N
. 1 .
Epiwel(:% y) = N E |y - y| (5)
P

The structural similarity (SSIM)[27] is also precise for
describing the distance of two similar images, and it can
perform well in unsupervised depth estimation learn-
ing[28]. Therefore, we bring in multi-scale considered
SSIM in our loss function definition. Although there are
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(b)

Fig. 3: Visualization of the basic data augmentation operations.

Table 2: The results comparison of our method and the state-of-the-art methods

Methods ‘

Higher is better

Lower is better

| 0<1.25 0<1.25% <125 rel  logip  rms

Li[31] 0.621  0.886  0.968  0.232 0.094 0.821
Liu[32] 0.650  0.906  0.976  0.213  0.087  0.759
Eigen|[11] 0611  0.887 0971 0215 - 0907
Eigen and Fergus[12] | 0.769 ~ 0.950 ~ 0.988  0.158 -  0.641
Chakrabari[33] 0.806  0.958  0.987 0149 - 0.620
Laina[16] 0811 0953  0.98 0127 0.055 0.573
Chen([34] 0818 0958  0.988 0.123 0.053 0.569
Chen([35] 0826 0964  0.990  0.138 0.101  0.496
Li[36] 0832  0.965 0989  0.134 0.095 0.540
Yan|[37] 0813 0965 0989 0135 - 0.502
Xu[38] 0811 0954 0987 0121 - 0.583
ours 0.850 0.973  0.994 0.123 0.053 0.461

Table 3: The results comparison of different feature alignment operations

Higher is better

Lower is better

Methods
| 6<1.25 6<1.25° 6<1.25% rel  logyy rms
(a)+(b)+(c) 0.850 0.973 0.994  0.123 0.053 0.461
(a)+(b)+3*(b) 0.847 0.969 0.987  0.125 0.055 0.466
ZeroPadding 0.839 0.955 0.982 0.131 0.060 0.472
ReplicationPadding | 0.845 0.972 0.990 0.125 0.055 0.462

already some trials for improving the loss function[15, 16,
29], we want to improve the convergence process by em-
ploying multi-scale structural similarity (MS-SSIM)[30]
to make the model reserve more high-frequency informa-
tion and object details.

Lwms-ssim(y, §) = 1 — MS-SSIM(y, ) (6)

C. Data Augmentation

As an important step before CNN training, the data
augmentation usually makes the model more robust and
avoids overfitting. In this paper, we mainly refer to how
former experiments[11] pre-processed input data. In ad-
dition, swapping the color channels in the experiment
can help the model learn similar images with various
changes. The main pre-processing methods we use in
the experiment are as follows:

e The training data are randomly rotated r €
[—10°,10°].
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e Color: The training values multiply a random value
¢ range from [0.8,1.2].

e The training pairs are horizontally flipped with 0.5
probability.

e The RGB channels of input image are randomly
swapped with 0.25 probability.

e The input data are centered cropped and then re-
sized to the former size.

IV. EXPERIMENTS

A. Implementation Details

In this paper, our proposed model is trained and
tested on the NYU V2 dataset[6], which includes more
than 12K indoor scenes with both RGB and depth im-
ages sampled by the Microsoft Kinect camera. In our
experiment, the dataset is divided into three parts for
training, validation and testing. Following the official
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(a)

Fig. 4: Visualization of results by our method and the state-of-the art method for monocular depth estimation. (a)
Input RGB image; (b) Chen et al. [34]; (c) Our method; (d) Groundtruth.
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dataset divisions, the training part consists of 120K im-
ages, and the validation and testing parts include the
same number of 659. As a pre-processing detail, the in-
valid area of depth groundtruth, especially the opened
windows and doors that cannot be estimated, is set to
the maximum value. The resolution of the input images
is 640x480.

The CNN experimental environment is PyTorch, and
the training hardware is based on an i7-9500 CPU,
NVIDIA GTX TITAN X GPU and 128 GB of memory.
The initial learning rate is 0.0001 with a 0.999 training
decay. The parameters for the ADAM optimizer have a
0.0001 learning rate, 0.9 81 and 0.999 5. The ELU opti-
mizer is 1.0 a. The preset batch-size is 8, and the epoch
is 10, which requires nearly 35 hours. The final trained
model is approximately 38M parameters. Additionally,
the frozen weights operation for transfer learning is lever-
aged, so the first few layer weights that are trained for
the ImageNet dataset are set to untrainable.

B.  FEwvaluation Metrics

According to previous research details, the most com-
monly used quantitative evaluations are average relative
error (rel), root mean squared error (rms), mean log er-
ror (logip) and accuracy with three thresholds. These
evaluation metrics, which follow [11], are defined as fol-
lows:

e Mean relative error (rel):

el

-~ g0, (7)

e Root mean squared error (rms):

T
1 lds — gill
r ®)

e Mean log error (logip):

T
1
T > lllogrodi — logiogsl |1, )

i=1
e Threshold accuracy:

di gi
max(—, g—) = d<threshold,
gi di

(10)
where T is the number of pixels in each depth image.
d; and g; are the prediction and ground-truth pixel-wise
values, respectively.

C. Experimental Analysis

In Table 2, we show the quantitative effect by com-
paring the result of our method with the state-of-the-art
method in terms of six evaluation metrics. The superior-
ity of our method is obvious. Specifically, compared with
competing methods[15, 34, 35, 36, 38], our method can
output better threshold accuracy. Although our method
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is 0.02 higher than Xu[38] for rel metric, our method out-
perform it by a large margin in terms of other metrics. In
addition, our method can reach the state-of-the-art error
rate[15, 35, 36, 37]. For the highly transferred Xception
model and its feature resolution modules, the predicted
depth maps perform as accurate as the state-of-the-art
methods, even in boundary details. Importantly, our
model training only requires 35 hours, which is approxi-
mately half of the state-of-the-art training. This demon-
strates our method owns higher efficiency and accuracy
at the same time.

As illustrated in fig.4, visual comparison of differ-
ent methods for depth estimation demonstrates that our
method perform well on both local and global depth esti-
mation qualitatively. In detail, we compare our visual re-
sults with the state-of-the-art method Chen et al.[34] to
further validate the effectiveness of our method. For ex-
ample, our method estimates sharper shape and more ac-
curate depth map for table lamp(the third row in fig.4),
and estimates depth of sofa details as accurate as the
groundtruth(the last row in fig.4). Moreover, the output
depth maps can accurately predict some missing parts in
the NYU v2 dataset(indicated by the bounding boxes),
as illustrated in fig.5. For instance, the glass in the first
row, the mirror in the second row, the door in the third
row, and the chair in the fourth and fifth row.

To further analyze the contribution of different mod-
ules in our method, we used different combinations of
module (b) and (c) to keep the scale consistency of ex-
tracted feature maps for skip connections. With the
same training hyper parameters and condition, a quan-
titative comparison is shown in Table 3. When using
three module (b) to replace module (c), the result ap-
peared to a little bit degrade. However, it’s still has a
better performance than most methods. In addition, we
compare the module (b) and (c¢) with padding only scale
alignment methods and our modules performs favorably
against them. Thus, this is a great proof that the combi-
nation of our modules can help to normalize the different
scale features for concatenation.

V. CONCLUSION

In this paper, we propose a novel encoder-decoder
depth estimation model through which depth maps can
be efficiently predicted through their origin RGB images.
Although the proposed model uses a transfer encoder, we
propose three normalization modules that help the whole
model perform better by concatenating encoder features
with different resolutions. The experiments are on the
NYU v2 dataset, and our method performs outstand-
ingly compared with the state-of-the-art methods and
apparently demonstrates its superiority in efficiency and
accuracy. Next, we plan to explore how to regularize or
improve our decoder modules and improve the applica-
tion efficiency to make it more easily used in embedding
systems or mobile terminals.
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(@)

Fig. 5: The robustness of our proposed method.(a) Input RGB image; (b) Our results; (c) Error area in Groundtruth
indicated by bounding boxes.
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