
 

 

 
Abstract—The mathematical model for many problems 

is arising in different industries of natural science, 

basically formulated using differential, integral and 

integro-differential equations. The investigation of these 

equations is conducted with the help of numerical 

integration theory. It is commonly known that a class of 

problems can be solved by applying numerical integration. 

The construction of the quadrature formula has a direct 

relation with the computation of definite integrals. The 

theory of definite integrals is used in geometry, physics, 

mechanics and in other related subjects of science. In this 

work, the existence and uniqueness of the solution of 

above-mentioned equations are investigated. By this way, 

 
 

the domain has been defined in which the solution of these 

problems is equivalent. All proposed four problems can be 

solved using one and the same methods. We define some 

domains in which the solution of one of these problems is 

also the solution of the other problems. Some stable 

methods with the degree p<=8 are constructed to solve 

some problems, and obtained results are compared with 

other known methods. In addition, symmetric methods are 

constructed for comparing them with other well-known 

methods in some symmetric and asymmetric mathematical  

problems. Some of our constructed methods are compared 

with Gauss methods. In addition, symmetric methods are 

constructed for comparing them with other well-known 

methods in some symmetric and asymmetric mathematical 

problems. Some of our constructed methods are compared 

with Gauss methods. On the intersection of multistep and 

Novel Symmetric Numerical Methods for 
Solving Symmetric Mathematical Problems 

V. R. IBRAHIMOV 1,2,*, G.YU. MEHDIYEVA 2,  XIAO-GUANG YUE 3,  MOHAMMED K.A.  
KAABAR 4,5,*, SAMAD NOEIAGHDAM 6,7, DAVRON ASLONQULOVICH JURAEV 8 

 
 

1 Institute of Control Systems named after Academician A.Huseynov, Baku AZ1141, Azerbaijan; 
ibvag47@mail.ru 

2 Computational mathematics; Baku State University, Baku AZ1148, Azerbaijan; imn_bsu@mail.ru 
3 Department of Computer Science and Engineering, School of Sciences, European University 

Cyprus, 1516 
Nicosia, Cyprus; x.yue@external.euc.ac.cy 

4 Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, 
Malaysia; 

mohammed.kaabar@wsu.edu 
5 Department of Mathematics and Statistics, Washington State University, Pullman, WA 99163, USA 

6 Industrial Mathematics Laboratory, Baikal School of BRICS, Irkutsk National Research Technical 
University, 

664074 Irkutsk, Russia, snoei@istu.edu 
7 Department of Applied Mathematics and Programming, South Ural State University, Lenin Prospect 

76, 
454080 Chelyabinsk, Russia 

8 Department of Natural Science Disciplines, Higher Military Aviation School of the Republic of 
Uzbekistan, 

Karshi City 180100, Uzbekistan; juraev_davron@list.ru 
* Correspondence: ibvag47@mail.ru (V.R.I.) and mohammed.kaabar@wsu.edu (M.K.A.K) 

 
 
 Received: April 1, 2021. Received: August 30, 2021. Accepted: September 27, 2021. Published: October 4, 2021.  

 
 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.167 Volume 15, 2021

E-ISSN: 1998-4464 1545

mailto:ibvag47@mail.ru
mailto:imn_bsu@mail.ru
mailto:x.yue@external.euc.ac.cy
mailto:mohammed.kaabar@wsu.edu
mailto:snoei@istu.edu
mailto:juraev_davron@list.ru
mailto:ibvag47@mail.ru
mailto:mohammed.kaabar@wsu.edu


 

 

hybrid methods have been constructed multistep methods 

and have been proved that these methods are more exact 

than others. And also has been shown that, hybrid 

methods constructed here are more exact than Gauss 

methods. Noted that constructed here hybrid methods 

preserves the properties of the Gauss method. 

 

Keywords—Initial-value problem, ODE, Volterra 

integral equation, integro-differential equation of Volterra 

type, Symmetric multistep methods, multistep methods of 

hybrid type, Systems theory and systems engineering.  

I. INTRODUCTION 
ew efficient methods are investigated in this work to 
solve the proposed four problems. For this aim, we 
propose the intersection of the multistep methods with the 

hybrid, and forward-jumping (advanced) methods. Using the 
method of unknown coefficients, one can construct stable 
methods with high exactness having the new properties. Such 
efficient methods can be constructed by using the domain of 
intersection for the solution of above-mentioned problems in 
extended form, and by estimating the errors received in this 
case. The studied problems in this work have different 
properties. Therefore, the basic properties for all considering 
problems are defined in order to construct special methods for 
solving the proposed problems. For example, by comparison 
of these methods with our constructed method which has been 
applied to solve the initial-value problem for the ODE and 
calculate the definite integrals. By using the methods, which 
have been applied to determine the solution of these problems, 
can be successfully applied to solve some problems of 
seismology (see for example [1,2]). By using the named 
methods, one can solve the same related problems with the 
investigation of energy (see [3-5]). One of the actual directions 
in solving of Volterra integral equation is the use of non-
polynomial splines ( see [6]). In [7] has been given the new 
way for solving Volterra integral equation, which represents 
the scientific interest in Applied Mathematics.One of the same 
methods in one case can be taken as an implicit and in other 
cases as an explicit. The hybrid methods that have some 
advantages for solving the initial-value problem of ODE arise 
some difficulties related to the calculation of the values of the 
solution of studied problems at the hybrid points. However, in 
the calculation of definite integrals, there are no difficulties. 
From this situation, some recommendations are given for the 
application of our constructed methods to solve the 
investigated problems. To define the values of the order of 
exactness, some relationships by which one can determine the 
maximal value for the order of exactness for the stable and 
unstable methods (see for example [8]). These results can be 
taken as the development of Dahlquist theory (see for example 
[9]). To illustrate, the obtained results are constructed 
symmetric stable methods with the order 9p  and some of 
them have been applied to solve the model problems. 

The numerical solution of Volterra Integral equation of 
second kind was fundamentally investigated  by the multistep 
methods of hybrid and forward-jumping (advanced) types. 
Some events such as the eclipses of the moon or sun, and the 

processes associated with them, in the Middle Ages, have 
forced scientists to study the motion of celestial bodies. For 
this aim, the mathematical model is formulated for the named 
problems, and the obtained ODE of the first and second orders 
is solved where many works of the famous scientists as 
Newton, Leibniz, Euler, Dalamber, Klero, Cowell, Adams, 
Runge, and Kutta have been dedicated to this topic. The 
named problems are investigated with the help of power series, 
which called as the analytic-numerical methods. By showing 
the disadvantages of these methods, Euler constructed the 
direct method to solve the initial-value problem for ODEs. 
This numerical method has been developed by Adams and 
Runge-Kutta in the result of which a class of multistep and 
one-step methods has been constructed. The investigated 
multistep methods with constant coefficients are considered 
with some modifications to solve the initial-value problem for 
both ODE and Volterra integro-differential equation in order 
to solve the Volterra integral equation. In addition, the 
computation of double integrals is studied by using the 
methods which have been applied to compute the definite 
integrals. For solving the initial-value problem for ODE, Euler 
and its followers have used integral equations with a variable 
boundary. In this paper, the quadrature formula is applied to 
calculate the definite integral which has been encountered in 
the integral equation, and the methods are constructed for 
solving of the initial-value problem for ODE (such as Adams 
methods) which can be written as follows: 

.,)(),,( 000 Xxxyxyyxfy        (1) 

Suppose that a sufficiently smooth function: ),( yxf  is 
defined in some close domain. If we integrate the equality 
obtained from (1) by taking into our account that its solution 
has been found by some methods, then the following can be 
written: 

].,[,))(,()()( 00

0

Xxxsysfxyxy

x

x

      (2) 

To determine the numerical solution of the initial-value 
problem (1), let us define the mesh points in the form: 

0ix x ih  , ( 0,1,..., )i N  here h  step-size, but the 

values of the solution )(xy  and its first derivatives at the 

points )0( ixi , denoted by the )( ixy  and )( ixy  

),...,1,0( Ni  , respectively.  
By choosing the values of x  as the ),...,2,1( Nixi  , 

one can find the values ),...,2,1( Niyi   of the solution )(xy  
of the problem (1), by using some numerical methods. 

It is evident that the problem (1) on the segment 
],[ 1ii xx  can be written as the follows: 

].,[,)(),,( 1 iiii xxxyxyyxfy        (3) 
Taking this into account in the equation (2) and 

applying some quadrature formula to calculate the definite 
integral, one can construct the following method: 

N 
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It is not difficult to prove that Adams methods that can 
be received from the method (4) as the partial cases. It follows 
that by choosing the coefficients ),...,1,0(, kiii   in the 
method (4), one can receive many methods as the Trapezoidal 
rule, Simpson`s method, and Midpoint rule. Method (4) is 
fundamentally investigated by many authors (see for example 
[8]-[21]).  

In the work, [11] defined the sources of the errors 
arising in the application of the method (4). The conception for 
convergence is also defined. This conception in the works [12] 
and [13] named as the stability of the method (4). Bakhvalov 
proved that, if the method (4) is stable in the case 

0,0  kk  , then kp   for 10k . Here, p  is the 

degree and k  is the order for the method (4). Dahlquist 
proved that if the method (4) is stable and has the degree p , 
then there are methods with the degree  max 2[ / 2] 2P k   for 

all the values of k  if 0k  and 0k , if 0k , then 
there is a stable method of the type (4) with the degree 

kP max . In addition, Dahlquist proved that for the degree 

of the stable methods of the type (4) the condition kp   is 

hold. By Dahlquist rule, we obtain that if kp  , then k and 

k  have the same sin, it is obvious that if 0k , then 

0k  holds. 
The conception of stability and degree for the method 

(4) are determined as the follows: 
Definition 1. Method (4) is stable if the roots of the 

polynomial: 
  01

1
1 ...   



k

k

k

k  
lie in the unit circle, on the boundaries of which there are no 
multiply roots. 

Definition 2. The integer p  is called as the degree of 
the method (4) if the following asymptotic equality holds: 

     .0),( 1

0
 



 hhOihxyhihxy p
k

i

ii           

By Dahlquist results, the degree for the stable methods of the 
type (4) is bounded. Therefore, the scientists have proposed to 
use the following method to construct stable methods with the 

degree 2 kp : 

( ) ( )

0 1 0
.

k s k
j j j

i n i i n i

i j i

y h y  

  

                    (5) 

This method is called as the multistep multiderivative 
method (MMM), which for the case 1s   and 2s   has 
been investigated by some authors (see for example [19] -  
[26], [31] - [33]). It is known that depending on the values of 
the coefficients ),...,1,0;,...,1,0()( sjkij

i  , the 
properties of the method (5) are changed. In even case, the 
properties of stability can be defined in a different form. In the 

work [26], the method (5) was fundamentally investigated and 
defined the maximal value of the degree for stable methods 
which have been constructed for different values of the 
coefficients: 

),,...,1,0;,...,1,0()( sjkij

i  0)2( i  

),...,1,0( ki  . 
In addition, the method (5) for 3s  has been 

investigated in the cases 0)1( i and 

0... )1()1(
1

)1(
0  k , and the method (5) in this 

case ),...,1,0(0)1( kii   cannot be stable.  
One of classical methods of this type is Stërmer method, 

which is not stable (see definition 1). If we consider the case: 
0,0 1  kk   and 0... )()2()1(  s

kkk  , 

then we receive the multistep method with new properties 
which are usually called as the forward-jumping (advanced) 
methods. The stable forward-jumping methods are more exact 
than the implicit methods.  

Note that the maximal value of the degree for the 
method (5) can be presented as ( 1) 1p s k     for 

2 1s m   and 2k l  and also ( 1)p s k   for 

2 1s m  , 2 1k l   but if 2s m , then ( 1)p s k   

for 2k l  and 2 1k l   (all the values of  k ). 
Let us note that the investigated method (5) is very 

difficult than others. The properties of this method depend on 
the values of coefficients that can be changed a lot. For 
example, if  (1) 0i   ( 0,1,..., )i k  then in the class of 

methods (5) is not stable method. If (3) 0i   

( 0,1,..., )i k  and if  ( ) ( ) ( )
1 0 0j j j

k k      

for 1,2j  , then the domain of application of the method of 
(5) is narrow. If method (5) is stable and has the degree p 

which receives the maximal value, then arises necessity to 
define the sign of the coefficients ( )j

k . This is usually used in 
the construction of two sided or bilateral methods. As a result, 
the class of (5) is wider than the others. As was noted above, 
defining the sign for some coefficients presents some interests 
for the specialists studies application of the different variants 
of method (5).  

From the above described way, we note that by using 
the following quadrature formula: 

),()(
0

0

xRfAhdssf
k

i

ii

x

x

k

 


                  (6) 

one can solve the problem (1). Here, iA are the coefficients of 
the quadrature formula. 

It is not difficult to understand that by using the formula 
(6), one can construct a method for solving problem (1), which 
can be presented as follows: 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.167 Volume 15, 2021

E-ISSN: 1998-4464 1547



 

 

0
0

k

k i i

i

y y h f


                               (7) 

It is clear that for the fixed point 0nx x nh  , 
method (7) can be written in the following form:  

0

k

n k n i n i

i

y y h f 



                          (8) 

It is known that multistep method with constant 
coefficients, which has applied to solving of the problem (1), 
can be written as the formula (4). Thus, we note that the 
formula (8) can be applied to solve problem (1) and to the 
calculation of following defined integral:  

( )
b

a

f s ds . 

Let’s consider that the following indefinite function 


x

x

dssfxy
0

)()( , then from here we get:  

0' ( ), ( ) 0y f x y x  ,  which is the partial case of the 
problem (3). Let us now compare the methods (8) with the 
method (4). The method of (8) is also one of the partial case of 
the method (4), which has mostly been applied to calculate 
definite integrals. It follows that method (8) is stable and has 
the degree 2p k  . It is evident that the class methods of 
(4) is wider than class of method (8).  

If we apply the method (4) or method (5) to the 
calculation of the definite integral participated in the equality 
(6), we obtain a wide class of methods to calculate the definite 
integrals. It has also been shown that by using the named way, 
we have constructed a new way to calculate the double 
integral, which can be written as: 

.),( 

b

a

d

c

dsdttsfI                     ( 9) 

Hence, we note that investigating the class methods of 
(4) is perspective. By proving the advantages of proposed 
methods, we consider the application of the method (4) and its 
modification to solve Volterra integral and Volterra integro-
differential equations. It is not difficult to understand that if 
equation (2) is generalized in the following form: 

,))(,,()()(
0

0 

x

x

dssysxKxyxy  

,0 Xxsx               (10) 
then we have the nonlinear Volterra integral equation. By 
differentiation of the equality (10) (here suppose that by some 
way the solution of the Volterra integral equation, it has been 
found after using of which in equation (10) the equality is 
obtained), we have the Volterra integro-differential equation 
which can be written as follows: 

.)(),(),()( 00 yxyxvyxxy            (11) 

Here, the functions: ),( yx and )(xv  are known, and the 

function )(xv  is defined as: 

,))(,,()(
0


x

x

dssysxKxv  0x s x  .         (12) 

However, the function ),( yx  is defined in the form: 
),,(),( yxxKyx  . One can take the expression of (12) 

Volterra integral equation of the first kind. By this description, 
the above-mentioned problems: computation of definite 
integrals (including the double integrals), solving of initial-
value problem for ODE and the Volterra integro-differential 
equation and also solving of Volterra integral equations have 
the direct connection. By the comparison of the numerical 
methods applied to solve the named problems, there is some 
region in which all problems can be solved in the same 
methods. For example, by using the method of (4), we can 
define the region in which all above-mentioned problems can 
be solved by the same method. 

II. THE DETERMINATION OF THE SET IN WHICH ALL ABOVE-
MENTIONED PROBLEMS ARE EQUIVALENT. 

Let us determine the region in which all above 
mentioned problems can be solved by the same method (in our 
case the method (4) and its modification). For this aim, let us 
begin from the investigation of the problem (1). As noted 
above, this problem was fundamentally investigated by many 
authors. Therefore, let us define the problem (1) as the basic 
problem and consider the construction of the way by which 
solving of other problems can be reduced to solve of the 
problem (1). In this case, by using the same method, one can 
solve all above-mentioned problems. If we consider the case: 

))(,())(,,( sysfsysxK  , then by differentiation of the 
equality (10) gets the initial-value problem for the ODE (here 
we suppose that by some way, it has been found the solution of 
the problem (1) and by using that in (1), we obtain the equality 
which is differentiable).  

Let us put )())(,( sFsysf   and 0)( 0 xy . In this 
case, from the equality (2), it follows that: 

.)()(
0


x

x

dssFxy  

For the values 0 ,x a  ,x b  we get: 

 ,)()( 
b

a

dssFby  which is a definite integral. From here, 

the calculation of the definite integrals and the problem (1) in 
the case )())(,( sFsysf   is equivalent, and all definite 
integrals have the corresponding initial-value problem for 
ODEs of the first order and vise versa. However, the problem 
(1) and the integral equation (10) can be equivalent in the case, 
when ),(),,( ysfysxK  holds. Thus,  if 

),(),,( ysfysxK   and )(),( sFysf   hold, then by 
using one and the same quadrature formula, one can solve the 
problem (1) and the equation (10) by computing the definite 
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integral. Let us note that computing of the double integrals is 
more complex than the computing of single definite integral. 
For this aim, let us consider the following double integral and 
the function ),( yxu : 

.),(),(

;),(

 

 





x

a

y

c

b

a

d

c

dsdttsfyxu

dsdttsfDI

 
 
                  (13) 

It is evident that ),( dbuDI   and function 

),( yxu can be found by solving of the hyperbolic 

equation: ),(/),(2 yxfдxдyyxuд  (see for example [29] 
p. 148-149). This problem can be solved by using the problem 
(1). By using the theory of interpolation polynomials, one can 
construct the method to compute the values of the double 
integral. In this case, constructed methods will have the fixed 
degree. To construct more exact method for computation of 
double integral (13), one can propose to use the Hermit or 
Gauss interpolation polynomials (see for example [28], [29]). 
In this case, we also receive the quadrature formula with the 
fixed degrees. Here, to solve the proposed  problem, we use 
the finite-difference method by the modification of which one 
can be constructed more exact methods to compute the double 
integrals. Let us now continue our discussion by considering 
the case when the function ),,( ysxK is degenerate. In this 
case, that can be presented as the follows: 

.),()(),,(
1




m

j

jj ysbxaysxK            (14) 

By taking this into the general form of the equation (10), 
we receive: 

,),()()()(
1

0

 



m

j

x

x

jj dsysbxaxgxy        (15) 

Where the continuous function )(xg  is known. This 
equation can be written as follows: 

,)()()()(
1




m

j

jj xvxaxgxy           (16) 

.,...,2,1,0)(),,()( 0 mjxvyxbxv jjj        (17) 

Thus, the problem (1) and Volterra integral equations 
can be solved in the case when the function of ),,( ysxK that 
can be presented as the (14) will be equivalent. Namely, by 
using these properties, the intersection domain of equivalence 
for the equation of (10) and problem (1) can be extended. 

Let us change on the interval ],[ 0 knxx   the function 

),,( ysxK  by the Lagrange polynomial. In this case, we 
receive the following: 

),(),,()(),,(
0

xRysxKxlysxK n

k

j

jj 


      (18) 

where )(xRn
 is the remainder term, and ( )jl x  ( 0,1,... )j k  

is aLagrange basic function (see for example [26, p.121]). By 
taking into account that in the Volterra integral equation, we 
receive: 

         




k

j

x

x

jj dssysxKxlxgxy

0
0

))(,,()()()(

 

 

].,[,)( 0

0

kn

x

x

n xxxdssR           (19) 

If we change the functions ( , , )j jK x x y  ( 0,1,.., )j k  

by the functions ),( yxb j
 and discard the remainder term 

)(xRn
, then we receive the problem similar to the problem (16) 

and (17), which can be solved by using the methods that are 
usually applied to solve of the initial-value problem of the 
ODEs. Thus, we prove that by using the above described way, 
one can solve the problem (1) and the following problem by 
using the same method:  

,)()()()(
0




k

j

jj xvxlxgxy                 (20) 

).,..,1,0(,0)()),(,,()( 0 kjxvxyxxKxv
jjj

   
 
(21) 

The exactness of the described method can be estimated 
by the value of the remainder term )(xRn

. 
Thus, we prove that the ODE and definite integral with 

the variable bounders are equivalent. All solutions of the ODE 
can be written by the definite integrals with the variable 
bounders and vise versa. We also prove that there exists a set 
in which the numerical solution of the initial-value problem for 
ODE and Volterra integral equation can be found by one and 
the same formula. It follows that these problems are 
equivalent. This set can be extended by decreasing the 
corresponding remainder term. For this aim, as noted above, 
one can use more exact interpolation polynomials. In the next 
section, the finite-difference methods are constructed with high 
degree. Let us now consider the determined set in which the 
above-mentioned problems and initial-value problem for 
Volterra integro-differential equations are equivalent. For this 
aim, let us compare the initial-value problem for the both ODE 
and Volterra integro-differential equations. It is evident that if 
the function )(xv  is defined by the equality of (12) and 
satisfies the condition 0)( xv , then we receive that the 
problems (1) and (21) is one and the same problem. Therefore, 
we suppose that 0)( xv  and ),(),,( ysysxK  . In this 
case, the problem (11) can be written as: 

],[,)(),(),()( 000 Xxxyxyxvyxxy   ,   (22) 

 Xxxxvxyxxv ,,0)()),(,()( 00   .     (23) 
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It is clear that the function ( , ( ))x y x  can be defined 

by the function ( , , ( ))ı

xK x x y x , taking into account the 
equality of (12). As it follows from here the problems (1) and 
(11) are equivalent. It is not difficult to understand that the 
problems (22) and (23) can be taken as the initial-value 
problem for the ODE of the second order in the following 
form: 

),,(),(),()( yxyyxyxxy yx       
 
(24) 

          ,)( 00 yxy  ).,()( 000 yxxy      
It follows from here that the problem (1) and (11) in the 

case ),(),,( ysysxK   are equivalent. Now, let us 
suppose that function ),,( ysxK  is degenerate which can be 
presented as (14). In this case, the problems (22) and (23) can 
be written as follows: 

         ,)()(),()(
1




m

j

ji xvxayxxy   

],[,)( 000 Xxxyxy                          (25) 

),,()( yxbxv jj  .,...,2,1,0)( 0 mjxv j      (26) 

The problems (25) and (26) are the initial-value 
problem for the ODE of the first order. The following finite-
difference method can be applied to solve of above-mentioned 
problems: 

.
00










k

i

ini

k

i

ini yhy                     (27) 

Let us note that in the case ),( yxfy   from the 
method (27), it implies method (4). 

It is noted that the properties of the numerical methods 
depend on the values of its coefficients. Therefore, the 
methods depend on the way in which they have been applied to 
determine the values of the coefficients ),...,1,0(, kiii   
that can be called in different form. If the construction of the 
method of the type (27) uses the interpolation polynomials, 
then the received method will be partial case of the method 
(27). For example, if the construction of the method (27) uses 
the Lagrange polynomial, then we receive one of the Adams 
methods. The coefficients of Adams methods are calculated by 
some definite integral. From here, we receive that for the 
construction the methods of the type (27), one can use the 
different polynomials. For every polynomial, one can construct 
separate methods. But here we propose to use methods of the 
unknown coefficients and by choosing the coefficients, one 
can be construct new methods. Therefore, for the determined 
values of the coefficients ),...,1,0(, kiii   proposed here 
to use the methods of unknowns’ coefficients. 

By the above-described way, we receive that if the 
kernel of the integral is degenerate function, then the problems 
(1) and (11) are equivalent. It is not difficult to understand that 
the function ),,( ysxK  can be approached by the following 
formula: 

).(),()(),,(
1

xRysbxaysxK n

m

j

jj 


      (28) 

This similar presentation of the kernel can be used one 
of the above-mentioned methods. It follows from here that 
extending of the set of equivalency for the named problems 
depends on the values of )(xRn

. Therefore, in the construction 
of the approximation function for the kernel of ),,( ysxK  , one 
can use the Gauss interpolation polynomial. But in this case, 
we receive that the application of the new function is more 
complex than the formula (28). It is noted that for the 
construction stable multistep methods with the high degree, 
one can use hybrid methods. 

By taking into account the above mentioned 
disadvantages that have been proposed for the methods which 
are more general than above-mentioned. 

Let us note that to extend the set of the above-
mentioned equivalent problems, we receive that it is necessary 
to construct the function which approaches the kernel 

),,( ysxK  with high rate. Otherwise, the remainder term must 
be sufficiently small. Here, for this aim, we use more exact 
methods constructed at the junction of the multistep and hybrid 
methods. It is evident, that if the remainder term )(xRn

 

satisfies the conditions 0)( xRn
, then application of all 

numerical methods to solve above-mentioned problems gives 
some errors. These errors are related to the truncation errors of 
the used methods and computational technologies. Therefore, 
let us consider the construction of numerical methods and their 
application to solve above-mentioned problems. 

III. CONSTRUCTION OF THE METHODS WITH THE BEST 
PROPERTIES WITH APPLICATIONS 

From all above-described discussion problems, they can 
be reduced to solve the initial-value problem for ODE or to 
calculate the definite integrals. By taking this into account the 
construction of quadrature formula is considered with the best 
properties. For this aim, let us consider the following formula: 

).,...,1,0;1(

,)(
00

kiv

RFhFhdssF

i

n

k

i

vini

k

i

ini

x

x

i

kn

n



 











       (29) 

This formula can be received by using the following 
way. One of the classical quadrature formulas for the 
computing of definite integrals can be written as: 

.)( )1(

0
n

k

i

ini

x

x

RFhdssF
kn

n

  






          (30) 

It is not difficult to show that the Gauss quadrature 
formula applied to computing of definite integrals can be 
written as follows: 

    ,1)(1 )2(

0
n

k

i

lni

x

x

RFhdssF
i

kn

n

  






       (31) 

here ),...,1,0( kili   are the Gauss nodes which can be 
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written as ),...,1,0( kjil ii   . 
By summing the equalities (30) and (31), we receive the 

equality (29). If in the equality (2) put 0)( 0 xy and 

)(),( sFysf  , then we get: 

.)()(
0


x

x

dssFxy                           (32) 

By differentiation from this equality, we receive: 
].,[,0)(),()( 00 bxxxyxFxy        (33) 

If apply the method (29) to solve the problem (33), then 
we obtain: 

0 0 0
,

( 1; 0,1,..., ).

i

k k k

i n i i n i i n i n

i i i

i

y h F h F R

i k

  



   

  

  

 

  
     (34) 

As known by the order of the remainder term nR  , one 
can define the values of the degree for the method (34). But 
from the above described way, the order of accuracy for the 

nR  can be defined by the order of accuracy )1(
nR  and )2(

nR  so 

as )2()1( )1( nnn RRR   . It is not difficult to show that 

by choosing   the values of the order of accuracy for the nR  

can be defined and corrected by the order of accuracy )1(
nR  or 

)2(
nR  (usually, it should be chosen with the least order of 

accuracy among these remaining terms). 
Let us note that to define the values of nR  by the 

proposed method is not always correct. By using 
disadvantages of the above-mentioned methods, here to define 
the values of the coefficients ),...,1,0(,,, kiiiii   
proposed to use the following way. To present this method, it 
is needed to use the following Teylor series: 

    2
( ) 1

( ) ( ) ( )
( ) ( )( ) ... ( ) ( )

2! !

p
p p

y x ih y x ihy x

ih ih
y x y x O h

p



   

    
 

 2 1
( )

( ) ( ) ( )
( ) ( )( ) ... ( ) ( ),

2! ( 1)!

p
p p

y x ih y x ihy x

ih ih
y x y x O h

p



     

   


          (35) 

 

2
( )

( ) ( ) ( )

( ) ( )( ) .. ( ) ( ),
2! ( 1)!

( 0,1,..., ).

i i

p
p pi i

i i

y x m h y x m hy x

m h m h
y x y x O h

p

m i i k

     

   


  

 

Let us suppose that method (34) has the degree of p . 
The degree for the method (34) defines by the analogic way 
applied to the method (16). Then by using the equalities (35) 

in the asymptotic equality for the degree of method (34), one 
can write: 

0),(

)()
)!1()!1(!

(
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(

)()()(
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)(
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1
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2
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00
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






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
















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hhO

xy
p

m

p

i

p

i
h

xymi
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h

xyihxy

p

p
i

p
i

k

i

i

p

i

p
p

k

i

iiii

k

i

iii

k

i

i







 (36) 

By using linear independence of the system 
phhh ,...,,,1 2  or )(),...,(),(),( )( xyxyxyxy p (in 

assumption that 0)()( xy j   ( 0 , 1 , . . . , )i k  in the 
asymptotic equality (36), we receive that the following must be 
hold: 

.
!

)
)!1()!1(

(
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;)(;0

00
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0 00
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



;  (37) 

 
By the above described way proved the following 

lemma: 
Lemma: In order to the method of (34) has the degree of 

p, a necessary and sufficient condition satisfies its coefficients 
system of (37). 

Thus receive the nonlinear homogeneous system of 
algebraic equations. In this system the amount of equations 
equal to 1p  but the amount of the unknowns equal to 

44 k . If in this system put ),...,1,0(0 kii  , then 
nonlinear system (37) transfer to the linear system of algebraic 
equations. As is known the received system for the value 

kp 2  has the unique solution and there are methods with 
the degree kp 2 . Therefore some authors suppose that the 
system (37) has the unique solution in the case 24  kp . 
This condition is hold for the value 1k  and 2k . Some 
time ago to solve the system (37) have been used the program 
MathCard-2015 and receive that the system (35) will be able 
to have the solution in the case when 24  kp . This is 
available because the system (37) is nonlinear, and by the 
program MathCard-215 receive the approximately solution, 
but not exact solution. From the received results it follows that 
method (34) is more accurate than the following multistep 
second derivative methods: 

.
0

2

00














k

i

ini

k

i

ini

k

i

ini yhyhy         (38) 

As is known if this method has the degree p , then 
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13  kp (see for example [17]-[18],[22]-[26]). 
Let us note that in the method (38) the coefficients are 

determined by the linear system. It is known that the implicit 
method presents both theoretical and practical interest. As is 
known if the method (38) is stable then there exist the methods 
with the degree 13  kp . If the method (29) is stable and 
has the degree p  for the case when ),...,1,0(0 kii  , 
then there are methods with the degree 22  kp . By 
simple comparison of the named methods receive that the 
method (29) is more perspective. Therefore let us consider the 
application of the method (29) to compute definite integrals 
and solving of the initial-value problem for the Volterra 
integro-differential equations. For this aim, let us write the 
method (34) in the following form: 

1

0 0 0
,

( 1; 0,1,..., ),

i

k k k

n k i n i i n i i n i

i i i

i

y y h y h y

i k

  





    

  

    

 

  

      

(39)
 
 

here )1,...,1,0(/  kikii  ,/ kii    

),...,1,0(/ kikii   . 
In the application of the method (39) to solve of the 

problem (33) are not arise any difficulties, so as 
)()( xFxy  , and )(xF  is known function. Note that these 

properties satisfy and to compute the values 
))(( hixF in  .  

As noted above, most difficulties arise in the calculation 

the values )0( kiy
ivin


 . If the function ( )F x   

presented in the form ( , )F x y , then for the calculation of the 

values 
iinF  it is necessary to find the values 

),...,1,0( kiy
ivin


 ,  which are not easy. Therefore 

application of the hybrid methods to solve initial value 
problem for ODE is more difficult.  

As it follows from here, these difficulties can be arisen 
and also in solving of other problems. In addition, let us 
consider the application of method (39) to solve the problem 
(11). For this aim, we consider the application of method (39) 
to solve of the equation (12) which can be considered as the 
partial case of the Volterra integral equations. As a result, the 
application of the method (39) to solve of the problem (11) 
obtains (see for example [30], [35]): 

1

0 0

0

( )

( ) ,
i i

k k

n k i n i i n i n i

i i

k

i n i n i

i

y y h v

h v 

  

 



   

 

   



   

 

 

    (40) 
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0 0
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( , , )

( , , ).
j i i

k k k
j

n k i n i i n j n i n i

i i j i

k k
j

i n j n i n i

i j i

v v h K x x y

h K x x y  

 





    

  
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 

  



 



   (41)
 

It is not difficult to verify that if the values 
)1,...,1,0(,  klvy ll  are known, then by using methods 

(40) and (41) one can find the values 
),...,1,0(, kNlvy lklk  . It follows that to use the 

above-mentioned methods it is needed to use some methods 
for calculation of the values

iiny  and )0(  iv
iin  . To be 

freed from these difficulties, one can choose the values of 
)0( kii   in the form /i i im t   (0 )i k  . Here 

m  and  t  are integer values, therefore i
v will be functional. 

But in this case, the order of accuracy (values for the degree) 
for the given method will be decreasing.  

If compare the above-mentioned methods then receive 
that all methods which have been applied to solve of above 
considered problems are one and the same without the method 
(41). In the construction of the method (41) one can take 

kj   and in this case receive that the method (41) is the 
same with the method (40). It follows from here that the 
method of type (40) can be constructed by the same way which 
has used for the construction of methods of the type (39). 

And now note that for fundamental investigation of 
above-mentioned problems it is need to impose some 
conditions on the coefficients of the used methods. Similar 
conditions for the coefficients of the method (4) have been 
received in the [14] and that called as the A,B,C conditions. 
These conditions for the method (39) can be presented as the 
following: 

The coefficients ),...,1,0(,,, kiiiii   are some 

real numbers and 0k . 

A. Characteristic polynomials:  
0

,
k
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i

i

   
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  

  ;
0




k

i

i

i
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




k

i

i

i
i

0


 

have no common factor different from the constant. 
B. The conditions     011    and 1p  are hold. 

Let us note that all properties of the methods (34) and 
(39) are the same. Therefore, to determine the values of its 
coefficients, let us use the same way. In our case for 
construction of the methods of the types (34) and (41), one can 
use the system (37) and the following systems: 

).,...,1,0(; )()( kii

k

ij

j

ii

k

ij

j

i  




    
(42) 

By using the above described way, let us construct the 
stable methods to solve the above-mentioned problems. And 
let us began to construct those methods by using the problems 
(1) and (11).  

As noted above, the domain in which all above-
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mentioned problems are equivalent and has been shown that in 
outside of that domain the problems are equivalent with some 
errors which can be estimated. By using the last properties, the 
constructed method by which can be solved all above-
mentioned problems by some errors. For the simplicity, let us 
put 1k . In this case, by using the solution of the system 
(37), one can construct the following methods:   

1 1( ) / 2; 1/ 2 3 / 6,n n n ny y h y y     
            (43) 

 

1 1

1

( ) /12

5 ( ) /12, 1/ 2 5 /10.
n n n n

n n

y y h y y

h y y  

 

  

    

    
     (44) 

It is not difficult to show that there exists a stable 
method of the type (34) with the degree  6max p , for the 
value  1k  which can be defined by the formula (44). Now, 
let us construct more exact stable method. For this aim, we put 

2k . As was noted above the system (35) is nonlinear, 
therefore the finding its exact solutions is difficult. For the 
simplicity here assume that 01   and 11  . In this case, the 

stable method with the degree 8p  can be written as 
follows: 

2 2 1

1 1

(9 64 9 )

/ 90 49 ( ) / 90,7 21 / 7.
i i i i i

i i

y y h y y y

h y y  

  

   

     

   
 (45) 

It can be argued that the method of (45) is symmetric, 
but someone could argue that it can not be symmetric. If the 
method of (45) can be written in the following form: 

       

' ' '
2 1

2

' ' '
1 1 1

(9 32 9 )
90

(49 32 49 )
90

i i i
i i

i a i i a

h y y y
y y

h y y y

 


    

 
  

 


 

,then we receive that this method can be taken as symmetric. 
This method is two-step method which can be written as 

the one-step method in the following form: 

1 1

1/ 2 1/ 2 1/ 2

9 ( ) / 90
(49 64 49 ) / 90,

21 /14.

i i i i

i i i

y y h y y

h y y y 



 

    

    

    



         (46) 

This is one-step method with the degree 8p . In the 
class of one-step methods, that can be taken as the one of the 
best methods. 

Let us note that in the application of the constructed 
here methods of type (39) do not arise some difficulties. Let us 
consider application of method of (43) to solve problem (11). 
In this case, we receive:  

1 1
1

( ) ( )
2 2

n a n a n a n a
n n

h h
y y

        


 
   . 

Here, ( , ),m m mx y   ( ),m mx   ( 0)m  .  
By applying this method to solve problem (11) that arises 
some difficulties related with the calculation of values  

)(
ivin

xy


 ;,..,1,0( ki  )1
i

v  for which one can use any 

methods constructed by the help of the known methods as the 
trapezoidal rule, Simpson method, and others. 

It is not difficult to prove that methods of (43)-(46) are 
the symmetric. It is noted that method (43) remains the 
corresponding Gauss method. The other coefficients of 
methods also satisfy the Gauss conditions. Now, let us 
consider calculation of double integral. 

Methods (43)-(46) can be taken as the symmetric 
methods and the known Gauss and Chebishev methods are also 
can be taken as symmetric. Method (45) is symmetric priory of 
Dahlquist. 

IV. ON THE CALCULATION OF DOUBLE INTEGRALS 
It is known that with the calculation of the double 

integral (9) encounter that to find the volume of some 
geometric figures (see [27 ,p.22]). For this aim, we use the 
function (13). The investigation of the function (13), bind with 
the following hyperbolic equation (see [28, p.147]): 

    
2 ( , ) ( , ), ,U x y

f x y a x b c y d
x y


    

 
.    (47) 

Thus, we receive that calculation of the double integral 
(9) is equivalent to solve the equation of (47).  

For the investigation of the double integral (9), one can 
use the solution of the following problem: 

    

2 ( , ) ( , ), ( , ) ( , ) 0

, .

U x y
f x y U a y U x c

x y

a x b c y d


  

 

   

 

As known that the double definite integral can be 
calculated by the following formula (see [5, p.147]): 

( , ) ( , )

( , ) ( , ) ( , ).

b d

a c

f s t dsdt U b d

U a d U b c U a c

 

  

              (48) 

One of the popular method for solving hyperbolic equation is 
the finite-difference method. If we appy simple finite 
difference method to solve equation (47), then we receive: 

.1,1,1,
2

h

UUU

дхду

Uд jijiji

yy
xx

j

i







                (49) 

If in the construction of finite-difference method 
suppose that 1h   , and  1 , ,i ix a b x    1ic y   and 

jd y ,  then receive that method (48) and (49) are the same. 
But if there for approximation of the equation (47) used more 
exact formula, then the above properties would not take a 
place and in the results of which we would receive some 
system of algebraic equation. It should be noted that to 
determine the solution of such systems of algebraic equation 
perhaps but not always. Therefore here proposed very simple 
method for calculation the values of double integral (9). For 
this aim, let us consider the following integral: 

( , ) ( , )
y

c

F x y f x t dt  .              (50) 
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The function ' ( , )yF x y by using equality (50) can be 
written as: 

1

' ( , ) ( , ),y ix x
F x y f x y


  ( , ) 0,iF x c   0,1,2,...,i n , (51) 

' ( , ) ( , ),xU x d F x d  ( , ) 0,U а d   0x a .      (52) 
By solving these systems one can be find the value 

( , )U b d . Noted that all the equations of these systems are 
separated. Therefore we can investigate the system of (51) and 
(52) for the fixed value of the variable For example, let us 
consider the following method: 

0 0

0

( , ) ( , )

( , ).
i

k k

i j n i i j n i

i i

k

i j n i

i

F x y h f x y

h f x y 

 



 

 

 



 



 



       (53) 

This method is the same as the method (39) and one can 
be taken that as the generalization of the method (27).  

Let’s note that, Gauss, Chebyshev, and many other 
methods can be received from the method (53), but it’s 
impossible to receive some of them from the method (27) as a 
partial case. Therefore, numerical methods of type (53) can be 
taken as a perspective.  

By comparison, the conception of stability and degree 
for the linear multistep methods with constant coefficients and 
for the method of (53) receive that the above mentioned 
conceptions are defined by one and the same way. By using 
this approach, one can prove that the conception of stability is 
necessary and sufficient condition for its convergence. One of 
the main problems of Modern Computational Mathematics is 
the construction of the stable methods with the higher order of 
accuracy. By taking into account this, many specialists have 
proposed to construct methods of hybrid type. It is clear that 
like other methods the hybrid methods also have some 
advantages and disadvantages. There are different way for 
solving named problem. One of them is the constructed 

methods for the calculation values of the type 
in iy    

(0 )i k  . If к - satisfies the condition 3к  , then in 
construction of such formulas, some difficulties are arisen.  

Therefore, we use some known methods having the type 
(4). For example, let us construct method for calculation of the 
value 1/ 2ny 

 with the rate of approach 2( )O h , one can be 
used the explicit Euler or trapezoidal method. If applied 
proposed here way to calculation value 1/ 2ny 

, for the 
calculation that receive following formulas: 

'

1
2 2

n
n

n

hy
y y


  ;  

' '
1
2

1
2 2

n
n

n
n

h y y

y y




 
 

    .   (54) 

This way has used for calculation 1ny 
  by application 

of Simpson’s method, but trapezoidal method had used in 
application of method (43) to solve some concrete example. 
Let us note that the Simpson method in this case can be written 
in the following form: 

' ' '
1 1
2

1

4

2

n n
n

n n

h y y y

y y






 
  

   . 

For application of this method to solve some problems, 
one can recommend method (54). 

V. NUMERICAL RESULTS 
For the illustration of our obtained numerical results, let 

us consider following example: 

0

' ( ) (1 exp( )) ( )
x

y y x m x m y s ds        . 

The exact solution of this problem can be written as: 
( ) exp( )y х x . 

Suppose that solution of initial value problem (55) 
defined on the interval [1,2], but results obtained on the 
segment [0,1] are not present an interest. Therefore, we 
determine the numerical solution of the named problem on the 
interval [1,2] Here, we also have considered to calculate the 
following integrals: 
1

0

exp( )s ds  and 
1 1

0 0

exp( )s t dsdt   and also solving the 

following integral equation  
1

0

( ) 1 ( ) , 0 1y x y s ds x    . 

It is not difficult to understand that in the case 0m  
from the example, we receive the initial-value problem for the 
ODE of the first order. The results have been obtained from 
the application of the method (43) to solving of our problem 
that have been tabulated in Table 1 and Table 2: 

 
Table 1. For the case 1.0h  and 1   . 

ix  ,1  
1m  

,1  
0m  

,1  
1m  

,1  
0m  

1.1 1.51 E-7 1.58E-7 7.36E-8 2.06E-8 
1.4 8.95E-8 8.90E-7 5.70E-6 5.86E-8 
1.7 7.40E-7 2.11E-6 2.009E-5 7.55E-8 
2.0 2.26E-6 4.08E-6 4.45E-5 7.97E-8 
 
From the above table content, our obtained results for ODE are 
better than the results obtained for the Volterra Integro-
differential equations, which are related to the calculation of 
the integral participated in the problem of (55). 
 
Table 2. For the case 1.0h  and 5   . 

 

ix  ,5

1m  
,5

0m  
,5

1m  
,5

0m  
1.1 4.30E-6 4.30E-6 1.45E-5 7.42E-11 
1.4 7.73E-5 7.73E-5 3,17E-4 6.61E-11 
1.7 6,06E-4 6,06E-4 1,92E-3 2.58E-11 
2.0 3,88E-3 3,88E-3 9,05E-3 8.22E-12 
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This example has been solved in the work [28] for the 
case 0m  and 0m  by using the forward-jumping 
method with the degree 5p , which is asymmetric To 
illustrate our results received here by the implicit method (43) 
that has been applied to solve the following Volterra integral 
equations: 

.10,)(1)(
0

  xdssyxy

x



 
Let us note that the method (43) is one-step and has the degree 

4p . The results received here have been tabulated in 
Table 3. 
 
Table 3. For the cases  1.0h  and 01.0h  

ix  1.0h ,
1m  

1.0h ,
1m  

01.0h ,
5m  

01.0h ,
5m  

1.1 1.2E-4 1.65E-5 6,12E-4 1.10E-8 
1.4 2.18E-4 1.55E-5 1,09E-2 9.88E-9 
1.7 3.57E-4 1.40E-5 8.60E-2 3.86E-9 
2.0 5.68E-4 1.22E-5 5.51E-1 1.23E-9 
For comparison of all results received by using the method 
(43), let us apply the method (43) to compute the following 
definite integral: 

.)exp(
1

0
 dssI  

The received results in the calculation of definite 
integral for 01,0h  can be written as follows: 

10-405226E1.40521816 . 
Let us now consider calculation of following definite 

integral:  

       
1 1

0

exp( )s t dsdt   

by using method (44), for the step-size 0,05h  .  The error 
can be presented as 6,17 14E    for the   0,05h  , 
but for the step-size 0,1h   the error can be presented as 
1,4 10E  .  

Noted that symmetric method can be constructed and 
also by using the forward-jumping (advanced) methods. For 
example the following method can be included to class of 
symmetric methods: 

 ' ' '
1 2

1

8 5
12

n n n

n n

h y y y
y y

 



 
  . 

For the determined the value 1ny  , the necessity of 

using the  values ny   and 2ny    are arisen which are located 

symmetrically to 1ny  , therefore methods can be taken as 
symmetric.  

Noted that for the application of these methods to solve 
fructional derivatives and integral equations that can be 
modified. In this case, there are known works of different 
authors ( see for example [37-39]). In the recent time, one of 

the basic question related to this study, the construction of 
regression algorithm and investigation risk factor of 
sustainability ( see for example [40,41]).   

VI. CONCLUSION 
Here have been proven that the domain of the solution 

of the initial-value problem for ODE and Volterra integro-
differential equation, and the domain of the solution of 
Volterra integral equation has an intersection different from 
zero. Have shown that here are indefinite functions and the 
domain of existence of which has also been included in the 
above-described intersection of domains. It is not difficult to 
obtain from here, that there exist some domains in which the 
above-mentioned four problems can be solved by the same 
method. These methods can be taken as the class of multistep 
methods which have been applied to solve ODEs. In order to 
solve the integral equations with the help of stable multistep 
methods with an extended region of stability, some 
modification of the above-mentioned methods can be applied 
(by using the system (40)). The maximal value of the degrees 
has been defined for the stable and unstable multistep methods 
which are recommended in order to solve the above-mentioned 
problems. By taking into account that the hybrid methods are 
more exact, here have been constructed the methods on the 
intersection of the multistep and hybrid methods. Have been 
defined the advantages of these methods. Identified some 
connection between Gauss and constructed here methods. By 
the development of the theory of Dahlquist here have been 
received some connections between the degree and the order 
for the proposed methods.  The constructed concrete 
algorithm, which has been applied to solve some model 
problems, has the same solution. The obtained results are in 
agreement with the theoretical ones. It should be noted that the 
proposed methods in this work are interesting for a wide class 
of specialists, and hence, they are perspective. 

Note that in [36], an interesting result has been obtained 
for solving the initial-value problem for differential equation 
[37], which has investigated the calculation of definite 
integrals in comparison with the known quadrature methods. 
And in [30], important research has been done for the 
calculation and application of definite integrals for 
computation of the geometric figures and many applied 
foundations. 

ACKNOWLEDGMENT 
The authors wish to express their thanks to 

academicians Telman Aliyev and Ali Abbasov for their 
suggestion to investigate the computational aspects of our 
problem and for their frequent valuable suggestion.  

This work was supported by the Science Development 
Foundation under the President of Republic of Azerbaijan - 
Grant No EIF-MQM-ETS-2020-1(35)-08/01/1-M-01 (for 
Vagif Ibrahimov and Galina Mehdiyeva). 

2020-2025, Hubei ChuTian Scholar Funding, China 
(For Xiao-Guang Yue) 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.167 Volume 15, 2021

E-ISSN: 1998-4464 1555



 

 

References   
[1] T. Aliev, T. Babayev, T. Alizada, E. Alibayli “Intelligent 

system of Noise control of the Technical condition of 
Railroad Tracks”, Transport Problems, Volume 16, Issue 
1, 2021, pp.65-73. 

[2] T.A. Aliyev, N.F. Musayeva, B.I. Gazizade 
“Technologies for Monitoring the Dynamics of Damage 
Development in Drilling Rigs Using Gigh-order Moments 
of the Noise”, Mechatronica, Automatizatsiya, 
Upravleniye, 21(4), 2020, pp. 213-223. 

[3] G.Yu. Mehdiyeva, V.R. Ibrahimov, M.N. Imanova 
“General Theory of the Application of Multistep Methods 
to Calculation of the Energy of Signals”, Lecture Notes in 
Electrical Engineering, volume 348, 215, October, 2015 
pp. 1047-1056. 

[4] V.R. Ibrahimov, V. Aliyeva, “Construction of the Finite-
Difference Method and Application”, AIP Conference 
Proceedings, March 2015.  

[5] G.Yu. Mehdiyeva, V.R. Ibrahimov, M.N. Imanova “On 
the Construction of the Advanced Hybrid Methods and 
Application to Solving Volterra Integral Equation", 
WSEAS Transactions on Systems and Control, Volume 
14, 2019, pp. 183-189. 

[6] I.G. Burova, “Application Local Polynomial and Non-
polynomial Splines of the Third Order of Approximation 
for the Construction of the Numerical Solution of the 
Volterra Integral Equation of the Second Kind”, WSEAS 
Transactions on Mathematics, Volume 20, 2021, pp. 9-23. 

[7] P. Michael, Fitr Aanalogy Communicaqtion Theory, The 
Ohio State University, 2001, p. 200.  

[8] G.Yu. Mehdiyeva, M.N. Imanova, V.R. Ibrahimov, 
“Some refinement of notion of Symmetry for the Volterra 
Integral equations, and the construction of symmetrical 
methods to solve them”, journal of Computational and 
Applied Mathematics, 306, 2016, pp. 1-9. 

[9] M.N. Imanova, V.R. Ibrahimov, “Multistep Methods of 
the Hybrid Type and their Application to solve the second 
kind Volterra Integral Equation”, Symmetry MDPI, 2021, 
13(6), 1087; https//doi.org/10.33.90/sym13061087 

[10] A.N.  Krylov “Lectures on approximate calculations”,  
Moscow, Gocteh-izdat, 1950, p. 400.  

[11] M.R. Shura-Bura” Error estimates for numerical 
integration of ordinary differential equations”, 
Prikl.matem. and mech., № 5, 1952, pp.575-588. 

[12] I.S. Mukhin “By the accumulation of errors in the 
numerical integration of differential-differential 
equations”, Prikl.mat. and mech., 1952, V.6, 752-756. 

[13] N.S. Bakhvalov “Some remarks on the issue of numerical 
integration, differential equation the finite-difference 
method”,Academy of Science report, USSA,No 3, 1955, 
805-808. 

[14] G. Dahlquist” Convergence and stability in the numerical 
integration of ordinary differential equations,  
Math.Scand, No.4, 1956, pp.33-53. 

[15] E.Ya. Remez ‘Some questions of the structure of 
mechanical quadrature formulas that can serve as a two-
sided numerical estimate of solutions of differential 
equations”, Ukrain. mate. Journal., No 4, 1958, p. 413-

428. 
[16] P. Henrici “Discrete variable methods in ordinary 

differential equation” Wiley, New York, 1962. 
[17] V.R. Ibrahimov “On a nonlinear method for numerical 

calculation of the Cauchy problem for ordinary 
differential equation” Diff. equation and applications. 
Pron. of II International Conference Russe. Bulgarian, 
1982, pp. 310-319. 

[18] V.R. Ibrahimov “A relationship between order and degree 
for a stable formula with advanced nodes”, USSR 
Computational Mathematics and Mathematical Physics, 
Volume 30, Issue 4, 1990, pp. 57-65. 

[19] G.Yu. Mehdiyeva, V.R. Ibrahimov, “On the research of 
multi-step methods with constant coefficients”, 
Monograph, Lambert. acad. publ., 2013, 313 p. 

[20] R.J. Lambert, “Numerical Methods for ordinary 
Differential Systems: the initial value problem”, John 
Wiley and Sons Ltd, Chichester.  

[21] J.C. Butcher, “A modified multistep method for the 
numerical integration of ordinary differential equations”, 
J. Assoc. Comput. Math., v.12, 1965, pp. 124-135. 

[22] G. Dahlquist,  Stability and error bounds in the numerical 
integration of ordinary differential equation. Trans. Of the 
Royal Inst. Of Techn., Stockholm, Sweden, Nr. 130, 
1959,  3-87. 

[23] A.Jr. Huta, “An a priori bound of the round-off error in 
the integration by multistep difference method for the 
differential equation ),( yxfy  ”, Acta F.R.N. Univ. 
Comen .Math., No 34, 1979, pp. 51-56. 

[24] J. Kobza , “Second derivative methods of Adams type” 
Applikace Mathematicky, №20, 1975, pp. 389-405.   

[25] Stormer, Sur les trajectories des corpuscules electrises, 
Arch. Sci. Phys. nat., Geneve, Vol 24 ,1907,pp. 5-18, 
113-158, 221-247.  

[26] Ibrahimov V. On the maximal degree of the k-step 
Obrechkoff’s method. Bulletin of Iranian Mathematical 
Society, Vol.28, №1, 2002, 1-28. 

[27] Fichtengolts, G.M. Course of differential and integral 
calculus, vol. 3, Nauka, Moscow 1970, 800 p. 

[28] K.E. Atkinson  “Numerical solution of integral equations 
of the second kind” Cambridge University Press, 1997, 
552 p. 

[29] A.Quarteroni, R. Saccar, F. Saleri, “Numerical 
Mathematics”, Springer, 2007, 655 p. 

[30] Z. Trifunov, Definite Integral For Calculating Volume Of 
Revolution That Is Generated By Revolving The Region 
About The X (Y) - Axis And Their, JVisualization 
Educational Alternatives ISSN 1314-7277, Volume 18, 
ournal of International Scientific Publications,  2020, p. 
178-186. 

[31] G.Yu. Mehdiyeva, M.N. Imanova, V.R. Ibrahimov “An 
application of the hybrid methods to the numerical 
solution of ordinary differential equations of second 
order”, Vestnik KazNU, ser., math, mech., inf., No 4 (75), 
2012, p. 46-54. 

[32] G.Yu. Mehdiyeva, M.N. Imanova, V.R. Ibrahimov, “On 
the one advantage of Hybrid Methods”, Journal of 
Computational & Applied Mathematics, No 2 (108), 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.167 Volume 15, 2021

E-ISSN: 1998-4464 1556



 

 

Ukraine,  2012, p. 165-175. 
[33] G.Yu. Mehdiyeva, M.N. Imanova, V.R. Ibrahimov 

“Solving Volterra Integro-Differential Equation by the 
Second Derivative Methods”, Applied Mathematics 
Information Sciences an International Journal, Natural 
Sciences Publishing Cor., 2015, pp. 25-21, 25-27. 

[34] G.Yu. Mehdiyeva, M.N. Imanova, V.R. Ibrahimov, “On 
one application of forward-jumping methods”, Applied 
Numerical Mathematics, Elsevier, Volume 72, October, 
2013, p. 234-245. 

[35] V.R. Ibrahimov, G.Yu. Mehdiyeva, M.N. Imanova, “On 
the Construction of the Multistep Methods to Solving the 
Initial-Value Problem for ODE and the Volterra Integro-
Differential Equations”, IAPE '19, Oxford, United 
Kingdom ISBN: 978-1-912532-05-6,March 14-15, 2019. 

[36] D.A. Juraev “Cauchy Problem for Matrix Factorizations 
of the Helmholtz Equation”, Ukrainian Mathematical 
Journal volume 69, 2018,pp. 1583–1592  

[37] M.A.F.Araghi, S.Noeiaghdam, “Valid implementation of 
the Sinc-collocation method to solve linear integral 
equations by the CADNA library”, The second National 
conference of Mathematics, Advanced Engineering with 
Mathematical Technique, 19-20 April, Islamic Azad 
University, Iran, 2017, p.1-8. 

[38] F. Martinez , I.Martinez, M.K.A. Kaabar, R. Ortíz-
Munuera, S.Paredes “ Note on the conformable fractional 
derivatives and integrals of complex-valued functions of a 
real variable”, IAENG Int. Appl. Math., 50, 2020, 609-
615. 

[39] M.K.A. Kaabar, A.Refice, M.S. Souid,; F. Martínez, S. 
Etemad, Z. Siri,; S. Rezapour, “Existence and U-H-R 
Stability of Solutions to the Implicit Nonlinear FBVP in 
the Variable Order Settings” Mathematics 2021, 9, 1693. 
https://doi.org/10.3390/math 9141693  

[40] J.Wu, G.Zhang, X.Yue “Application study of Bayes 
stepwise discriminant analysis method in evaluation of 
difficulty degree of water infusion for coal seam”Journal 
of the Balkan Tribological Association, 2016, 22(3A-II), 
pp. 3596-3601  

[41] H. He, S. Li, L. Hu, N. Duarte, O. Manta, X-G Yue "Risk 
Factor Identification of Sustainable Guarantee Network 
Based on Logistic Regression Algorithm." Sustainability, 
11, no. 13: 2019, 3525  
 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2021.15.167 Volume 15, 2021

E-ISSN: 1998-4464 1557

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

https://www.researchgate.net/profile/Samad_Noeiaghdam?_sg%5B0%5D=m9HV6gWYlL8t5MT82b_HZaF93Z-3dVoC0Rl55ct8zkeENHhtTIky9LM8malJmbdihdDFra0.71wf_CaJlP_9xCoMhbhkcae5h5npE1VZOIwBV3X-8P2cxy-0ZaiMELqtXSUjIFtj_kXQL0Y5qb8AnVvmcnTGSw&_sg%5B1%5D=v3INVQJjF5xoolHp9UnQ6q8fc-5cWHQdiuVhwQX1562NKB0GKNTGzClzR6WXh6vDA5GO0oA.ZzxRCC7W5oHoGpiRPscKxMCsDjIDB04T-Igby-YN6RDiaVWLEIed-ey-E53uBww2ICGrZvlPl_hMMl-hh_omlQ
https://doi.org/10.3390/



