
 

 

 
Abstract—Computer aided synthesis of sparse array is a 

popular area of research worldwide for the application in 

radar and wireless communication. The trend is observing 

new heights with the launch of 5G millimeter wave 

wireless communication. A sparse array has a fewer 

number of elements than a conventional antenna array. In 

this work, a sparse array is synthesized from a 16×16 

uniform rectangular array (URA). The synthesis includes 

an artificial neural network (ANN) model for estimation of 

the excitation weights of the URA for a given scan-angle. 

The weights of the sparse array are computed by the 

Hadamard product of the weight matrix of the URA with a 

binary matrix that is obtained using particle swarm 

optimization (PSO). The objective function of the 

optimization problem is formulated to ensure that the 

PSLL is minimized for multiple scan-angles. It is shown 

from experimental analysis that apart from minimizing the 

PSLL, the proposed approach yields a narrower beam-

width than the original URA. 

 

Keywords— sparse array antenna, planar array, peak side-

lobe level, PSLL, particle swarm optimization 

I. INTRODUCTION 
phased array antenna is widely used in wireless 
communication and radar systems. With the evolution of 

5G and millimeter-wave communication, a large grid of small 
 

 

printed antennas is becoming popular [1, 2].  
A phased array antenna comprises stationary elements 

excited at different phases to obtain radiation in different 
directions [3]. Phased arrays have been there for a long time. 
The first phased array antenna was made in 1955 [4]. The first 
printed phased array was reported by Munson et al. in 1974 
[5]. With the evolution of microwave and millimeter-wave 
communication standards, the use of phased arrays became 
more common. There has been extensive research on phased 
array antennas with a significant number of radiating elements 
for 5G wireless communication [6]. 

The elements of a typical phased array have a spacing of 
one-half of the operating wavelength, represented by λ/2 [3]. A 
sparse array is a phased array antenna that has fewer elements 
than a conventional array. Synthesis of a sparse array reduces 
the overall cost, weight, required power, dissipated heat, etc. 
of a communication or a radar system because of the reduced 
number of elements of the array and the corresponding 
reduction in the excitation circuitry [7]. 

When an array has a fewer number of elements, the spacing 
between the elements becomes greater than λ/2. This causes an 
increase in the number of side lobes of the antenna. This is a 
major drawback of sparse arrays. Traditionally, this problem 
was addressed by adjusting the positions, spacing, and 
excitation weights of the array [7]. 

With the advancement of modern computers, soft-
computational optimization algorithms are widely being used 
for the synthesis of sparse arrays. Synthesizing a sparse array 
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from a fully populated array is called an array thinning 
problem. A solution to an array thinning problem using genetic 
algorithm was proposed by R. Jain et al. in 2012 [8]. Another 
similar work was published by M. A. Zaman et al. in 2012 [9]. 
There are also analytical approaches for the synthesis of 
arrays. In 2016, E. Sandi et al. proposed a technique for the 
synthesis of sparse arrays using a combination of cyclic 
difference set and binomial amplitude tapering [10]. Such 
approaches usually involve a complex mathematical 
formulation and limited usability. 

In recent years, the synthesis of planar sparse arrays is 
emerging as a popular area of research. A modified genetic 
algorithm for the synthesis of planar arrays was proposed in 
2017 by K. Y. Reddy et al [11]. Another multi-objective 
optimization-based technique for sparse array synthesis was 
proposed in 2020 by H. Li et al [12]. In both of these works, 
the primary objective was to minimize the peak side-lobe 
power. The radiation pattern of the antenna is calculated 
numerically to obtain the value of the fitness function. There 
are also analytical approaches for the synthesis of planar 
phased array antennas. A singular value decomposition (SVD) 
based non-iterative approach for array synthesis was reported 
by P. F. Gu et al. in 2019 [13]. 

Arrays of printed antennas are most commonly used for 
millimeter-wave communication. Most of the printed antennas 
with a ground plane have a cosine radiation pattern. In this 
work, a sparse 2D phased array is presented with cosine 
antenna elements. The sparse array is synthesized from a 
16×16 uniform rectangular array (URA). The number of 
elements in the array is reduced by 50%. The positions of the 
elements are tuned with Particle Swarm Optimization (PSO) 
algorithm to minimize the peak side-lobe level (PSLL). 

The PSLL, gain and beam-width of the synthesized sparse 
planar array are compared with the original URA. It is 
observed that the synthesized sparse array yields a narrower 
beam-width than the original sparse array. A narrower beam-
width is indicative of a better resolution of the scanning array 
[7]. 

The remaining sections of the paper are arranged as follows. 
The design details of the 16×16 URA are presented in Section 
II. Section III covers the details of the synthesis and 
optimization of the sparse array followed by the experimental 
results and discussions in Section IV. The paper is concluded 
in Section V. 

Matlab Phased Array System Toolbox® is used for 
computing all radiation patterns used and presented in this 
work. 

II. DESIGN OF A 16×16 URA 

A. Array Topology and Progressive Phase Excitation 

The topology of the uniform rectangular array is shown in 
Fig. 1. It is a uniform array with a spacing of half of the 
wavelength (λ/2) in both directions. The antenna element used 
is a cosine element. 

Along the direction of the azimuth plane, the kth element has 
a phase of (k-1) δAZ. Similarly, the mth element along the 
direction of the elevation angle has a phase of (m-1) δAZ. Thus, 

the weight of excitation of the element (k, m) in the 2D array is 
given by Eq. 1. 
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For a uniform linear array, the analytical equations are 

available for estimating the values of the direction of the major 
lobe from the value of the progressive phase shift (δ) [3]. In 
this work, an experimental method is used to understand this 
correlation for the 2D planar array. A dataset is created by 
varying both δAZ and δEL within a range of -135 degree to 135 
degree at intervals of 15 degree resulting in a total of 361 
scan-angles. The direction of the major lobe of the resultant 
radiation pattern is represented in terms of a combination of 
the azimuth angle (φ) and the elevation angle (θ) in a 3D polar 
coordinate system. The correlation plots are shown in Fig. 3. 

 
(a) Progressive phase shift in the direction of azimuthal 

plane 

 
(b) Progressive phase shift in the direction of azimuthal 

plane 
Fig. 2. Illustration of the progressive phase shift in 
excitation 

 

 
Fig. 1. Topology of the URA 
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The sign of the correlation depends on the choice of the 
coordinate system. Here, the elevation angle is positive 
towards the top and negative towards the bottom and therefore 
a positive correlation is observed. The azimuth angle, on the 
other hand, is positive towards the right and negative towards 
the left leading to a negative correlation. 
 
 
 

 
B. Mapping the Radiation Angle to the Progressive Phase 

Shift using ANN 

From Fig. 3(a) it is observed as δAZ and δEL is varied from -
135 degree to +135 degree, the corresponding values of φ and 
θ vary from -45 degree to +45 degree. The elevation 
component of the radiation pattern shows a consistent linear 
correlation with the value of δEL. However, the relation 
between θ and δAZ is not consistent. It is evident from this 
observation that the value of θ depends upon both δAZ and 
δEL. 

For modeling such systems, computational approaches are 
more suitable than analytical approaches since the 
computational models can detect hidden patterns in the data 
that cannot be observed or modeled analytically [14]. An 
artificial neural network (ANN) model is trained to map the 
angle of the major lobe (φ, θ) with the progressive phase angle 
(δAZ, δEL). The architecture of the ANN model is shown in Fig. 
4. 

The ANN model is trained with the data set prepared for 
observing the correlation. Since the dataset is relatively small, 
a shallow network with 5 neurons in the hidden layer is 
selected for this purpose. The dataset is randomly split into test 
data and train data. The network is trained with a Bayesian 
Regularization algorithm which is suitable for smaller datasets 
[15, 16]. 

The error histogram of the neural network training is shown 
in Fig. 5. A peak error of ±1.15 degree is observed which is 
acceptable for this problem. 

 

 
 
 

 

III. SYNTHESIS OF SPARSE ARRAY 
The key challenge in synthesizing a sparse scan-array is to 

ensure that the PSLL is minimized for all possible scan-angles 
or all possible combinations of δAZ and δEL. Calculating the 
radiation pattern for all possible combinations is 
computationally very expensive. To make the experiment 
feasible, the radiation pattern is computed for three randomly 
selected (φ, θ) pairs. For each of these pairs, the 
corresponding values of δAZ and δEL are obtained from the 
trained ANN model. The radiation pattern of the antenna is 
computed for each of these three (φ, θ) pairs. The excitation 
weight matrix, W of the URA is calculated using Eq. 1. The 
objective function returns the maximum PSLL value out of the 
three (φ, θ) pairs. 

This step makes the objective function computationally 
expensive. To compensate for this, the PSO algorithm is used. 
The PSO is a widely used bio-inspired optimization algorithm 

 
 
Fig. 4. Architecture of the ANN model to map the radiation 
angles (φ, θ) with the progressive phase angle (δAZ, δEL) 

 
 

Fig. 5. Error histogram of the trained neural network 

 
(a) 

 

 
(b) 

Fig. 3 Correlation of the (a) Azimuth angle (φ) with δAZ 
and (b) Elevation angle (θ) with δEL 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.148 Volume 15, 2021

E-ISSN: 1998-4464 1389



 

 

and it is computationally less expensive than genetic 
algorithms (GA) as it requires fewer iterations [17]. 

The flowchart of the proposed approach for sparse array 
synthesis using PSO is shown in Fig. 6. Here, W is the 
excitation weight matrix of the 16×16 URA. B is a binary 
matrix of size 16×16. The weight of the sparse array is given 
by the Hadamard product of B and W (B ʘ W). Thus, the 
optimization problem can be defined mathematically as: 

    Minimize F B We       (2) 

Where F is the function that yields the maximum PSLL of 
the three randomly selected (φ, θ) pairs. In order to make sure 
that exactly 50% of the elements are removed by the PSO, an 
additional constraint is added which is given by Eq. (3). 

,
, 2i j N N

i j

N
B


          (3) 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 
The 16×16 URA is thinned into a sparse array using the 

method discussed in Section III. In this section, the results of 
various experiments performed are covered to validate the 
accuracy of the proposed technique. 

A. The Architecture of the Sparsed Array 

The element positions of the synthesized sparse array are 
shown in Fig. 7. Here, the number of elements in the sparse 
array is 128. The original 16×16 URA has 256 elements. Thus, 
the number of elements in the array is reduced by 50%. 

It is observed that at some parts of the synthesized array, 
the vertical spacing of the original URA is maintained 
whereas, in some other parts, the horizontal spacing is 
maintained. This architecture guarantees that the excitation 
weights calculated for the URA work for the sparse array as 
well. Moreover, the elements that are scattered do not form 
any regular pattern. This suppresses the possibility of larger 
side-lobes that appear at multiples of the desired values of φ 
and θ. It is difficult to obtain such solutions analytically. 

 
B. Analysis of the Direction of Main Lobe and PSLL 

The radiation patterns of the synthesized sparse array are 
analyzed for many combinations of the (φ, θ) pair. A part of 
these results is shown in Table 1. The table shows the required 
values of φ and θ, obtained values of φ and θ, and the PSLL 
values of the URA and the sparse array. 
 

TABLE I.  SOME OF THE ANGLES CONSIDERED 

φ  (deg) 
Desired 

θ (deg) 
Desired 

φ (deg) 
Obtaine

d 

θ (deg) 
Obtaine

d 

PSLL 
(dB) 
URA 

PSLL 
(dB) 

Sparse 
0 0 0 0 -13.58 -12.69 
0 45 0 45 -11.64 -11.59 

45 0 46 0 -11.48 -12.48 
45 -45 45 -45 -10.38 -9.89 
20 30 20 30 -12.27 -12.98 
-20 30 -20 30 -12.27 -12.02 
-35 -45 -35 -45 -11.00 -11.23 
10 -45 10 -45 -11.60 -11.73 
-10 -40 -10 -40 -11.85 -11.75 
-30 40 -30 40 -11.58 -11.98 

 
It is observed that the values of φ and θ obtained are almost 

the same as the required values of the parameters. This 
observation validates the accuracy of the ANN model to 
predict the values of δAZ and δEL. It also validates how the 

 
Fig. 7. Element positions of the synthesized sparse 
array. 

 
 
Fig. 6. Flow diagram of the sparse array synthesis 
steps using PSO 
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problem is formulated where the excitation weights of the 
sparse array are obtained from the Hadamard product of the 
weight matrix, W of the URA, and the binary matrix B. 

The PSLL values are obtained from the normalized 
radiation pattern of the arrays. It is observed that the PSLL 
values of the sparse array are close to that of the original URA. 
Thus, there is no significant increase in the side-lobe level due 
to thinning the array. Fig. 8 shows the normalized radiation 
pattern of the antenna at φ = 30 degree and θ = 40 degree. For 
easier comparison, the values where the values of the radiation 
pattern are less than – 60 dB are flattened. 

From these figures, it is observed that the width and 
positions of the main lobe are identical for the URA and the 
sparse array. Although the sparse array has a larger number of 
side lobes, the values of these lobes are very small. Since the 
objective of the optimization problem was to suppress the 
PSLL only, the other side lobes are not significantly reduced.  
 

 
 
It is not possible to include all the radiation patterns in this 

paper. Therefore, the overall PSLL values of the URA and the 
proposed sparse array are compared in a 3D surface plot 
shown in Fig. 9. Here the values of φ and θ are tuned over the 
range of – 45 degree to + 45 degree. It is observed that only at 
these two extreme points, the PSLL value of the sparse array is 
slightly higher than that of the original URA. As the φ and θ 
approach (0, 0), the values of the PSLL of the URA and sparse 
array become almost the same. 

 

 
C. Analysis of the Peak Gain  

As the number of elements is reduced to half, the peak gain 
of the antenna is also reduced. This section compares the gains 
of the original URA and the sparse array for all the possible 
angles of the elevation plane and the azimuthal plane ranging 
from – 45 degree to 45 degree. From Fig. 10, it is observed 
that as the distribution of the gains with the angle of the main 
lobe shows a similar trend for both the original URA and the 
sparse array. The difference in gain is maximum at the edges 
and reduces as the azimuth and elevation angles are close to 
zero. The difference in gain observed is 2 dB whereas the 
maximum difference is 4.5 dB. 

 

 
(a) URA 

 
(b) Sparse array 

Fig. 9. Variation of PSLL with the direction of 
the main lobe for (a) URA (b) the sparse array 

 
(a) URA 

 
(b) Sparse array 

Fig. 8. The radiation pattern of the (a) URA and (b) the 
synthesized sparse array for φ = 30 degree and θ = 40 
degree 

 
Fig. 10 (a) Distribution of the peak gain of the 
URA, (b) Distribution of the peak gain of the 
sparse array, (c) Difference between peak gains of 
URA and Sparse array 
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D. Analysis of the Beam-width 

The beam-width is another important factor to be considered 
when a sparse array is synthesized. The beam-width and PSLL 
are often considered related constraints in many applications 
[18]. The beam-widths of the original URA and the 
synthesized sparse scan-array are plotted for azimuth angles 
and elevation angles in the range from – 45 degree to 45 
degree in Fig. 11. 

 
  

 

From Fig. 11 (a) and (b) it is observed that the beam-width 
of the two arrays exhibit almost similar variations with the 
scan-angles. The maximum beam-width of the URA is 36 
degree whereas that of the sparse array is 29 degree. The 
histogram of the beam-widths of the two arrays is shown in 
Fig. 12. The sparse array has more scan-angles where the beam 
width is between 10-12 degrees. Beyond the beam-width of 16 
degree, the number of points is lower in case of the sparse 
array as compared to the URA. It infers that the sparse array 
has narrower beam-widths than the URA. 

V. CONCLUSION 
A technique for synthesizing a sparse array from a 16×16 

URA is presented. The excitation weight matrix, W of the 
URA are estimated using an ANN model from the desired 
scan-angle. The PSO is used for obtaining a binary matrix B, 
such that the Hadamard product of B and W yields the 
excitation weights of the sparse antenna array. The 
experimental results show that the desired scan-angles of the 
sparse array are accurately obtained using this technique. 

The PSLL of the URA and the sparse array are compared 
for all possible scan-angles in a range of – 45 degree to + 45 
degree for both the elevation plane and the azimuthal plane. It 
is observed that the PSLL of the synthesized sparse array is 
almost the same as that of the URA except at the extreme ends 
of the scanning range. 

The overall scan angle of the proposed antenna array is 90 
degree for both the azimuth plane and the elevation plane. The 
array comprises cosine antenna elements that represent printed 
antennas used in 5G millimeter-wave wireless communication. 
A comparative analysis of the original URA and the sparse 
array is observed in terms of gain and beam-width. It is 
observed that although there is a slight reduction in the gain of 
the sparse array, the beam-width is less indicating a better 
resolution for radar or directional wireless communication.  
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