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Abstract—This work presents the process of obtaining 

the simplified model of a switched reluctance motor (SRM) 

8/6. Subsequently, the structure of the single-phase model is 

analyzed, obtaining an exact linearization and zero 

dynamics of the system. Finally, the model is linearized at 

an operating point set at 2000 rpm The model includes 

Coulomb plus viscous friction nonlinearity and an ideal 

inverter circuit based on bridge converter topology. The 

simplified and linear models are simulated and compared 

in the Matlab®/Simulink software in order to validate the 

design of a classic controller using the linear model. 

 

Keywords—. Switched reluctance motor (SRM), 

Simplified model, linear model, Exact l linearization, Zero 

dynamics.  

I. INTRODUCTION 

N the last decades, the switched reluctance motor has 

attracted the attention of researchers, as a high-performance 

device in industrial applications, due to its advantages such as 

high torque at low speeds, large power-to-size ratio, efficient 

energy conversion, wide range of operating speed and easy 

cooling.[1]-[4] However, to properly take advantage of these 

characteristics of the SRM, optimal excitation and control of the 

same is necessary. This is not easy to obtain experimentally and 

it can even be a difficult and time-consuming task, depending 

on the complexity of the controllers to implement the necessary 

tests. For this reason, computational simulation of proper SRM 

models and its control systems becomes essential for the 

analysis and design of controllers for any SRM. 

There are several ways to simulate an SRM, among which 

the most common are simulation using the Finite Element 

Method, such as the simulations developed in [5] and [6], where 

a good approximation is obtained to the dynamics of the real 

SRM, however this type of simulation can consume a lot of 

simulation time and computing power, for this reason, 

 
 

evaluating a controller, which may require a lot of tests, can be 

impractical. Another way to simulate an SRM is using lookup 

tables resulting from a finite element analysis as seen in [7] and 

[8], in this case the simulation becomes faster since most of the 

computation time is consumed by the analysis of previous finite 

element. And finally, the least used way to simulate an SRM is 

by programming the dynamic equations of the motor, as is 

usually done with other dc motors [9]-[11], which may belong 

to a non-linear model that considered the saturation of the 

material, or a simplified model that disregarded this 

phenomenon. 

In this paper, the simplified non-linear model of an SRM 8/6 

motor is obtained and later it is linearized at an operating point. 

The linearization of the model is carried out in order to analyze 

the structure of the motor and obtain a transfer function that, in 

future work, allows applying linear control techniques for the 

design of a classic controller. In addition, the model has an ideal 

inverter circuit that allows the motor to be operated in a similar 

way to a dc motor where, by reversing the polarity of the input 

voltage, the motor rotates in the opposite direction. Finally, 

different simulations are presented where the behavior of both 

models is compared in order to verify that it is feasible to design 

a controller based on the linear model. 

This paper is organized as follows: section II shows the 

obtaining of the simplified non-linear model of the SRM. 

Section III shows the analysis of the structure of the single-

phase non-linear model, where an exact linearization of the 

motor is obtained and subsequently its zero dynamics is found. 

Then, in section IV a linearization of the model is obtained at 

an operating point set at 2000 rpm, as well as its transfer 

function. In section V some general aspects for programming 

both models in Matlab/Simulink software are discussed. 

Section VI shows the simulation and comparison of both 

models in three different tests: first the behavior of the models 

in shutdown and demagnetization of the motor phases is 

observed, then a step type voltage input is applied and finally 

an input is applied sinusoidal type voltage. The discussion of 
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results is presented in section VII and finally, section VIII 

shows the conclusions obtained from the work carried out. 

II. MATHEMATICAL MODEL OF THE SRM 

As in the modeling of other electromechanical machines, the 

starting point is the equations that govern the dynamics of the 

electrical sub-system (1) and the mechanical sub-system (2). 

 

 
j

j j

d
v Ri

dt


   (1) 

 

 ( )e l f J


      


 (2) 

 

Where, vj, ij, R, and j are the voltage, current, resistance and 

flow linkage of phase j is the rotor’s angular speed, J is the 

moment of inertia, e, l and f are the corresponding 

electromagnetic, load and friction torque, the latter is 

represented by Coulomb plus viscous friction model [12] and 

[13], equation (3). 

 

  f D sgn     (3) 

 

Where, D is the viscous coefficient and  is the Coulomb 

friction force. The model that is developed here is called the 

simplified model and considers the following [14]: here is no 

saturation of the material, therefore, the flux linkage are 

described by the product of the inductance and the phase 

current, the fringing effects are neglected, the mutual 

inductance is negligible, the motor phases are identical and the 

inductance is a function of the rotor position [15] given by (4). 

 

   0 1 1 2j rL L L cos N j / N      (4) 

 

Where, is the position of the rotor, L0 is the self-inductance 

of each phase, L1 is the inductance dependent on the position of 

the rotor, Nr is the number of rotor poles and N is the number of 

phases. Substituting (4) in (1), we obtain the equation that 

represents the electrical subsystem (5). 
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The equation for the mechanical subsystem is obtained by the 

co-energy method, therefore, the torque generated by each 

phase is given by (6) 
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The co-energy function is given by (7) 
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Solving (6) and (7), the torque of each phase is obtained. 

Finally, the electromagnetic torque is the sum of the individual 

torques, therefore, the mechanical subsystem is now described 

by (8) 
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III. STRUCTURE ANALYSIS OF THE NONLINEAR MODEL 

To properly design the controller of any system, it is essential 

to know the latter thoroughly. For this reason, it is necessary to 

analyze the structure of the non-linear model and subsequently 

the linear model, since both models are one of the main sources 

of information about the motor. In order to know in depth, the 

non-linear model of the motor, its exact linearization was 

carried out with which, the degree and relative degree of it was 

known, and a linear and controllable form was found that can 

be useful in subsequent studies that seek to employ nonlinear 

control techniques. 

From the simplified model obtained above, it can be noted 

that the complete model of an SRM 8/6 consists of eight 

equations in total, where there are four voltage inputs, one for 

load torque, and two outputs, one for torque and one for speed. 

Therefore, an SRM 8/6 is a multiple input multiple output 

system (MIMO), the structural analysis of which becomes 

extremely extensive and complex. On the other hand, if it is 

considered that each of the phases are activated sequentially and 

independently, the load torque is a disturbance of the system 

and remembering that the phases are identical, it is possible to 

analyze a single motor phase, where there is only one voltage 

input and one speed output, that is, a system one input one 

output (SISO). 

A. Exact linearization 

To analyze the system, it is necessary to rewrite it in the state 

space, whose form is shown in (9). 
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To pass the model to the state space, the following is defined 

(10) 
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The single-phase model in state space is shown in (11). 
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To start the exact linearization, it must be verified that the 

system is transformable to a linear and controllable one, which 

is possible if and only if the following conditions are met [16]: 

 The matrix [g(x0), adf g(x0), …, adf
n-1 g(x0)] has rank n. 

 The distribution D = {g, adf g, …, adf
n-2 g}is involutive 

near x0. 

Now we proceed to calculate each of the elements of the 
matrix and the distribution, as seen from (12) to (14) 
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It is verified that when evaluating (12) to (14) at x0, the matrix 

maintains rank n equal to 3. Next, it is observed that the 

distribution D has rank 2, therefore, it only remains to verify 

that the rank of the matrix (g, adf g, [g, adf g]) is the same that 

of the distribution D. Equation (15) shows the result of the 

operation [g, adf g]. 
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With the help of (15) it can easily be verified that the matrix 

(g, adf g, [g, adf g]) has rank 2 and, therefore, the distribution D 

is involutive, which shows that the system is transformable to a 

linear and controllable system. Now the relative degree r of the 

system is calculated to determine if it is necessary to obtain an 

output function different from the original one. The system is 

said to have relative degree r at point x0 if the following is 

satisfied [16]: 

 LgLk
f h(x) = 0 for all x in a neighborhood of x0 and all k 

< r–1. 
 LgLr–1

f h(x) ≠ 0. 

In (16) are shown the corresponding operations. 
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From (16) it follows that the relative degree of the system is 

equal to 2 for all x1 ≠ 0 and x2 ≠ k with k ∈ ℤ. Since r ≠ n, it is 

necessary to look for an output function  such that d(x)(g(x), 

adf g(x), …, adn-2
f g(x)) = 0, whose development is shown in 

(17). 
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From (17) it can be seen that it is feasible to choose x2 as the 

output function. Again, the relative degree is calculated to 

verify that it coincides with the degree of the system, the 

operations necessary for this task are shown in (18). 
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From (18) it is obtained that the relative degree is equal to 3 

for all x1 ≠ 0 and x2 ≠ k with k ∈ ℤ as it happened in the previous 

calculation. It is from this point that it is possible to perform the 

linearization via state feedback, for which, the input u must be 

obtained through (19). 
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Where LgL2
f (x) is taken from (18) and L3

f (x) is shown in 

(20). 
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The input u obtained is shown in (21). 
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Finally, the coordinates transformation is shown in (22). 
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B. Zero dynamics 

In the analysis of non-linear systems, it is very useful to know 

the zero dynamics, which has a similar role to the zeros in linear 

systems. In this case, zero dynamics is the set of all states x0 and 

inputs u(x0), defined for all t in the neighborhood of t = 0 that 

make the output identical to zero. The procedure to find the zero 

dynamics of any system consists of zeroing all the states z1, z2, 

…, zr-1, and zr and substituting it in the dynamics of the system. 

To perform these steps, it is necessary to find a coordinate 

transformation, such as the one obtained in the exact 

linearization, but in this case respecting the output function 

h(x), for this we have the following (23). 
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We are looking for a function x) such that Lgx) = 0, it 

is proposed that x) = x2, now it is verified that the Jacobian 

of  is not a singular matrix, this is easy to do through its 

determinant (24). 
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The inverse transformation is given by (25). 
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With the coordinate transformation, the dynamics of the 

system is described by (26). 
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Where: 

 

 

    

    

    

1

2 1

1

3 3

g f

f

f

a z L L h z

b z L h z

q z L z







 

 

  

 (27) 

 

From (16) and (25), you get a(z) shown in (28). 
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Calculate L2
fh(x) (29) 
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From (25) and (29) is found b (z) as shown in (30) 
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To find q3 (z) we have the following (31) 
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q z L z z






 

   

 (31) 

 

We make z1 = z2 = 0 and substitute in (28) and (30), obtaining 

(32) and (33) correspondingly. 

 

 
1 2

1 3 3

0, 0
0 1 3

2 sin( )[ ( )]
( )

[ cos( )]

r r

z z
r

N L N z sgn x
a z

J L L N z 





 (32) 

 

 
1 2

3

0, 0
0 1 3

2 [ ( )]
( )

[ cos( )]z z
r

R sgn x
b z

J L L N z 


 


 (33) 

 

The input u is defined by (34). 

 

 

1 2
1 30, 0

( )

( ) sin( )r rz z

b z R
u

a z N L N z
 

    (34) 

 

Since no dynamic equation of the system was different to 

zero, it is said that the system does not have zero dynamics. 

IV. MODEL LINEARIZATION 

To obtain the linearization of the model, it was considered 

that the inductance of the phase has a constant value, which is 

obtained by considering a constant value of the rotor position 

= . Regarding the speed equation, only the positive part is 

considered, that is, when  0, because the operating point is 

at 2000rpm. The result of the previous considerations is the set 

of equations to linearize are those shown in (35). 

 

 

 

 

 

 

1

0 1 0 1

0 1

1 2

1

1

2

r r

r r

r

r r

l

L N sin Ndi R
i i

dt L L cos N L L cos N

v
L L cos N

L N sin Nd D
i

dt J J J J


   

   


 

 
    

 (35) 

 

To simplify the model and pass it to the state space, the 

following is defined (36). 

 

 

 
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1

1 1

0 1

1

2 2

0 1

3 3

0 1

4

1 2

2

1

1
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r

r r

r

r

L N sin NR
a : ; b : ;

L L cos N J

L N sin N
a : ; b : D / J ;

L L cos N

a : ; b : / J ;
L L cos N

b : / J ;

x : i; x : ;


 

 


 

 

  
 



  

 (36) 

 

Therefore, the model in the state space is defined by (37) and 

written in a matrix form, it is as shown in (38). 
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1 1 1 2 1 2 3

2

2 1 1 2 2 3 4 l

x a x a x x a v

x b x b x b b

   

    
 (37) 

 

 
 

 

1 1 2 1 2 31

2

1 1 2 2 3 42

2

l

a x a x x a vx
x f x,u ;

b x b x b bx

y x h x ;

    
    

      

 

 (38) 

 

Now we find a parameterized operating point for x2 = x2
0, 

from which we obtain (39). 

 

 
 0 00

1 1 2 20 2 2 3 4
1

1 3

l
x a a xb x b b

x ; V ;
b a

  
   (39) 

 

The matrix form, which we want to get to, is (40) 

 

 
x Ax Bu

y Cx

 


 (40) 

 

When calculating each of the Jacobian matrices, we obtain 

(41). 

 

   

 

 
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a a x a xf x,u
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x b x b

af x,u
B ;
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h x
C ;

x

   
   

   

  
   

  


 



 (41) 

 

Where the input vector is (42) 

 

  
T

lu v   (42) 

 

Assuming that the input torque is equal to zero, l = 0, the 

operating point and input matrix B are recalculated (43). 

 

 

 0 00
1 1 2 20 2 2 3

1

1 3

3

0

x a a xb x b
x ; V ;

b a

a
B ;


 

 
  
 

 (43) 

 

Then the transfer function is calculated by (44), the 

calculation progress is shown from (45) to (47). 

  
 

 

T
C Adj sI A B

G s
det sI A





 (44) 
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b x s a a x
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 (45) 

 

 

   
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2 0

1 2 2 2

2
0 0

2 1 2 2 2 1 12

det sI A s a a x b s

b a a x a b x

    

  
 (46) 

 

 

   

   

0 2 0

3 1 1 1 2 2 2

2
0 0

2 1 2 2 2 1 1

2 /

2

G s a b x s a a x b s

b a a x a b x

   


  


 (47) 

 

Finally, substituting in (47) the parameters of the SRM 

RA130135 from System Tech, Fig. 1, with eight poles on the 

stator, six poles on the rotor (8/6) and four phases, given by: 

• Vmax =24 Vdc 

• N = 4 

• Nr = 6 

• J = 3.9063 Kg·m2 

• l = 0.01 N·m 

• D = 0.0001 N·m/rad/s 

• = 0.005 N·m 

• R = 1 

• L0 = 2.1 mH

• L1 = 1.3 mH 

•  = 2°. 

 

Fig. 1. Switched reluctance motor. 

the single-phase transfer function of the switched reluctance 

motor is obtained, shown in (22). This transfer function has no 

zeros and has a pair of widely separated poles. Therefore, the 

transfer function obtained coincides with what is normally 

obtained in direct current motors, in which there is a dominant 

pole from the mechanical sub-system and a non-dominant pole 
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from the electrical sub-system, as corroborated in jobs like [17], 

[18], and [19]. 

 

 
 

 

2

283470

1619 7 6740 2

4 2 1615 5

G s ;
s . s .

poles . , . ;


 

  

 (22) 

V. MODEL PROGRAMMING 

Programming the motor model is simple thanks to the tools 

provided by Simulink in particular the Matlab function block, 

in which equations of the model are directly entered and 

through integrator blocks the variables are obtained and divided 

into six Matlab function blocks, four to the motor and two 

corresponding to the inverter circuit. The motor blocks were 

programmed using the equations obtained in the mathematical 

model section according to the following list: 

• Block of inductances, equation (4). 

• Electrical system block, equation (5). 

• Mechanical system block, equation (6). 

• Speed block, equation (2). 

On the other hand, the inverter circuit that was programmed 

is based on the ideal classical converter or bridge converter 

topology [20], that is, the physical limitations of the transistors 

are not taken into account, only the logic in which they operate. 

Commonly, any inverter circuit implements some current 

regulation technique as a protection for the motor, since the 

resistance of the phases is usually relatively small causing a 

current demand that can damage the motor. In order to program 

this circuit, it was divided into two blocks: the first one handles 

the switching logic of the phases and the other regulates the 

current of the phases. 

For the switching logic block, it is considered that, according 

to (8), the sign of the torque is independent of the sign of the 

current, and is only affected by the sinusoidal function, which 

corresponds to the derivative of inductance. That is, the torque 

produced by each phase will be positive whenever the 

inductance increases and negative when the inductance 

decreases. From the above, the activation sequences of the 

phases for clockwise and counter-clockwise rotation are 

deduced. The current regulation block implements the 

hysteresis technique [3] since it directly regulates the current by 

turning the phase on and off, keeping the current within a 

hysteresis window defined by a minimum and maximum 

current value, both blocks of the inverter circuit are 

programmed in the Matlab function. 

The process described above was applied to the 

programming of the non-linear model of the motor, in the case 

of the linear model, only the inductance block is omitted and 

the equations of the blocks of the electrical and mechanical 

systems are exchanged for their linear counterpart. 

VI. SIMULATION AND COMPARISON OF THE MODELS 

A. Simulation with phases in shutdown and 

demagnetization 

The first experiment that is presented consists of simulating 

both models at the operating point of 2000rpm with phase 

shutdown, that is, without demagnetization and with lower and 

upper current limits of 6 and 7A. The test lasts 3 seconds in 

which the speed and torque responses of the models reach a 

stable state, as shown in Fig. 2 and 3 respectively. 

For the next test, the simulation is repeated, but now 

demagnetization is applied to the phases, again the speed and 

torque responses are observed, as shown in Fig. 4 and 5. 

Additionally, Fig. 6 and 7 show the current responses of phase 

A in steady state. 

Fig. 2. Rotor’s angular speed response, without demagnetization. 

Fig. 3. Electromagnetic torque response, without demagnetization. 
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Fig. 4. Rotor’s angular speed response, with demagnetization. 

Fig. 5. Electromagnetic torque response, with demagnetization. 

Fig. 6. Phase A current response, with demagnetization. 

 

Fig. 7. Phase A current response, without demagnetization. 

B. Step input simulation 

For this experiment, the behavior of both models of the motor 

around the operating point are compared, considering 

demagnetization of the phases. In each of the tests, both models 

are stabilized at a speed of 2000rpm for 2 seconds and then a 

step is applied to the voltage input to vary the speed to 1000, 

1500, 2500 and 3000rpm for 2 seconds and the behavior of the 

speed and torque responses is observed. Fig. 8 and 15. In each 

of the tests, the average values of speed and torque obtained in 

the two models were measured and the percentage error was 

calculated. The data collected is summarized in the table I. 

TABLE I.  ERROR AROUND THE OPERATING POINT 

Operating speed 

(rpm) 
Speed error (%) Torque error (%) 

1000 8.4 2.8 

1500 2.7 0.4 

2500 1.5 0.8 

3000 2.7 1.2 

Fig. 8. Rotor’s angular speed response, with step at 1000 rpm. 

 

0 1 2 3 4

500

1000

1500

2000

R
o
to

r´
s 

an
g
u
la

r 
sp

ee
d
 (

rp
m

)

Time (s)

 

 

Nonlinear model

Linear model

2.985 2.99 2.995 3
0

1

2

3

4

P
h

as
e 

A
 c

u
rr

en
t 

(A
)

Time (s)

 

 

Nonlinear model

Linear model

2.985 2.99 2.995 3
0

1

2

3

4

P
h
as

e 
A

 c
u
rr

en
t 

(A
)

Time (s)

 

 

Nonlinear model

Linear model

0 1 2 3
0

0.05

0.1

0.15

E
le

ct
ro

m
ag

n
et

ic
 t

o
rq

u
e 

(N
*
m

)

Time (s)

 

 

Nonlinear model

Linear model

0 1 2 3
0

500

1000

1500

2000

R
o
to

r´
s 

an
g

u
la

r 
sp

ee
d

 (
rp

m
)

Time (s)

 

 

Nonlinear model

Linear model

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.159 Volume 15, 2021

E-ISSN: 1998-4464 1471



 

 

Fig. 9. Electromagnetic torque response, with step at 1000 rpm.  

Fig. 10. Rotor’s angular speed response, with step at 1500 rpm.  

Fig. 11. Electromagnetic torque response, with step at 1500 rpm. 

 

 

Fig. 12. Rotor’s angular speed response, with step at 2500 rpm. 

Fig. 13. Electromagnetic torque response, with step at 2500 rpm. 

Fig. 14. Rotor’s angular speed response, with step at 3000 rpm. 
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Fig. 15. Electromagnetic torque response, with step at 3000 rpm. 

C. Simulation with sinusoidal input 

In order to observe the behavior of the models to oscillatory 

variations, both models were simulated as in the previous 

experiment, considering demagnetization. For 2 seconds it is 

operated at 2000rpm and then a sinusoidal signal is applied with 

different frequencies, passing through 0.25, 0.5, 0.75 and 1 

rad/s and with an amplitude that varies the operating point from 

700 to 3000rpm, the speed and torque responses for a frequency 

of 0.75 rad/s are shown in Fig. 16 and 17. 

Fig. 16. Rotor’s angular speed response, from 700 to 3000 rpm at 0.75 rad/s. 

VII. DISCUSSION OF RESULTS 

From the first experiment, we can see how the linear model 

fails to reproduce the oscillations in the torque curves and 

consequently the same happens in the speed curves. This 

occurs, since, at the moment in which one phase is turned off 

and the next phase is turned on, the corresponding discharge 

and charge curves are compensated causing the total 

electromagnetic torque to be continuous. On the other hand, it 

Fig. 17. Electromagnetic torque response, from 700 to 3000 rpm at 0.75 rad/s. 

is observed how thanks to the demagnetization of the phases 

both models demonstrate a similar behavior in the speed and 

torque responses. This is due to the fact that the oscillating 

effect of the back EMF that differentiates both models is greatly 

reduced by demagnetization, since this causes the input voltage 

and voltage drop terms to be greater than the corresponding 

term. to the back EMF. 

From the second experiment, we can see in table I, the error 

obtained, by varying the operating point of the motor in a range 

of 100% of the original operating point, remains below 8.4%, 

obtaining a greater error at speeds below the operating point. 

From the last experiment, it is observed how the linear model 

manages to replicate the behavior of the non-linear in the speed 

responses, maintaining a maximum error of 8.5% in the peaks 

of the oscillations, this without significantly changing the 

behavior when varying the frequency. Regarding torque, unlike 

what happened in the step tests, the responses obtained are more 

similar, since there are no abrupt changes in input voltage. 

 

VIII. CONCLUSION 

In this work, the modeling, analysis, linearization and 

simulation of a SRM 8/6 was presented considering Coulomb 

plus viscous friction and an ideal inverter circuit of bridge 

converter topology. From this work it was observed in the 

analysis part that, when trying to obtain an exact linearization 

of the system, to carry out a possible control using non-linear 

techniques, the result obtained is a linearization that would be 

useful only for position control, because it was necessary to 

change the output function. On the other hand, the transfer 

function of the linear model agrees with what is normally 

obtained in models of direct current motors, in which there are 

extremely separated poles between the electrical and 

mechanical subsystems; also, no zeros are obtained, just like 

expected from the zero dynamics of the nonlinear model. In 

addition, the linear model manages to reproduce the behavior 

of the non-linear model in a wide operating range, maintaining 

an error of less than 10%. Therefore, it is feasible to design a 
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classic controller based on the linear model, if phase 

demagnetization is considered. 

Some recommendations for future work may be to compare 

the linear model with a non-linear model that considers the 

saturation phenomenon to observe the differences when the 

motor is subjected to saturation. It is also recommended to 

replace the ideal circuit with a circuit that has the characteristics 

of diodes and transistors to obtain a more complete model. 
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