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Abstract- The ”corrected” EEG data, after
artifact removing, may be the subject of further
investigations, for example segmentation, result-
ing new information to be used for feature ex-
traction, of great help for medical diagnosis. The
paper has as object a generally approach for seg-
mentation, making use of Maximum A posteriori
Probability (MAP) estimator. The proposed pro-
cedure has been used in the analysis of a sample
lowpass EEG signals recorded with 13 scalp and
1 EOG electrodes, event-related potential (ERP)
data.
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I. Introduction

T
HE ”corrected” EEG signals, after artifact source
removing, may be the subject of future investiga-

tions, to detect a possible change in individual or simul-
taneous EEG recordings. The analysis of the behavior
of such signals reveals that the most of the changes that
occur are either changes in the mean level, or changes in
spectral characteristics. In this framework, the problem
of segmentation between ”homogenous” part of the sig-
nals (or detection of changes in signals) arises more or
or less explicitly.

Several methods for change detection and segmen-
tation have been suggested earlier, with application
in different fields. The general framework for change
detection/segmentation make the object of [1] and [2].
Some authors typically employ explicit management of
multiple model AFMM (adaptive forgetting by multi-
ple models), formulate the segmentation problem as a
least-squares problem with sum-of-norm regularization
over the state parameter jumps [3], use a sequential algo-
rithm [4], time-frequency decomposition and statistical
modeling [5], or segmentation fragments optimization in
empirical wavelet transform [6], among others.

Also, the segmentation problem is present in many
applications for EEG signal analysis. So, [7] performs
adaptive segmentation of EEG signals, [8] proposes a an

efficient event-driven segmentation and de-noising tech-
nique, founded on the principles of level crossing and ac-
tivity selection, [9] deals with a nonparametric method
for the EEG signal segmentation, [10] makes use of a
time-frequency approach for signal segmentation com-
bining the empirical mode decomposition (EMD) and
Hilbert transform (HT), [11] uses a genetic algorithm to
choose appropriate values for parameters in any signal
segmentation application, [12] performs multi-channel
EEG signal segmentation and feature extraction, while
[13] presents electrophysiological signals segmentation
for EEG frequency bands and heart rate variability anal-
ysis.

The signal segmentation in EEG signal analysis is
very important because the quasi-stationary segments
resulted can be used for feature extraction, an impor-
tant step in the analysis of EEG signals, using statisti-
cal methods [14], spectral analysis [15], cepstral analysis
[16], and coherence analysis [17], among others.

The outline of this paper is as follows. Section 2
presents the change detection and segmentation prob-
lem in EEG signals analysis and gives the conceptual
description of a segmentation algorithm, based on Max-
imum A posteriori Probability (MAP) estimator. Sec-
tion 3 presents a case study having as subject, artifact
removing and segmentation of ”corrected” EEG record-
ings, collected from 13 scalp and 1 EOG electrodes, ap-
plied to a sample lowpass event-related potential (ERP)
data for 2 epochs.

II. Segmentation of ”corrected” EEG signals

A. Preliminary

The problem of change detection and segmentation is
a key point which frequently occurs in many application
areas, where analysis and modeling of non-stationary sig-
nals arises.

The change detection problem refers to detection of
the change in signal dynamics, providing information, in
some case, for feature extraction. The performance crite-
rion of a change detection algorithm consists of its ability
to correctly detect the changes, with minimum delay and
minimum probability of false decisions. So, it must re-
spond to the small changes (sensitivity to changes), and
should not be affected by disturbances, noise or modeling
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errors (robustness of the algorithm).

Two basic approaches in change detection are re-
ported as based on quantitative models and qualitative
models, which can be conveniently combined to improve
the robustness of the quantitative residuals generation
[18]. In the case of analytical exact models absence,
learning models, such as fuzzy and neural models, can
be used. Moreover, the neural networks can be used for
classification of the residuals, while fuzzy logic is use-
ful in decision making. Some heuristics results, obtained
from the previous experience, can be used by special-
ist doctor for diagnosing the origins of the change in the
EEG signals, based on the change characteristics and his
experience.

Almost all change detection solutions assume that the
monitored signals can be described with sufficient preci-
sion by a finite-dimensional linear model. In practice, if
the signal is more complex than the dynamics, described
by a finite-dimensional model, the parameter estimates
will still converge, but their values can be strongly depen-
dent on the experiment conditions. The algorithms will
not be able to separate the changes determined by the
external conditions from those produced by the internal
dynamics of the signal making the object of the analysis,
so the classical tests will fail. The problems mentioned
above point out the requirement of the robust change
detection algorithms, able to separate the changes deter-
mined by the external conditions from the changes of the
internal dynamics of the signal. The problem is of great
interest, especially when the artifact removing has not
been completed.

The first generation of change detection algorithms
is based on strong hypotheses, or strong assumptions,
which are difficult to verify in practice. So, a second
generation of solutions was required, insensitive to the
uncertainty of the signal dynamics, to the environment,
and to large noise, statistically unknown. The central
problems to be addressed in the change detection area
refer to robustness, sensitivity and versatility. The lack
of robustness of the classical algorithms is linked to the
failure of the detection, if one or more of the hypotheses
assumed during the design are not verified in practice.
The sensitivity is linked to the ability of the algorithm to
detect the change, even if there are small scale incipient
changes. Finally, the versatility is linked to the ability
of the methods and techniques to solve more change de-
tection problems, using the same set of algorithms.

The change detection problem can be solved by
change point estimation (mean change) [19], change de-
tection using one and two model approach, with different
distance measures and stoping rules [20], multiple change
detection [21], detection and diagnosis of model parame-
ter and noise variance changes [22], for mono- and multi-
variable signals. Some algorithms, making the object of
[1] and [2] in change detection, represented the starting
points in developing of these algorithms.

In change detection, the problem of segmentation be-
tween ”homogenous” parts of a signal arises more or less
explicitly. It is often the case that a mono- or multi-

variate signal can be represented as a sequence of dis-
crete segments of finite length. There are two general
approaches to this problem. The first involves looking
for change points in the signal: for example, one may as-
sign a segment boundary whenever there is a large jump
in the average value of the signal. The second approach
involves assuming that each segment in the signal is gen-
erated by a system with distinct parameters, and then
inferring the most probable segment locations and the
system parameters that describe them. While the first
approach tends to only look for changes in a short win-
dow of time, the second approach generally takes into
account the entire signal.

The goal in segmentation is to find the time instants
for changes in the properties or dynamics of a signal.
The problem is closely related to change detection, where
the objectives are to detect a change as fast as possible,
to isolate the change time and to diagnose the cause of
the change. In segmentation however, only the change
times are primarily of interest. One way to segment a
signal using a change detection method, is to process
the data sequentially and when a change is detected the
detector is restarted. This is the natural method for on-
line purposes and it is thoroughly surveyed in [2].

The proposed problem formulation in this paper as-
sumes off-line or batch-wise data processing, although
the solution is sequential in data and a recursive approx-
imation is suggested as well. The segmentation model is
the simplest possible extension of linear regression mod-
els to signals with abruptly changing properties, or piece-
wise linearizations of non-linear models.

B. The linear regression model with piecewise con-

stant parameters

We introduce now the linear regression model with
piecewise constant parameters to be used in EEG sig-
nals segmentation. As we mentioned above, in segmen-
tation the goal is to find a sequence of time indices
kn = k1, k2, . . . , kn, where both the number n and the
locations ki are unknown, such that a linear regression
model with piecewise constant parameters,

yt = φT
t θ(i) + et, E(e2t ) = λ(i)Rt (1)

when ki−1 < t ≤ ki is a good description of the observed
signal yt. Here θ(i) is the d-dimensional parameter vec-
tor in segment i, φt is the regressor and ki denotes the
change times. The noise et is assumed to be Gaussian
with variance λ(i)Rt, where λ(i) is a possibly segment
dependent scaling of the noise and Rt is the nominal co-
variance matrix of the noise. We can think of λ either
as a scaling of the noise variance or variance itself (Rt

= 1). Neither θ(i) or λ(i) are known. The Gaussian as-
sumption on the noise is a standard one, partly because
it gives analytical expressions and partly because it has
proven to work well in practice. We will assume Rt to be
known and the scaling as a possibly unknown parame-
ter. The model (1) is referred to as changing regression,
because it changes between regression models. Its impor-
tant feature is that the jumps divide the measurements
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into a number of independent segments, since the pa-
rameter vectors in different segments are independent.
Some important cases of the model (1) are the changing
mean model, the autoregressive (AR) model, the autore-
gressive model with exogenous variable (ARX) and finite
impulse response (FIR) model, etc, where φt has differ-
ent expressions.

The assumption on the regression models in (1) is not
too restrictive since many stationary processes encoun-
tered in practice can be closely approximated by such
models. The identification and parameters estimation
methods represent only tools to perform change detec-
tion and segmentation. Good and precise models offers
high performance in these schemes, but also biased para-
metric models can be used for change detection and seg-
mentation. This bias decreases, but does not annihilate
the performance of the detection and segmentation pro-
cedures.

C. Algorithm description

We present here the conceptual description of the seg-
mentation algorithm using the Maximum A posteriori
Probability (MAP) estimator [21].

The segmentation problem is solved, searching all seg-
mentation kn values, that minimizes an optimality cri-
teria of the form:

k̂n = arg min
n≥1,0<k1<...<kn=N

V (kn) (2)

In each segment is determined a linear regression
model. For the measurements belonging to i-th seg-
ment, yki−1+1, . . . yki

= yki

ki−1+1, are determined the least
square estimate of model parameters and its covariance
matrix:

θ̂(i) = P (i)

ki∑

t=ki−1+1

φtR
−1
t yt, (3)

P (i) =




ki∑

t=ki−1+1

φtR
−1
t φT

t




−1

. (4)

In optimal segmentation algorithm, the following
quantities are used:

V (i) =

ki∑

t=ki−1+1

(yt − φT
t θ̂(i))

TR−1
t (yt − φT

t θ̂(i))

(5)

D(i) = − log detP (i) (6)

N(i) = ki − ki−1 (7)

The values used in kn segmentation, having n−1 degrees
of freedom are presented in Table 1, for better under-
standing of the conceptual description of the algorithm.

It can be noted the number of segmentations kn is
2N and the dimensionality problem is a difficult one. To
solve the optimal segmentation in [2] are proposed dif-
ferent optimality criteria, one of these being the MAP

Table 1: Values used in MAP estimator.
Data y1, y2, . . . , yk1

. . . ykn−1+1, . . . , ykn

Segment Segment 1 . . . Segment n

LS est. θ̂(1), P (1) . . . θ̂(n), P (n)
Statistics V (1), D(1), N(1) . . . V (n), D(n), N(n)

estimator, for which the conceptual description is given
in the following; the information from Table 1 is used,
as well as three assumptions on noise scaling, λ(i) given
below:

Data: Signal yt, t = 1 . . .N

Step 1: Analyze every segmentation, with the num-
ber of jumps n and jump times kn, for each case.

Step 2: For each segmentation resulted, the best
models for each segment are computed under the form
of the least square estimates θ̂(i) and covariance matrices
P (i).

Step 3: For each segment compute:

V (i) =
∑ki

t=ki−1+1(yt − φT
t θ̂(i))

TR−1
t (yt − φT

t θ̂(i))

D(i) = − log detP (i)
N(i) = ki − ki−1

Step 4: Use MAP estimator to determine k̂n,
for three assumptions on noise scaling, λ(i), with q

(0 < q < 1) the change probability at each time instants.

(i) known λ(i) = λ0,

k̂n = argminkn,n

∑n

i=1(D(i) + V (i)) + 2n log 1−q

q

(ii) unknown but constant λ(i) = λ,

k̂n = argminkn,n

∑n

i=1 D(i) + (Np− nd− 2)×

× log
∑n

i=1
V (i)

Np−nd−4 + 2n log 1−q

q

(iii) unknown and changing λ(i),

k̂n = argminkn,n

∑n

i=1(D(i) + (N(i)p− d− 2)×

× log V (i)
N(i)p−d−4 ) + 2n log 1−q

q

Results : Number n and locations ki , kn =
k1, k2, . . . , kn

According to the assumption on noise scaling, only

one of the equations Step 4 is used to estimate k̂n. For
the exact likelihood estimation can be used recursive lo-
cal search techniques, as well as numerical searches based
on dynamic programming or Markov Chain Monte Carlo
(MCMC), [2].

Based on the results of optimal segmentation and the
data analysis, for each segment, it is possible to locate
and diagnose a possible anomaly occurred in EEG signals
making the object of investigation.
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D. Computational aspects

The real challenge in segmentation is to cope with
the problem of the dimensionality. It can be noted that
the number of segmentations kn is 2N , because it can
be a change or no change at each time instant. Several
strategies have been proposed for MAP segmentation,
mainly, implementing numerical searches based on dy-
namic programming or MCMC (Markov Chain Monte
Carlo) techniques, and recursive local search techniques
[2].

An overview of the literature on computational com-
plexity of the Metropolis-Hastings based MCMC meth-
ods for sampling probability measures in high dimen-
sions is given in [23]. The computational complexity of
MCMC-based estimators in large samples is discussed in
[24], where the implications of the statistical large sample
theory for the computational complexity of Bayesian and
quasi-Bayesian estimation carried out using Metropolis
random walks are examined.

The progress in MCMC has been impressive and
seems to be accelerating. Problems that appeared im-
possible have been solved. For combinatorial counting
problems, recent advances have been remarkable. De-
spite of this fact many problems in this field are still
open, and a solid theory for these approaches is still al-
most nonexistent [25].

The optimal segmentation algorithm, MAP, uses as
input, the data vector, the model structure: mean model,
regression model, AR(na) model, ARX(na,nb,nk), etc.,
treating mode of the measurement covariance ((i) known
noise scaling, (ii) unknown but constant noise scaling,
and (iii) unknown and changing noise scaling), differ-
ent options for the penalty terms occuring in model or-
der selection: AIC, BIC/MDL, etc), the probability that
the system jumps at each sample, q, and some design
parameter for the search scheme: the number of filters
used (M), the minimum lifelength of a jump sequence
guaranteed (ll) and the minimum allowed segment size
(mseg). In practice, if we have no other information,
it is recommended to use the following values, [21]: the
number of filter, M, is recommended to be chosen dim(θ)
+ 8, the choice of minimum lifelength, ll, is related to
the identifiability of the model, and should be chosen
larger than dim(θ) + 2, and the minimum allowed seg-
ment size, mseg, can be chosen 0, when a change or no
change can be produced at each time instant, [21]. Fi-
nally, the jump probability, q, is used to tune the number
of segments. Based on some information from the cor-
rect scientific knowledge of the physical process or from
previous empirical evidence, an appropriate value for q

can be chosen. For q = 0.5, the MAP estimator becomes
Maximum Likelihood (ML) estimator, [21].

III. Experimental results

A. EEG data

The data used in this case study represent an EEG
time series collected from 13 scalp and 1 EOG elec-
trodes. For artifact removing from data, has been used
Independent Component Analysis (ICA) with high-order

statistics [26], applied to sample lowpass ERP data for
2 epochs and 312 frames per data epoch, at 312.5 Hz
sampling rate. The data are used in many case studies
(see [27], among others).

The ”corected” EEG data for 2 conditions, after ar-
tifact removing, are shown in Fig. 1 and Fig. 2 for the
channels 1-7 (Fz, Cz, Pz, Oz, F3, F4, C3) and for the
channels 8-14 (C4, T3, T4, P3, P4, Fpz, EOG), respec-
tively.

B. Segmentation of artifact ”corrected” EEG sig-

nals

The EEG signals, after artifact removing, made the
object of segmentation using MAP algorithm, presented
in Section 2. Visual inspection for the artifact ”cor-
rected” EEG signals, for all components shows a clearly
visible change in energy and frequency content. A piece-
wise constant model (1), could lead to a acceptable trade-
off concerning the complexity and efficiency of the de-
scribed algorithm for the estimation of the change time
in EEG signals, making the object of investigation. The
segmentation algorithm has been applied for ”unknown
and constant noise scaling” hypothesis, using MCMC al-
gorithm with the following parameters; q = 0.3, M = 9,
ll = 5 and mseg = 10. The segmentation results for an
AR(1) model (see equation (1), for n = 1) are given in
Fig. 3 and Fig. 4, for channels 1-7 and channels 8-14,
respectively.

The ”corrected” EEG signals segmentation evalua-
tion can be performed using time-frequency analysis. For
this, the reduced interference distribution (RID), [28],
has been evaluated (see Fig. 5 and Fig. 6, for channels
1-7 and channels 8-14, respectively). The RID belongs
to Cohen’s class, and reprezents an extension of Wigner-
Wille distribution [29]. It overcomes some problems in
time-frequency analysis [29], and it appears to be a good
choice for EEG signal analysis. The RID has been com-
puted using a kernel based on a Hanning window, a num-
ber of frequency bins identical with the time instants, N
= 624, a time smoothing window of length Lg = 204, a
frequency smoothing window of length Lh = 512, and a
threshold of 2%.

The time-frequency analysis results, presented above,
can be used for energy concentration of the EEG sig-
nals and feature extraction. It consists of energy con-
centration analysis at specific time instant or frequency
band, or in some specific time and frequency areas. A
such analysis is able to provide more information about
the EEG signals making the object of evaluation. The
problem of energy concentration, making use of time-
frequency analysis is discussed in [30]. Other works deal
with Rényi entropy, as a measure in evaluation of infor-
mation amount encoded in time-frequency distribution
[31]. A generally method for energy distribution evalua-
tion using measures of Rényi entropy in EEG signals is
presented in [32].

IV. Conclusions

The results presented highlight the effectiveness of
the approach used, making use of MAP estimator, for
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Fig. 1: ERP filtered data after artifact removing for 2
epochs, channels 1-7
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Fig. 2: ERP filtered data after artifact removing for 2
epochs, channels 8-14
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Fig. 3: ERP filtered data segmentation for channels 1-7
(2 epochs) after artifact removing
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Fig. 4: ERP filtered data segmentation for channels 8-14
(2 epochs) after artifact removing
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Fig. 5: Reduced interference distribution for ERP fil-
tered data without artifacts: channels 1-7 (2 epochs)
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Fig. 6: Reduced interference distribution for ERP fil-
tered data without artifacts: channels 8-14 (2 epochs)
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optimal segmentation of ”corrected” EEG signals. It of-
fers a simpler analysis and interpretation of the scalar,
or multivariable EEG signals, having as final goal fea-
ture extraction and providing facilities for its realization.
The procedure does not raise problems in choosing the
input parameters and is robust in choosing the q param-
eter, change probability at each time instants [21]. The
model used is a simple one, offers a convenient frame-
work in tracking the EEG signal dynamics and assures a
good segmentation, for scalar and multivariable signals.
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