International Journal of Circuits, Systems and Signal Processing

E-ISSN: 1998-4464
Volume 15, 2021

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of NAUN Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Main Page

Submit a paper | Submission terms | Paper format


Volume 15, 2021

Title of the Paper: Solving Nonlinear Wave Equation Based on Topology


Authors: Liang Song, Guihua Li, Shaodong Chen

Pages: 1232-1241 

DOI: 10.46300/9106.2021.15.134     XML


Abstract: A method of solving nonlinear wave equation based on topology is proposed. Firstly, the characteristics of stochastic graph and Scaleless network are compared, and their topological characteristics are analyzed. Because of the existence of a few axis nodes, Scaleless networks have higher average aggregation than those with the same number of airport nodes and connected stochastic graphs. According to the topological structure of nonlinear wave equation, the first-order integral method is used to solve the nonlinear wave equation. According to the first integration, the threshold range is set, and the solution flow is designed in line with the division theorem. The topology of the network is analyzed according to the node degree, aggregation coefficient and reciprocity of the network, so as to verify and analyze. The experimental results show that the application of this method is 98%, which is still effective for the hyperbolic development equation of the same type.