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Abstract—In the field of science and engineering, partial 

differential equations play an important role in the process 

of transforming physical phenomena into mathematical 

models. Therefore, it is very important to get a numerical 

solution with high accuracy. In solving linear partial 

differential equations, meshless solution is a very important 

method. Based on this, we propose the numerical solution 

analysis and comparison of meshless partial differential 

equations (PDEs). It is found that the interaction between 

the numerical solutions of gridless PDEs is better, and the 

absolute error and relative error are lower, which proves 

the superiority of the numerical solutions of gridless PDEs. 

 

Keywords—Background grid integration, meshless, 

numerical solution, partial differential equation. 

I. INTRODUCTION 
ITH the development of science and technology and 
society, a large number of complex computing problems 

appear in front of people. Before the advent of computers, in 
order to solve some complex computing problems, many 
scientists devoted most of their lives, even their whole lives. In 
1867, French astronomer Dalamny spent 20 years to solve a 
perturbation series of celestial motion Expansion [1]. But this is 
not a good way to solve complex problems, so people began to 
study the methods to solve complex calculation problems. In 
order to solve some complex calculation problems, numerical 
calculation methods appear. The numerical solution of PDEs is 
one of the most important branches. For example, to accurately 
predict the weather change, thousands of PDEs must be solved 
[2]. It is unrealistic to solve them manually. Therefore, the 
numerical solution of PDEs is very important. There are three 
kinds of numerical methods for PDEs, the finite difference 
method, the variation method and the finite element method. 
The most common one is the finite difference method. 
 

 

However, the finite difference method will be unstable when it 
is used to solve the partial differential equation. Therefore, it is 
necessary to analyze the stability of the finite difference method 
in solving the partial differential equation. The stability of the 
difference equation refers to the study of the influence of the 
initial value interference on the solution of the difference 
equation when there is no error in the right free term of the 
difference equation. It reflects the situation that whether the 
difference solution is continuous depends on the initial value 
there are many kinds of difference schemes. 

The essence of numerical method is discretization and 
algebra: Discretization transforms an infinite information 
system into a finite information system, and algebra transforms 
a partial differential equation into a computer solvable algebraic 
equation. No matter what kind of numerical method, it involves 
the division of spatial discrete element. The practice shows that 
the quality of discrete element directly affects the accuracy and 
precision of calculation results. The commonly used spatial 
discrete element is grid, and there are two kinds of grid currently 
used: Structural grid and unstructured grid generation 
technology. Although the current generation technology of 
structural grid and unstructured grid has been quite mature, but 
there are some inherent advantages and disadvantages, 
especially with the problem to be solved more and more 
complex, the importance of spatial discretization method is 
more and more prominent. Therefore, the main difference 
between the mesh free method and the finite element method is 
the function approximation. In the finite element method, 
piecewise polynomial interpolation is mainly used for function 
approximation. This method needs to mesh the solution area in 
advance, and the pre-processing is complicated. The meshless 
method overcomes this disadvantage, and does not need to 
divide the grid, only needs the node information. There are 
many function approximation methods without grid. For 
example, radial basis function interpolation method, moving 
least square method, approximate method, integral kernel 
approximate method and unit decomposition method, etc. 
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II. NUMERICAL SOLUTION ANALYSIS OF MESHLESS PARTIAL 
DIFFERENTIAL EQUATION 

A. Gridless and Slightly Scattered Data Interpolation 

A group of scattered data in gridless PDEs, For example, at 
point s

ix (i 1, , )R N   , We got the data iy , We need to fit a 
smooth function Pf(x)  through this set of scattered data 
sampling points, in order to obtain the function value of any 
position, the function strives to spread the information related to 
scattered points smoothly to all positions in the definition 
domain. This problem is of great practical value in many fields 
of science and engineering, because the data that can be 
measured or generated in practice are often sparse and 
irregularly distributed [3]. They can be found in various 
scientific and engineering applications, such as geology, 
meteorology, oceanography, surveying and mapping, and 
mining, where they often collect some non-uniform 
measurement results of physical quantities; Experimental data 
of scattered distribution in chemistry, physics and engineering; 
Calculation results of non-uniform distribution of output when 
solving partial differential equation with finite element method, 
etc. The goal of scattered data interpolation is to reconstruct a 
basic function to meet the given set of data. At each point, there 
are: 

i if (x ) yP   (1) 
This method is usually called interpolation method. A 

common and convenient method to solve scattered data 
interpolation that is the assumption if (x )P  is some linear 
combination of k (x)B , that is, interpolation in a linear space: 

i i
i 1

f (x) c (x)
N

P B


  (2) 

In this way, the original interpolation problem is transformed 
into a solution system of equations: 

c yA   (3) 
Among them: 

1 1 2 1 N 1

2 2 2 2 N 2

1 N 2 N N N

(x ) (x ) (x )
(x ) (x ) (x )

(x ) (x ) (x )

B B B

B B B
A

B B B

 
 
 
 
 
 

 (4) 

t t
1 2 1 2c (c ,c , c ) ,y (y ,y , , y )N N     (5) 

Obviously, under this assumption, the original problem has a 
unique solution if and only if matrix A is nonsingular. 

This problem is understood in one-dimensional case (s 1) , 
the commonly used polynomial interpolation uses the 
polynomial of degree 1N   to interpolate at any N different 
points [4]. It is easy to know that there is always a unique 
solution. But for multidimensional situations (s 2) , this 
conclusion is not necessarily true. For example, in the 
two-dimensional case, when these n points are in the unit circle: 

2 2x y 1   , Then any interpolation function plus 2 2x y 1   
of any times still satisfies the interpolation condition, that is, it 

cannot satisfy the uniqueness. 
For the convenience of studying this problem, in a real valued 

continuous function, the positive definite function on RS means 
that it is even function, and for any n different points 

s
1x , , xN R  , t

1 2 Nc (c ,c , ,c ) NR    there are: 

i j i j
i 1 j 1

c c (x x ) 0
N N

 

    (6) 

Note: s (positive define)PD . Function is equal sign in 
strict positive formula (6), it's only true if C is zero. 

It can be seen from the definition of strictly positive definite 
function, if   is strictly positive definite, then the matrix 

1 1 2 1 1

1 2 2 2 2

1 2

(x x ) (x x ) (x x )
(x x ) (x x ) (x x )

(x x ) (x x ) (x x )

N

N

N N N N

A

      
 
      

 
 
      

is positive 

and certainly reversible. 
Through the calculation, the mesh free partial micro scattered 

random data interpolation is obtained, and the preliminary 
positioning of the equation value is achieved. 

B. Numerical Setting Function 

According to the above calculation, if the function is strictly 
positive definite, if function   is a strictly positive definite 
function, if interpolation base function kB (X)  is taken as 

k(x x )  , then there must be a unique solution [5]. As for how 
to judge whether a function   is a positive definite function, 
the following theory proposed by Bochne can be used: 

The Fourier transform of Function s
1f ( )L R  is defined as:  

s
2f (w) f (x)e dx

R
F    (7) 

The inverse Fourier transform of: 
s

1 2f (x) f (w)e dw
R

F     (8) 

Function s( )C R  is a positive definite function on 
sR  if 

and only if it is a Fourier transform called by a finite 
nonnegative Borel measure on sR , that is: 

s(x) (x) e d (y)
R

      (9) 

In order to make matrix A positive definite, function   must 
be strictly positive definite, Bochner's theorem only gives the 
condition of positive definite function  , for this reason, we 
must extend Bochner's theorem and give the condition of strictly 
positive definite in function [6]: 

Suppose   is a finite nonnegative Borel measure on sR ,  
and its support set is not a Lebesgue zero measure set. Then the 
Fourier transform called is a strictly positive definite function 
on sR . 

Inference gives a method to construct strictly positive definite 
function 

Suppose function s
1f ( )L R  is a nonzero nonnegative 

continuous function, then the Fourier transform of F is a strictly 
positive definite function on sR . 
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The specific method to determine whether a given function is 
a strictly positive definite function can be given by the following 
theorem: 

Suppose s
1( )L R  is a continuous function.   is a 

positive definite function if and only if   is bounded and the 
Fourier transform of   is nonnegative and not equal to zero 
function. 

x 2e 
   is sR strictly positive definite function on (for 

any s). This is because the Fourier transform of Gaussian 

function or Gaussian function, in particular, when 1
2

  , 

F  , this can be proved directly by calculation. 

C. Positive Definite Radial Function 

A multivariable function s: R R   called radial function, 
it means that there is a single variable function 

 : 0, R   . 
Radial function has many advantages, such as keeping the 

function value unchanged after rotation and reflection. The most 
important thing is that using radial function as the basis function 
interpolation has little to do with the dimension s of space [7]. 
We only need to use a one variable function to do various 
operations instead of a multi variable function. When the 
dimension of space becomes larger, the complexity will 
increase dramatically. 

A univariate function   is the (strict) positive definite radial 
function on RS, which means that its corresponding 
multivariable function   is the (strict) positive definite 
function on sR  and is the radial function. Note that when 
function   is determined, its positive definiteness is generally 
determined by the dimension s of space sR . 

The method of judging whether a given function must be a 
positive definite radial function on sR  can be given by 
Schoenberg's theorem: 

Continuous function  : 0, R    is a positive definite 

radial function on sR  if and only if it is a Bessel transformation 
of a finite nonnegative Borel measure   on  0, , that is: 

 
0

r (rt)d (t)


    (10) 

Among them: 

   

r

s 2 /2
s

cos s 1
rt s 2 2

2 r
s






    
  

  

 (11) 

Among them: r x  is the norm of sx R . 
If function   is a (strictly) positive definite radial function 

on sR , that is to say, its corresponding multivariable function 
satisfies any n different points 

s t
1 1 2x , ,x ,c (c ,c , ,c ) N

N NR R      [8]. That is, the 
function must also be a (strictly) positive definite radial function 
on sR . Another function : (0, ) R    is the positive 

definite radial function on all sR  (for all s), that is, for all sR , 

the function s(x) ( x )(x )R    on sR  is the positive 
definite radial function. 

Continuous function : (0, ) R    is a positive definite 

radial function on all sR  if and only if it can be expressed in the 
following form: 

  r2t2

0
r e d (t)


    (12) 

where   is a finite nonnegative Borel measure over (0, ) , 
thus a positive definite radial function is obtained. 

D. Weighted Allocation of Basis Function 

Least square method considering weighting: 
2

1

2
2

( ( )( ( )) ( )) ( )

( ( ) ( )) ( )) ( )

j j

j j

P D x f x w x dx

Q D x g x w x dx

 

 







 




 (13) 

If you select 1
1

( ) ( )( )
n

j

w x x xj xj


   , the configuration 

method is exported. The collocation method uses the basis 
function to approximate the solution as follows: 

( ) ( )j j ju x x   (14) 

Then select dense point   1

n

j
xj


    1

n m

k n
xk



 
  and 

force equations and boundary conditions to hold on to these 
selected points: 

( ) ( ) ( ), 1,...,j jP D u x f x j n   (15) 
 

( ) ( ) ( ), 1,...,k kQ D u x g x k n n m     (16) 
There are two problems: One is the unique solvability of the 

discrete equation; The other is whether the solution of the 
discrete equation converges to the real when the data points are 
dense in the discussion area [9]. According to the positive 
definite radial function formula above, can make 

( ) ( )j jL u P D u x , ( ) ( )k kL u Q D u x , in this way, the discrete 
partial differential equation becomes a Hermite-Birkhof 
interpolation problem. If the boundary value problem of partial 
differential equation is well posed, then the system of linear 
equations of Hermite-Birkhof interpolation is the only solvable 
one. If so: If 2( ) (1 ) l dw w    , the order of the PDE under 
consideration is m, so when the boundary value problem of PDE 
is stable, the error between the solution of the discrete equation 
and the real solution of the equation can be estimated as follows: 

*( ) ( )( ) ( ) ( )l m
u x u x h

   
   (17) 

Here h is the density of the data points. In this way, we get a 
method of numerical solution of PDE, which only needs to 
arrange points without triangulation. The basic function of 
collocation method is ( ) ( )j jyx L x y   , therefore: 

( ) ( ) ( ) , 1,...,
kj j jy x xP D L y x f x k n       (18) 

( ) ( ) ( ) , 1,...,
kj j jy x xQ D L y x g x k n n m        (19) 
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E. Numerical Solution of Two Dimensional Laplace 

Equation Without Grid 

After the above numerical calculation, FDM is applied to 
time, which is transformed into a series of ODE, and then the 
discrete scheme of ODE is given with FIM, thus the numerical 
solution is solved iteratively [10]. 

If the time interval is set to be jt j ,j 0,1, , N   , 

/T N   and j j(x) (x,t )   is recorded, then the implicit 
eider format is: 

j 1 j
j 1 j 1
x

(x) (x) (x) f ( (x)) 
 




 

   (20) 

Among them, xf( )   . 
This system of nonlinear equations can be treated by implicit 

explicit method, so as to have the following implicit explicit 
eider scheme (Euler IMEX): 

j 1 j 1 j j
x (x) (x) (x) f ( )          (21) 

If the center difference scheme is used to discretize the space, 
the accuracy of the scheme can be proved to be 2O( f )  . 

The implicit and explicit format corresponding to crank 
Nicolson format can be obtained as follows: 

x
j 1 j 1 j j
x (x) 2 (x) (x) 2 f ( )          (22) 

After implicit and explicit processing, the accuracy of this 
format will be reduced to 2O( f )   [11]. Therefore, we can 
correct it to obtain crank Nicolson's cn-pc: 

j 1 j 1 j j j
x x
j 1 j 1 j j j j 1
x x

(x) 2 (x) (x) 2 (x) 2 f ( )
(x) 2 (x) (x) 2 (x) f ( ) f ( )

     

       

 

  

    

     

 (23) 

where j 1   is the estimated value and j 1(x)   is the corrected 
value. For the convenience of processing, the known boundary 
value is also regarded as the unknown function value, so the 
matrix form of FIM Euler IMEX is given as follows: 

1 2 j 1 j
2 1

j 1
1

j 1
2

1(f ) f ( )2( ) x 0 2
0 0 0 (0, )
0 0 0 (1, )

jf

f

f

  
 

 

 







 
     
    

     
    

     
 

（） （）

 

(24) 

Among them,  1 1,0, ,0f   ,  2e 0, ,0,1  . 
In order to further study the implementation mechanism of 

the meshless method and further understand the implementation 
details of the method in the numerical solution of partial 
differential equations, the following two-dimensional Laplace 
control equations are considered to be solved: 

2 2

2 2 0
x y

   

 
   (25) 

x2 y2 1 0     (26) 

where   is the flow function, and the equations represent the 
typical two-dimensional incompressible flow around a cylinder. 
The following calculation steps are used: 

(1) According to the relative position of spatial discrete 
points, the point cloud is determined. In order to analyze the 

relationship between point cloud density and calculation 
accuracy, regular structural grid points are used [12]. 

(2) The initial value of the inner field and the inner and outer 
boundary value are given. In order to verify the method and 
eliminate the influence of boundary conditions on the solution, 
the analytical solution is used as the outer boundary value 

(3) According to the idea of meshless method, the first-order 

spatial derivatives 
x




 and 

y



 of each point in the internal 

field are fitted with the eigenvalues of points, and then the 

second-order derivatives 
2

2x
 


 and 

2

2y
 


 are fitted with the 

first-order spatial derivatives. 
From this, we can get the large-scale matrix equation group 

f( ) 0  , and then calculate the specific numerical value of 
gridless PDEs. 

III. SIMULATION 
In the current computational fluid dynamics (CFD) software 

design, most of them adopt the structured programming method, 
and have achieved considerable success. In many years of 
research and practice, a set of relatively stable design ideas and 
relatively complete engineering function library have been 
formed. Most of these softwares are based on the grid to 
calculate the flow field. The grid cells are closely related with 
each other and have a large amount of information exchange. 
Using structured programming language, they can directly 
access the physical values of grid points and form functional 
modules with strict structure and high degree of aggregation. 
However, there are some defects in the structured Liuzi design 
method: single design goal, insufficient flexibility in the design 
process, poor scalability, low level of design reuse [13]. 
According to the object-oriented software design method, it has 
gradually become a main method of software development. It 
centers on the objects in the objective world, and its analysis and 
design ideas are in line with people's thinking mode. The 
analysis and design results are close to the reality of the 
objective world. 

A. Experimental Preparation 

In order to verify the effectiveness of the numerical analysis 
and comparison method for meshless partial differential 
equations proposed in this paper, simulation experiments were 
carried out. The specific experimental environment is shown in 
Table I. 

 
Table. I. Experimental environment 

Experimental 
environment Configuration Parameter 

Hardware 
environment 

CPU Intel(R)Core(TM)i5-9400 
Frequency 2.90GHz 

RAM 16.0GB 

Software 
environment 

Operating system Windows 10 
Version 18362.1082 pro 
Digits 64bit 
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Analog software 
language APDL 

Simulation 
software MATLAB 7.0 

 
The laboratory environment is shown in Fig. 1. 
 

 
Fig. 1 laboratory environment 

 
The statistical results of experimental data are shown in Table 

II. 
Table. II. Statistical results of experimental data 

Experimental 
data volume 

Number of 
object sets 

Number of 
state sets 

Number of 
method 

sets 

2 

35GB 1000 1000 1000 0.635 
 
During the experiment, object type is the basic concept of 

object-oriented technology, which consists of the following 
parts: object type = object set + state set + operation set + 
method set + constraint. The object set is a dynamic set of 
existing instance objects of object type, which changes 
dynamically with the creation, revocation, entry and exit of 
objects. An object also has a permanent identifier that satisfies 
uniqueness, which is called an object identifier. State set is a set 
of legal states that a class of objects may have. Generally, object 
set is a static concept, and object state is composed of several 
state variables (i.e. attributes). The validity of state is 
determined by the constraint of object type. An operation set is a 
set of operations that can act on all sets of objects. A method set 
is a collection of its own operations that an object can call in 
response to a message. Constraints specify the legal state of this 
type of object and the timing relationship between the legal 
states. The instance object is dynamic, and a series of state 
transitions (i.e. property value changes) can be made through 
method calls. The object type has a hierarchical structure. The 
child type automatically constrains the methods, state variables 
and constraints of the parent type. It also allows the child type to 
add new methods and state variables, redefine or cancel the 
parent type methods, but does not allow the weakening of the 
object determination method. 

Design pattern is a description of classes and objects 
communicating with each other that are used to solve general 
design problems in specific scenarios. A design pattern names, 
abstracts and determines the main aspects of a general design 
structure, which can be used to construct reusable 
object-oriented design [14]. The design pattern determines the 

classes and instances involved, their roles, ways of 
collaboration, and assignment of responsibilities. Brain Foote 
divides the life cycle of object-oriented software into prototype 
stage, extension stage and consolidation stage. When software 
enters the extension stage, its evolution is determined by the 
following two conflicting requirements: 

(a) Meet more needs; 
(b) Easy to reuse. 
For example, we need software to be able to replace the 

turbulence model, dynamically generate discrete points 
according to the actual situation, use different algorithms to 
generate point cloud structure, etc., and these changes should 
use the original design as much as possible. Such continuous 
expansion will often lead to reconstruction. The reconstruction 
work includes dividing the class into special and general 
components, and lifting or dropping each operation to the 
appropriate class at the class level and rationalize the interface 
of each class. To meet more requirements and reach the 
requirements of u higher reusability, the two phases of 
object-oriented software continue to be expanded and 
consolidated. One is to expand to meet the new requirements 
and consolidate to make the software more general. This cycle is 
inevitable, but good design is robust to the change of 
requirements, which can avoid refactoring to some extent. 
Design pattern records the design structure produced by 
refactoring, and provides the goal for refactoring. 

For example, we need software to be able to replace the 
turbulence model, dynamically generate discrete points 
according to the actual situation, use different algorithms to 
generate point cloud structure, etc., and these changes should 
use the original design as much as possible. Such continuous 
expansion will often lead to reconstruction. The reconstruction 
work includes dividing the class into special and general 
components, and lifting or dropping each operation to the 
appropriate class at the class level and rationalize the interface 
of each class. To meet more requirements and reach the 
requirements of u higher reusability, the two phases of 
object-oriented software continue to be expanded and 
consolidated. One is to expand to meet the new requirements 
and consolidate to make the software more general. This cycle is 
inevitable, but good design is robust to the change of 
requirements, which can avoid refactoring to some extent. 
Design pattern records the design structure produced by 
refactoring, and provides the goal for refactoring. 

According to the general characteristics of gridless algorithm, 
combined with the general problem types of computing 
software, we can abstract the software framework design into 
the following basic classes. This paper gives the basic 
responsibilities and functions of each class, and indicates the 
recommended design pattern in square brackets. 

Cproblem problem class: 
A) Determine the type of problem (equation). CFD software 

generally solves potential flow equation, Euler equation, NS 
equation, etc. in order to meet the different needs of different 
users, it is considered to design an extensible equation type 
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problem class. 
B) To determine the solution space of the problem, the 

boundary / surface conditions are considered in 
two-dimensional and three-dimensional space respectively, and 
the user inputs to determine the boundary / surface conditions. 

C) Request / create algorithm object. According to the user's 
requirements and equation types, various explicit and implicit 
algorithm objects are created. 

D) Request / create flow field objects. According to the 
solution space, boundary / surface conditions and different flow 
field discretization methods, the corresponding flow field 
objects are requested / created. 

E) Execute algorithm [facdae]. The task of solving the 
problem is given to algorithm object and flow field object. 

F) The calculation results are output to avoid the calculation 
deviation caused by the specific traversal order. Under the same 
experimental conditions, the information interaction between 
the numerical solution of meshless PDE and that of meshed 
PDE is compared. 

B. Information Interaction Comparison 

In a specific software system, the way of information 
interaction also affects the scalability and reusability of 
software. The following is an example of cgird flow field 
created by Cproblem problem object. Combined with Abstract 
mode, it shows how to implement scalable design for different 
equation types (Indian equation, NS equation, etc.) and different 
flow field discretization methods [15]. 

In this case, the client can be the function of the CreateGrid of 
the specific problem object. Through the dynamic binding of 
Grid Factory port (abstract factory class) and cgridzd 
(two-dimensional flow field class), the design with good 
expansibility is realized, and the unnecessary reconstruction 
caused by the disorder of correlation between the flow field 
discrete method and space type is avoided. If the flow field is 
generated step by step and the algorithm is integrated, it is 
necessary to request an algorithm object in the abstract factory 
to achieve better function. 

Compare the information interaction between the numerical 
solution of meshless PDE and that of meshed PDE, as shown in 
Fig. 2: 
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(a) information interaction of numerical solutions for PDEs with grids 
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(b) information interaction of numerical solutions for meshless partial 

differential equations 
Fig. 2 comparison of information interaction between numerical 

solutions of meshless PDEs and grid PDEs 
 
According to Fig. 2, it can be seen that the interaction of 

numerical solution information of gridless PDEs is greater than 
that of gridded PDEs. In the meshless algorithm, the physical 
quantity calculation of discrete points in the flow field is carried 
out by requesting the corresponding point cloud instance, and 
the whole flow field is composed of multiple discrete points, 
and point cloud and flow field are aggregation objects. In the 
operation design of aggregate objects, iterator pattern is very 
necessary. The iterator pattern provides a sequential access to 
elements of an aggregate object without exposing its internal 
representation. Its biggest advantage is to separate the ergodic 
mechanism from the aggregate object, so that we can define 
different iterators to implement different ergodic strategies, and 
can switch flexibly in practical application, so as to eliminate 
some calculation deviation caused by specific ergodic order. 

In the actual calculation, the density of discrete points may 
affect the calculation effect of some or the whole flow field area. 
Considering the robustness of the software, it is recommended 
to use the observer mode. This mode defines a one to many 
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dependency between objects. When the state of an object (a 
flow field area) changes (the calculation effect needs to be 
improved), all objects (point clouds and points belonging to the 
area) that depend on it are notified and automatically updated 
(encrypted). The numerical solution of gridless PDE improves 
the expansibility and reusability of software design on the 
premise of ensuring software efficiency as much as possible. Of 
course, the application selection of patterns is not unique and 
independent, but the best design in practical work requires many 
design patterns, which fit and interweave to form a larger whole. 

C. Error Comparison of Numerical Results 

In order to compare the approximate accuracy of the 
meshless PDE function and other functions on the lmaps, the 
lmaps method based on these two functions is used to solve the 
PDE in the irregular and regular regions, and the error analysis 
is given. The KD tree algorithm is selected to search the 
adjacent nodes in the local area during the solution process, and 
the approximate accuracy and calculation efficiency are 
improved through the ripple LOOCV algorithm and the 
parameter C is continuously debugged. The maximum absolute 
error (MAE) and maximum relative error (MRE) are defined as 
follows: 

max ( , ) ( , )k k

j jMAE u x t u x t   (27) 

( , ) ( , )
max

( , )

k k

j j

k

j

u x t u x t
MRE

u x t


  (28) 

where k is the time layer, ( , )k

ju x t  and ( , )k

ju x t  represent the 
numerical solution and the exact solution on the K time layer 
respectively. In this paper, we choose the Poisson equation, 
which is commonly used in the fields of electrostatics, 
mechanical engineering and other physical problems, as well as 
Burgers equation, which is used to solve shock wave, shallow 
water wave, traffic flow mechanics and other physical 
problems, as numerical examples to verify the effectiveness of 
the above two functions. The two-dimensional position 
equation considering the distribution of irregular points in the 
irregular region: 

, ( , )x yu e x y     (29) 

( , ) 2 ,( , )x yu x y e x y   (30) 
According to the calculation results, we can see that the 

accuracy of the two functions is satisfactory, and the error in the 
whole irregular calculation area is basically the same, and both 
of them are smooth. Compared with the functions in this paper, 
the error of matern function at the corners of irregular boundary 
appears slight fluctuation. 

 
Table. III. Error comparison of numerical results of two functions at 

different points 
Check the number The method of this paper Lmaps matern method 

MAE MRE MAE MRE 
3200 9.56E-05 9.39E-05 1.55E-04 1.62E-04 
3600 4.36E-05 4.55E-05 5.26E-05 5.17E-05 
4000 3.69E-05 3.70E-05 5.73E-05 5.90E-05 
4400 4.65E-05 4.60E-05 8.35E-05 8.08E-05 

4800 1.37E-05 8.86E-05 9.80E-05 9.78E-05 
 
Table III error results of two functions. Generally speaking, 

the more points, the denser the grid, the higher the accuracy of 
the numerical solution, but this is not the case. On the contrary, 
as the number of points increases, the error of matren function 
also increases. When it increases to a certain value, the error of 
the function fluctuates greatly and tends to increase. This 
method is different from the lmaps matern method. With the 
increase of the number of points, the error shows a small 
fluctuation trend. When it increases to a certain value, the error 
is always less than that of the lmaps matern method, which 
shows that the error is not only related to the total number of 
nodes, but also closely related to the distribution of nodes. In 
general, the numerical results obtained by the function in this 
paper are more accurate and effective than those obtained by the 
lmaps matern method. 

Based on the above, the time taken by different methods to 
obtain the optimal numerical solution of meshless PDEs is 
compared. The specific comparison results are shown in Table 
IV. 

 
Table. IV. Time taken to obtain the optimal numerical solution 

Number of 
experiments 

The method of this 
paper 

Lmaps matern 
method 

10 1.23 s 2.58 s 
20 1.56 s 2.69 s 
30 1.25 s 3.55 s 
40 1.45 s 3.24 s 
50 1.47 s 2.54 s 
60 1.31 s 2.84 s 
70 1.24 s 2.96 s 
80 1.11 s 3.14 s 
90 1.26 s 3.47 s 

100 1.34 s 3.55 s 
 
By analyzing the data in Table IV, it can be seen that in 100 

experiments, the time used to obtain the optimal numerical 
solution by this method varies from 1.11 s to 1.56 s, and the time 
used to obtain the optimal numerical solution by lmaps matern 
method varies from 2.54 s to 3.55 s, which is much higher than 
the experimental comparison method, which shows that the time 
used to obtain the optimal numerical solution of meshless PDEs 
by this method is shorter, The overall operation efficiency is 
higher and the practical application effect is better, which 
proves the advantages of this method. 

IV. DISCUSSION 

As a numerical method to overcome the shortcomings of the 
finite element method, the meshless method has attracted the 
attention of many scholars. Now it has been applied to the 
related fields of engineering calculation. At the same time, 
gridless method is still a research field that needs to be 
developed and improved, and there are many problems that 
need to be studied in detail. Some problems are discussed and 
some results are obtained. This paper introduces several 
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function approximation methods and PDEs solving methods of 
meshless method. By comparing the information interaction 
between the numerical solution of gridless PDEs and that of 
gridded PDEs, it is proved that the numerical solution of 
gridless PDEs is superior, and its absolute error and relative 
error is lower, and the result is more accurate. Compared with 
the experimental comparison method, this method takes less 
time to obtain the optimal numerical solution of meshless PDEs, 
has higher overall operation efficiency and better practical 
application effect. The reason is that this method uses the 
meshless method to solve, which overcomes the problems of 
slow solution speed and low accuracy in the traditional method, 
and can be further popularized in practice in order to promote 
the further development of related fields. 

V. CONCLUSION 
This paper mainly studies the basic mechanism of the 

meshless algorithm, combined with the distance weighting 
factor, in the process of solving the equation, this paper 
successfully applies the meshless algorithm to obtain 
high-precision calculation results. In this paper, the grid free 
algorithm is used to improve the reusability and flexibility of the 
software. The basic functional classes of this kind of software 
are divided, and a series of common design patterns are 
proposed, which makes a useful exploration for the design of the 
overall framework of the software. It is true that there are still 
many problems to be solved in the current meshless computing 
method, but there is no doubt that this method has a broad 
application prospect in computational fluid dynamics. 
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