International Journal of Circuits, Systems and Signal Processing

   
E-ISSN: 1998-4464
Volume 15, 2021

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of NAUN Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Main Page

Submit a paper | Submission terms | Paper format

 


Volume 15, 2021


Title of the Paper: 2x2 Grid Array Design with E-shaped Microstrip Elements

 

Authors: Juhi K. Baruah, Sivaranjan Goswami, Kandarpa Kumar Sarma, Nikos E. Mastorakis

Pages: 1365-1370 

DOI: 10.46300/9106.2021.15.146     XML

Certificate

Abstract: The paper proposes a work of four element in a 2×2 grid fashioned with E-shaped microstrip patch antenna with corporate fed .The paper compares the proposed design with four elements with a single element and a 2 element array design.All the three antenna designs use E shaped microstrip patch as an element. The design of the grid is achieved through the design of a single element, the design of a 1×2 array and finally the design of the 2×2 grid on an FR4 epoxy substrate of thickness 1.5 mm. A corporate feed network of microstrip lines is used to excite the array. The performance of each stage is studied in terms of the return loss parameter, the far field gain, and the beam-widths are observed in each case from simulation results. The resonant frequency in each case is 3.8 GHz. Through comparision of simulation results the paper shows that as the number of elements is increased, the beam-width reduces. In other words, the directivity is increased. Further, it is also observed that the gain and bandwidth is the minimum for the single patch, followed by that of the 1×2 array and the maximum for the 2×2 grid. Thus,it is ssen that the proposed four element antenna with corporate feeding performs better as compared to antennas with either only single patch element or two element array. The construction of the grid leads to increase in gain, bandwidth and directivity of the antenna.