
Optimization of Transport Flow on Two Paths
with Respect to the Passengers Time Costs

Paolo Mercorelli

Institute of Product and Process Innovation
Leuphana University of Lueneburg

D-21335 Lueneburg, Universitaetsallee 1
Germany

Tel. +49.4131.677-1896
mercorelli@uni.leuphana.de

Received: May 6, 2021. Received: September 18, 2021. Accepted: October 19, 2021. Published: October 29, 2021.

Abstract: Transportation of passengers by public
transport is one of the most important tasks of the
economy. Waste of passengers’ time plays a special
role in optimizing the movement of vehicles on urban
routes. This paper considers an optimization problem
in the context of two paths and proposes an optimal
strategy of transport with respect to the costs of the
travel. The optimization method is based on the
Newton Method and the software is realized using
Python.

Key–Words: Optimization, Gradient Methods,
Traffic Control

I. INTRODUCTION

One aspect of the Smart City concept, which is currently
being launched everywhere, is a better control of the flow
of traffic. Mobility is to be increased, switching between
modes of transport promoted, congestion avoided, air
pollution reduced and the use of cars reduced through a
better organization of public transport and with sharing
models or, at some point, autonomous vehicles. Above
all, Smart City is a concept of optimization that underlies
the digitization and evaluation of data on a large scale. In
a pilot project in Newcastle, UK, the optimization of the
flow of traffic is now being tested using 20 smart traffic
lights. The communication system in the vehicles is
directly connected to the Traffic Control Center
(UTMC). This makes it possible for the traffic lights, as
they say, to ”speak” to the motorists, which is, however,
a somewhat skewed humanization of the situation. The
vehicles taking part in the experiment are recognized 100
meters away from the traffic light and given priority by
the traffic light switch, which turns green when the traffic
flow allows it. In addition, the driver receives
”personalized” information about traffic disruptions and
information about the speed at which he should drive in
order to get a green phase at the next traffic lights. This
is not really new, the preference for public transport is
already practiced, traffic reports in real time are also
available in navigation systems and the analysis of data

on a large scale is the basis. In any case, transportation of
passengers by public transport is one of the most
important tasks of the economy. Waste of passengers’
time plays a special role in optimizing the movement of
vehicles on urban routes. The main indicator here is the
loss of passenger hour. Therefore, when optimizing the
work of urban passenger transport not only transport
costs must be considered, but also the socio-economic
aspect associated with downtime passenger at stopping
points. According to Antoshvili M. et al. in [1],
sociological researches demonstrate that reducing the
passenger’s travel time from home to work by 10 minutes
leads to an increase in labour productivity by
approximately 4%. Moreover, if the speed of public
transport increases, then the carrying capacity and
performance rise. With an increase in the interval of
movement of vehicles along this route, the time spent by
passengers increases, but transport costs decrease and
vice versa. A compromise is needed between the socio-
economic importance of passenger transportation and
transport costs (we restrict ourselves to two routes).

II. THEORETHICAL FOUNDATION

A. Queueing theory
Queueing theory is an applied mathematical discipline
dealing with the performance of technical systems,
which, in what follows, are referred to as queueing
systems for processing of flows of customers

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.172 Volume 15, 2021

E-ISSN: 1998-4464 1602

(Bocharov P.P. et al.), see [2].
We can extract the following components that are

common to all queueing systems:

• input flow of customers, that is, the process of
arrival of the customers at the systems;

• system structure, that is, number and types of the
servers, as well as the capacities of the buffers
located before all and/or individual servers;

• times of customer service by the servers, that
is, the actual times (disregarding the times of
waiting and service interrupt) during which the
customers undergo complete service and depart
from the systems;

• service discipline, that is, the process of allocat-
ing the customers to the servers, generating the
queues, picking the customers from the queues,
and so on (Bocharov P.P. et al.) see [2].

Newton’s idea is simple: to find the root of a function,
find the tangent line of the function at your current
guess for the root, then your next guess will be where
the tangent line intersects the x-axis. If the function is
linear, then the root will be found in just one step, and
if the function is close to linear, then this will give
a very good approximation to the root. To run the
algorithm, we need an initial guess, and the better it
is, the better the algorithm will perform.

If we know the previous guess xk , Newton’s idea
allows us to explicitly find xk+1. The tangent line to
f(x) at xk is given by

y − f(xk) = f(xk)(x− xk). (1)

Newton’s next iteration is defined where this line in-
tersects the x-axis, and we call this point (xk+1, 0).
Inserting this point into the tangent line gives

0− f(xk) = f(xk)(xk+1 − xk). (2)

Now solve for xk+1

xk+1 = xk −
f(xk)

f ′(xk)
. (3)

We start the process with an arbitrary initial value x0.
The method usually converges, if this initial guess is
close enough to the unknown zero, and that f ′(x0) =
0.

Newton’s method can run into one of several dif-
ficulties:

1. If the initial guess is not sufficiently close, the
initial tangent line approximation could be terri-
ble and prevent convergence.

2. Vanishing derivatives. If f ′(xk) ≈ 0, the tan-
gent line has no root, or one that is very far away.
Here, Newton’s method can become numerically
unstable and may not converge.

3. Cycles. You can construct examples where
Newton’s method jumps between two points (so
xk+2 = xk) and never converges (T. Heister et
al., 2019), see [3].

In summary, Newton’s method is not guaranteed
to work, but when it does, it is very fast.

To formulate the problem, consider the next situa-
tion. We have two routes, which serve three passenger
flows:

1. Passenger flow is transported by public transport
only of the first path;

2. Passenger flow is transported by public transport
only of the second path;

3. Passenger flow is transported by public transport
of two ways together.

On both routes, people wait for the bus at the bus
stop. The bus arrives at the stop and picks up pas-
sengers. Some time passes, and people appear at the
bus stop again. The situation repeats. Again, some
time passes, and the situation repeats. Thus, we need
to have a certain number of buses per unit of time to
serve passenger flows. In addition, transporting pas-
sengers requires transportation costs, and waiting for
a bus by passengers has a certain price. If there is
information about the cost of one transportation per
path and the cost passenger per hour, the task of find-
ing the optimal intervals of transport movement along
two ways can be set.

We denote:
λ1 , λ2 , λ0 the intensity of the previously men-

tioned passenger flows;
µ1 , µ2 the required intensity of the Poisson flow

of transports along the corresponding way per unit of
time;

γ the cost of a passenger hour;
α1 , α2 the cost of one transportation one way.
If transport flows are Poisson, independent from

each other’s and passenger flows, then the share of
passenger flow, which is transported by each path, is

B. Newton’s method

III. FORMULATION OF THE PROBLEM

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.172 Volume 15, 2021

E-ISSN: 1998-4464 1603

proportional to its traffic intensity. Therefore average
passenger time losses per unit time on the correspond-
ing transport way are:

λ1
µ1

+
λ0

µ1 + µ2
(4)

λ2
µ2

+
λ0

µ1 + µ2
. (5)

Total passenger losses due to waiting for public trans-
port:

h(µ) = γ

(
λ1
µ1

+
λ2
µ2

+
λ0

µ1 + µ2

)
. (6)

Transportation costs for travel:

g(µ) = α1µ1 + α2µ2. (7)

Objective function (costs of passengers and transport):

f(µ) = γ

(
λ1
µ1

+
λ2
µ2

+
λ0

µ1 + µ2

)
+α1µ1+α2µ2 → min

µ
.

(8)
We calculate optimal traffic intervals given that

α1 = α2 = α. (9)

We can show that we have one required minimum and
that we have the following equations at the optimal
point:

γ

(
− λ1
µ12
− λ0

(µ1 + µ2)
2

)
+ α = 0. (10)

γ

(
− λ2
µ22
− λ0

(µ1 + µ2)
2

)
+ α = 0, (11)

whence we have

λ1
µ12

=
λ2
µ22

. (12)

Expressing µ2 from (12) and substituting to (10)
, we get

γ

[
− λ1
µ12
− λ0

µ12
(
1 +

√
λ1
λ2

)2

]
+ α = 0. (13)

Thus, optimal solution is

µ1 =

√
γλ1(λ1 + λ2 + 2

√
λ1λ2 + λ0)

α(λ1 + λ2 + 2
√
λ1λ2

(14)

µ2 =

√
γλ2(λ1 + λ2 + 2

√
λ1λ2 + λ0)

α(λ1 + λ2 + 2
√
λ1λ2

. (15)

In case of violation of (9), we do not have the op-
timal traffic intervals in an analytical form. A numer-
ical solution is needed, and for this, Newton’s method
is used.

Considering that the Newton’s itera-
tive algorithm has the following form:

µ1
k+1 = µ1

k − f1(µ1
k, µ2

k) ∗ f2,2(µ1k, µ2k)− f2(µ1k, µ2k) ∗ f1,2(µ1k, µ2k)
D(µ1k, µ2k)

(16)

µ2
k+1 = µ2

k − f2(µ1
k, µ2

k) ∗ f1,1(µ1k, µ2k)− f1(µ1k, µ2k) ∗ f1,2(µ1k, µ2k)
D(µ1k, µ2k)

(17)

where,
f1 the first derivative of f(µ) with respect to the

variable µ1;
f2 the first derivative of f(µ) with respect to the

variable µ2;
f1,1 the second derivative of f(µ) with respect to

the variable µ1;
f2,2 the second derivative of f(µ) with respect to

the variable µ2;
f1,2 the derivative of f1 with respect to the vari-

able µ2;
D the determinant of the matrix of second deriva-

tives;
k the number of iteration.
As example, we consider a problem with the fol-

lowing parameter values. The passenger flows are
λ1 = 100 , λ2 = 50 , λ0 = 150 people per hour. The
transport costs on routes are α1 = 115 and α2 = 92
euro. The passenger time cost is γ = 5, 7 euro per
hour. We use Python to implement this problem and

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.172 Volume 15, 2021

E-ISSN: 1998-4464 1604

find a solution.

Figure 1 shows the objective function on the plane of
two variables.

Figure 1: Total costs of transport and passengers

It can be seen from Fig. 1 that our function has
a convex point. This indicates the presence of a mini-
mum of the function and the possibility of rapid con-
vergence of Newton’s method.

The process of iterating over Newton’s method is
shown in the Table 1. Having performed calculations
by Newton’s method, using for obtaining the optimal
traffic intensity of vehicles, high convergence of the
method can be noted.

Under these conditions, the expected optimal
transport costs are 513,9 euro per hour at traffic in-
tensities µ1 ≈ 2, 6743 and µ2 ≈ 2, 2430. The average
number of transported passengers is 67,9 for the first
and 52,8 for the second routes per travel. If the fare
is 2,1 euro, the profit on the first route will be 27,59
euro, and on the second one is 18,87 euro per trip.

When organizing work, urban passenger transport
needs accounting not only transport costs, but also
socio-economic importance of transportation. A par-
ticular role in optimizing the movement of vehicles on
city routes is played by loss of passengers’ time.

This paper proposes an optimization problem
in the context of two paths and develops an optimal
strategy of transport with respect to the costs of
the travel. The optimization method is based on
the Newton Method and the software to optimize is
realized using Python.

Many thanks are addressed to Aleksandra Viktorowa
for her essential contribution to this work. Without
her contribution this work would not have been ac-
complished.

[1] Antoshvili, M. Optimizatsiya gorodskikh avto-
busnykh perevozok, M.E. Antoshvili, C. Yu.
Liberman, I.V. Spirin. M.: Transport, 1985.

[2] Bocharov, P. Queueing Theory, P.P. Bocharov,
C. D’Apice, A.V. Pechinkin, S.Salerno. VSP,
Utrecht, Boston, 2004.

[3] Heister, T. Numerical Analysis. An introduction,
Tino Hiester, Leo G. Rebholz, Fei Xue. Walter de
Gruyter GmbH, Berlin/Boston, 2019.

Appendix

The Python code.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from sympy import *
4 from mpl_toolkits import mplot3d
5

6 # Parameters
7 Pass_flow_0 = 150
8 Pass_flow_1 = 100
9 Pass_flow_2 = 50

10 Alpha_1 = 115
11 Alpha_2 = 92
12 Gamma = 5.7
13 Fare = 2.1
14

15 # The required parameters
16 Mu_1 = Symbol('Mu_1')
17 Mu_2 = Symbol('Mu_2')
18

19 #Cost functions
20 # Transport costs
21 g_mu = Alpha_1*Mu_1 + Alpha_2*Mu_2
22 # Passenger's cost
23 h_mu = Gamma*(Pass_flow_1/Mu_1...
24 + Pass_flow_2/Mu_2 + ...

Pass_flow_0/(Mu_1 + Mu_2))
25 # Objective function

IV. RESULTS

ACKNOWLEDGEMENT

REFERENCES

V. CONCLUSION

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.172 Volume 15, 2021

E-ISSN: 1998-4464 1605

Table 1: Newton’s method implementation
k 0 1 2 3 4 5
µ1 1 1,4306 1,9424 2,4031 2,6358 2,6743
µ2 1 1,4015 1,8307 2,1388 2,2369 2,2430

26 f_mu = g_mu+ h_mu
27

28 #Plot of function
29 func = lambdify([Mu_1,Mu_2],f_mu)
30 x =np.linspace(0,10,30)
31 y = np.linspace(0,10,30)
32 X,Y = np.meshgrid(x,y)
33 Z = func(X,Y)
34 fig = plt.figure(figsize=(8,4))
35 ax = plt.axes(projection = '3d')
36 ax.plot_surface(X,Y,Z,rstride=1,cstride=1,
37 cmap='viridis',edgecolor='none')
38 ax.set_xlabel(" 1 ")
39 ax.set_ylabel(" 2 ")
40 ax.set_zlabel("f(1 , 2)")
41

42 # Derivative of function
43 fun_1 = f_mu.diff(Mu_1)
44 fun_11 = fun_1.diff(Mu_1)
45 fun_2 = f_mu.diff(Mu_2)
46 fun_22 = fun_2.diff(Mu_2)
47 fun_12 = fun_1.diff(Mu_2)
48

49 # Derivative of function in one point
50 f_1 = lambdify([Mu_1,Mu_2],fun_1)
51 f_11 = lambdify([Mu_1,Mu_2],fun_11)
52 f_2 = lambdify([Mu_1,Mu_2],fun_2)
53 f_22 = lambdify([Mu_1,Mu_2],fun_22)
54 f_12 = lambdify([Mu_1,Mu_2],fun_12)
55

56 # Iteration parameters
57 k = 0
58 Mu_10 = 1
59 Mu_20 =1
60

61 # First step of algorithm
62 b=np.array([[f_11(Mu_10,Mu_20),..
63 f_12(Mu_10,Mu_20)],.
64 [f_12(Mu_10,Mu_20),f_22(Mu_10,Mu_20)]])
65 D = np.linalg.det(b)
66 d1=(f_1(Mu_10,Mu_20)*f_22(Mu_10,Mu_20)..
67 -f_2(Mu_10,Mu_20)*f_12(Mu_10,Mu_20))/D
68 d2 = ...

(f_2(Mu_10,Mu_20)*f_11(Mu_10,Mu_20)..

69 -f_1(Mu_10,Mu_20)*f_12(Mu_10,Mu_20))/D
70 p=[]
71

72 # Newton's algorithm
73 while abs(d1)>1e-4 and abs(d2)>1e-4:
74 Mu_11 = Mu_10 - d1
75 Mu_21 = Mu_20 - d2
76 k = k+1
77 Mu_10 = Mu_11
78 Mu_20 = Mu_21
79 b=np.array([[f_11(Mu_10,Mu_20),...
80 f_12(Mu_10,Mu_20)],..
81 [f_12(Mu_10,Mu_20),f_22(Mu_10,Mu_20)]])
82 D=np.linalg.det(b)
83 d1=(f_1(Mu_10,Mu_20)*f_22(Mu_10,Mu_20)..
84 -f_2(Mu_10,Mu_20)*f_12(Mu_10,Mu_20))/D
85 d2 = ...

(f_2(Mu_10,Mu_20)*f_11(Mu_10,Mu_20)..
86 -f_1(Mu_10,Mu_20)*f_12(Mu_10,Mu_20))/D
87 p.append([Mu_10,Mu_20,k])
88

89 # Value of required parameters
90 Mu_10, Mu_20
91

92 #Iterations
93 p
94

95 # Optimal transport costs
96 g = lambdify([Mu_1,Mu_2],g_mu)
97 g(Mu_10,Mu_20)
98

99 # Average number of transported ...
passenger

100 avg_1 = Pass_flow_1/Mu_10 + ...
Pass_flow_0/(Mu_10+Mu_20)

101 avg_2 = Pass_flow_2/Mu_20 + ...
Pass_flow_0/(Mu_10+Mu_20)

102 avg_1, avg_2
103

104 #Profit from routes
105 pr_1 = avg_1*Fare - Alpha_1
106 pr_2 = avg_2*Fare - Alpha_2
107 pr_1,pr_2

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.172 Volume 15, 2021

E-ISSN: 1998-4464 1606

