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  Abstract— In this paper a new technique to estimate 

the coefficients of a general Autoregressive Moving 

Average (ARMA) (p, q) model is proposed. The ARMA 

system is excited by an un-observable independently 

identically distributed (i.i.d) non-Gaussian process. The 

proposed ARMA coefficients estimation method uses the 

QR-Decomposition (QRD) of a special matrix built with 

entries of third order cumulants (TOC) of the available 

output data only. The observed output may be corrupted 

with additive colored or white Gaussian noise of unknown 

power spectral density. The proposed technique was 

compared with several good methods such as the residual 

time series (RTS) and the Q-slice algorithm (QSA) 

methods. Simulations for several examples were tested. 

The results for these examples confirm the good 

performance of the proposed technique with respect to 

existing well-known methods. 

 

Keywords—— Time series Analysis, higher order 

statistics, signal-to-noise-ratio, Gaussian processes.  

I. INTRODUCTION 
HE Autoregressive moving average (ARMA) models play 
a significant role in signal restoration, predicting time 
series data, and system identification [1]. The problem of 

estimating the coefficients of ARMA models has attracted 
much attention because of its broad applications to many fields 
such as adaptive control, signal modeling, and biomedical 
signal processing. The literature has many contributions on 
estimating the ARMA process coefficients using second order 
and higher order cumulants [2, 3, 4, 5]. Giannakis and Mendel 
[2] developed a Residual Time Series (RTS) algorithm for the 
identification linear time invariant (LTI) nonminimum phase 
systems when only output data are available. The authors 
assumed that the order is given in modeling an autoregressive 
moving-average process. The basic idea of the algorithms in 
the literature is to estimate the AR coefficient. Then, a residual 

 
 

MA time series is formed. Finally, the MA coefficients are 
estimated.  Swami and Mendel [3] developed a Q-slice 
algorithm (QSA) for estimating the ARMA coefficients that 
uses q 1-D slices of the output cumulants. This method does 
not involve any computations of the residuals. 

The second order statistics (SOS) algorithms work smooth if 
the signal has Gaussian distribution [6]. Nevertheless, there are 
many realistic signals are non-Gaussian. Hence, in practice, 
there are situations where we must look beyond the 
autocorrelation (second order cumulants) of the available data. 

Signal processing with higher order statistics (or cumulants), 
has been studied in the literature [1-4, 7]. Cumulants have 
gained a lot of interest in signal processing for many reasons. 
One of the main reasons for this interest is that third order 
cumulants (and higher orders) are zeros. Hence, if the present 
signal in non-Gaussian with Gaussian additive noise, the noise 
will disappear in the third order cumulant (and higher) [8]. 

The QR decomposition is a significant operation in solving 
many linear algebra problems [9]. The idea of the QR 
decomposition is to factor a given matrix into two parts: Q and 
R in which the first one is orthogonal matrix and the second is 
upper right triangular matrix (with nonzero diagonal elements). 
Poomvichid, Patirupanusara, and Ketcham [10] presented a 
procedure to hide data in audio watermark systems based on 
QR decomposition and Genetic Algorithms (GA) using the 
discrete wavelet transform. Wang, Liu, and Zhu [11] proposed 
a blind water-marking method based on QR factorization and 
color image using discrete wavelet transform. Amiri and Fathy 
[9] presented an approach for shot boundary detection using 
QR-decomposition 

In system identification, QR-decomposition method has 
been used often to solve the least squares problems and 
generalized linear regression problems in engineering and 
science problems [12]. Mehena, Swain, and Patnaik [13] 
proposed a QR factorization rotation-based recursive least 
squares algorithm. They derived the QR-RLS method using a 
single matrix to solve different least squares problems. 
Pickhardt and Unbehauen [14] presented a numerically robust 
multi-step identification scheme using QR-decomposition for 
the identification of single-input single-output systems. 
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This paper presents an approach to estimate the coefficients 
of non-Gaussian  ARMA(p, q) process in additive colored (or 
white) Gaussian noise. The proposed method is based on the 
QR-Decomposition (QRD) of a special matrix with entries of 
the third order cumulants (TOC) of the available output data 
only. The proposed algorithm will abbreviated as QRD-TOC. 
The paper is organized as follows. Section 2 considers some 
preliminaries about ARMA (p, q) model and assumptions. 
Problem Formulation is presented in Section 3. Results and 
discussion are given in Section 4. Concluding remarks are 
presented in Section 5. 

II. PRELIMINARIES 
    The observed times series is modeled as the output of an 
Autoregressive Moving Average (ARMA) (p, q) process that 
is excited by an unobservable input, and is corrupted at its 
output by additive colored Gaussian noise. The time series is 
described by  
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                 s(n) = y(n) + w(n)                                                 (2) 
where u(n) is the system input, y(n) is the noiseless system 
output, w(n) is the additive Gaussian noise, and s(n) is the 
observed noisy time series. 
The system in (1) produces an ARMA (p, q) process. The ’s 
are the autoregressive (AR) parameters and the ’s are the 
moving average (MA) parameters; p is the order of AR part 
whereas q is the order of the MA part. The following 
assumptions are made: 

1) The model order (p, q) are known. 
2) The input u(n) is unobservable  independently 

identically distributed (i.i.d) non-Gaussian process. 
3) The additive noise, w(n), is independent of the input, 

u(n), and hence, of the output, y(n). 
 The Z-transfer for the system in (1) is 
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The system function is  
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The frequency response of the filter, H(f), is obtained at 
z= jwTe  in (4)   
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where T is the sampling period and w is the angular frequency. 
The problem under study is to estimate the ARMA coefficients 

’s and ’s from noisy observation s(k). 

III. PROBLEM FORMULATION 
    Let the system output y(k) be zero-mean stationary ergodic 
random process. Then, the third-order cumulant of y(k) is 
given by 
 
           )]()()([),(3 mkynkykyEmnyC                     (6) 

The cross-cumulant between the input and output sequences, 
u(k) and y(k) respectively, is given by 
                            
          )]()()([),( mkynkykuEmnuyyC                     (7)  

 
The sequence y(k) is observed in the noisy signal s(k) as in (2). 
 Multiplying both sides of (2) by s(k +n)s(k +m), 
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Simplifying (8) and taking the expected value 
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   It can be seen that these terms are cumulants and cross-
cumulants as defined in (6) and (7). Since the additive noise is 
independent of y(k) and s(k), then the second, the third, and the 
fourth terms of the right hand side of (9) become zeros. Hence, 
the cumulants of the noisy output are theoretically identical to 
the noiseless output sequence. That is 
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Now, multiply both sides of  (1) by )()( mkynky   
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The expected value for (11),  
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By stacking (12) for several values of n and m ranging from –
ψ to ψ where ψ denotes the range of the third order cumulants 
to be used, the system in (12) can be expressed in matrix 
format as follows  
 
                 qbuyyCpayCf  3                                 (13) 

The  cumulants at 0 lag (i.e.,  n = m= 0), are contained in the 
vector f . The coefficients of the ARMA (p,q)  process are 
contained in the vectors ap and bq. in (1). The entries of the  
matrix C3y represent the cumulants of the output sequence 
whereas the entries of the matrix Cuyy represent the cross-
cumulants of the input and output data sequences.    
Equation (13) can be written as 
                     f = pqC                                                     (14) 

where Cpq is a composite data matrix contains the cumulants of 
the output sequence and the cross-cumulants of the input and 
output sequences 
                      ]3[ uyyCyCpqC                             (15) 

and    is the ARMA coefficients vector 

                    
    
  = [-a     b]T                                              (16) 

Notice that the columns in the linear statistical model in (14) 
are linearly independent. Hence, we can multiply both sides of 
(14) by T

pqC )( , then 
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pqC )( f =

T
pqC )( pqC                             (17) 

or 

               f
T

pqCpqC
T

pqC )()(                             (18)            

The Gram matrix for the data matrix Cpq is 

                    G = pqC
T

pqC )(                                         (19) 

Substituting (19) into (18) yields 

                   f
T
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           or 
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where f
T

pqCcf )( . 

  Now, a general matrix G )( nm  can be decomposed as [15] 
 
                               G=QR                                                  (22) 
 
where Q )( mm is a unitary matrix and R )( nm  is an 
upper triangular matrix. If G is square, and the elements of Q 

being complex, then Q is unitary, )( 1QQH  [16], and 

                            IQ
H

Q                                             (23) 

The notation =  denotes the complex conjugate transpose; 
i.e., *)( TQ  as HQ)(  , 1Q  is the matrix inverse, and  is the 
identity matrix. If Q has real elements and 

                             IQ
T

Q                                                 (24) 
then Q is said to be an orthogonal matrix.  Substituting (22) 
into (21), we obtain 
                      cfQR )(                                                  (25)    

Multiplying both sides of (25) by TQR)(  yields,   
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Simplifying (26), 
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Simplifying (29), 
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A. Computing the QR-Decomposition 

 
The matrix G may be written as the product of an orthogonal 
matrix, Q, and an upper triangular matrix, R as follows: 
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The vectors [
n

ggg 21 ] are linearly independent. The 

vectors [
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Since R has nonzero diagonal elements, then it is nonsingular 
matrix. This decomposition represents the nth column of G by 
linear combination of orthogonal columns: 
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One of the methods to compute the QR decomposition is the 
Gram-Schmidt and Householder algorithms [17]. 
The Gram-Schmidt algorithm begins as follows: 
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  Now, we construct 2x  as follows: 
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Continuing this procedure, each new vector kx  is generated 
as follows: 
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        Note that  is the  norm. 
The elements for the R matrix are computed as follows: 
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B. ARMA(p,q) Modeling 

 
Now, the only observed data is the output sequence, y(n). 
However, the excitation sequence, u(n), is necessary to 
calculate the cross-cumulants, Cuyy. Therefore, an estimate for 
the excitation sequence, u(n), was obtained using the methods 
in [18, 19]. The method models the observed output data by a 
high order AR process. Thus, the system in (1) could be 
rewritten as                  
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where i  are the coefficients of the high AR process and are 
estimated as follows. 
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with  
    (k) = [-y(k-1)  -y(k-2)  - … - y(k-J)]T                     (40) 
and J  is the order of the high AR process. Using )(ˆ nu in the 
place of u(n), the third order cross-cumulants can be calculated 
and ARMA coefficients can be estimated. 

 

IV. RTESULTS AND DISCUSSIONS 
    Simulation studies have been performed to examine the 
proposed ARMA model coefficients estimation using the 
QRD-TOC algorithm. Several experiments were simulated at 
different signal-to-noise ratio (SNR) on the output sequence. A 
zero-mean, independent and identically distributed (i.i.d), and 
exponentially distributed non-Gaussian process was generated 
at the input. The results of the proposed method were 
compared with well-known procedures such as the Residual 
Time Series (RTS) and the Q-slice algorithm (QSA) methods 
at different levels of SNR on the output. The commands 
armarts and armaqs were used from the Higher-Order 

Spectral Analysis Toolbox User’s Guide [20] to estimate the 
ARMA coefficients using the RTS and the QSA methods, 
respectively. All simulations were implemented and taken as 
the average of 100 Monte Carlo runs. The computations were 
performed in MATLAB tools. The data length of the sequence 
was taken to be N=1500 points for each experiment. 

 
Example 1. Data were drawn using the ARMA(2, 2)  model 
 

      y(n) + 0.3y(n − 1) + 0.25y(n − 2) = u(n) +0.95 
u(n-1) +0.65u(n-2)                                                (41) 
 

This is an ARMA (2,2). It has two poles and two zeros. The 
poles are located at  -0.15  j0.477. The zeros are located at  -
0.475 j0.6514. The sequence y(n) is observed in additive 
Gaussian noise   s(n) = y(n) + w(n).  A zero-mean, non-
Gaussian distribution (namely exponential distribution) was 
used to generate the input sequence. Then, the input signal was 
driven through the system in (41). The output sequence was 
corrupted with additive Gaussian noise at SNR of 10dB on the 
output sequence. The, the cumulant matrix Cpq in (15) was 
built. The method in [18, 19] was used to estimate the input 
sequence. The experiment estimated the ARMA coefficients 
using the RTS, the QSA, and the proposed QRD-TOC 
methods. Table I presents the results of 100 Monte Carlo 

simulations for the RTS, QSA, and the proposed QRD-TOC 
algorithms at SNR of 10 dB. 
 
Table 1. True and estimated ARMA (2, 2) model coefficients 

in Example 1, a(0)=1, b(0)=1. 
  True RTS QSA QRD-

TOC 
a(1) 0.3 0.2560 -0.5811 0.2984 
a(2) 0.25 0.2608 0.2751 0.2456 
b(1) 0.95 1.0012 0.7311 0.9505 
b(2) 0.65 0.6196 1.3022 0.6464 
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Example 2. Data were drawn using the ARMA(6, 4)  model 
 

y(n) + 0.7907y(n − 1) + 0.042y(n − 2)−0.556y(n − 3) 
– 0.0247y(n − 4)+0.385y(n − 5) + 0.303y(n − 6)=u(n) 
+ 0.345u(n − 1) + 0.53u(n − 2)+0.399u(n − 3) + 
0.814u(n − 4)                                                        (42) 
 

This model has six poles and four zeros, ARMA (6,4). The 
poles are located at 0.7102  j041, -0.43  j0.7448, and -
0.6755 j0.39. The zeros are located at 0.485  j0.84, -
0.6576  j0.6576. 
The data was generated as in Example 1. The same procedure 
was followed in estimating the ARMA coefficients.  The 
experiment estimated the ARMA coefficients using the RTS, 
the QSA, and the proposed QRD-TOC methods. Table II 
presents the results of 100 Monte Carlo simulations for the 
RTS, QSA, and the proposed QRD-TOC algorithms at SNR of 
20 dB. 

 
Table 2. True and estimated ARMA (6,4) model coefficients 

in Example 2, a(0)=1, b(0)=1. 

 

Example 3. (Colored Gaussian) Consider the ARMA (6, 4) 
process generated by the difference equation in (42). The 
colored Gaussian noise w(n) was generated as a sinc function: 
 

      h(n) = 0.3sinc(0.01n)                                      (43) 
  

The experiment estimated the ARMA coefficients using the 
RTS, the QSA, and the proposed QRD-TOC methods. Table 
III presents the results of 100 Monte Carlo simulations for the 
RTS, QSA, and the proposed QRD-TOC algorithms at SNR of 
20 dB. 
 
Table 3. True and estimated ARMA (6, 4) model coefficients 

in Example 3, a(0)=1, b(0)=1, colored. 
 

 True RTS QSA QRD-
TOC 

a(1) 0.7907 0.7282  0.7425    0.7840 
a(2) 0.0420 -0.0012    -0.0124 0.0343    
a(3) -0.5556 -0.5167   -0.5688 -0.5608    
a(4) -0.0247 -0.0267 0.0016 -0.0296 
a(5) 0.3846 0.3708 0.3687 0.3960 

a(6) 0.3026 0.3030 0.2835 0.3142 
b(1) 0.3452 0.3249 0.3681 0.3450 
b(2) 0.5300 0.5419 0.5114 0.5115 
b(3) 0.3985 0.3997 0.3055 0.3648 
b(4) 0.8138 0.7034 0.5581 0.7639 

 

V. CONCLUSION 
     The paper developed an efficient procedure for calculating 
ARMA model coefficients using QRD-TOC from the available 
output data. The results of the simulated experiments 
demonstrate the good performance of the developed technique 
when the observed sequence is contaminated by additive 
Gaussian noise. The proposed technique was compared with 
known procedures such as RTS, and the QSA.  As it can be 
seen from Tables I, II, and III, the proposed QRD-TOC 
technique is more accurate than the RTS and QSA methods. 
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