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Abstract— The 0-1 Multidimensional Knapsack Problem 

(MKP) is a NP-Hard problem that has important applications 

in business and industry.  Approximate solution approaches for 

the MKP in the literature typically provide no guarantee on how 

close generated solutions are to the optimum.  This article 

demonstrates how general-purpose integer programming 

software (Gurobi) is iteratively used to generate solutions for the 

270 MKP test problems in Beasley’s OR-Library such that, on 

average, the solutions are guaranteed to be within 0.094% of the 

optimums and execute in 88 seconds on a standard PC.  This 

methodology, called the simple sequential increasing tolerance 

(SSIT) matheuristic, uses a sequence of increasing tolerances in 

Gurobi to generate a solution that is guaranteed to be close to 

the optimum in a short time.  This solution strategy generates 

bounded solutions in a timely manner without requiring the 

coding of a problem-specific algorithm.  The SSIT results 

(although guaranteed within 0.094% of the optimums) when 

compared to known optimums deviated only 0.006% from the 

optimums—far better than any published results for these 270 

MKP test instances.   

Keywords— matheurstic; Gurobi; Multidimensional Knapsack 

Problem; bounded solutions; simple sequential increasing 

tolerance matheuristic.  

I. INTRODUCTION 
Since the 0-1 Multidimensional Knapsack Problem 

(MKP) is NP-hard and most real-world applications are 
typically large in scale, exact solution approaches are usually 
not appropriate.  Nevertheless, the MKP has numerous real-
world direct applications or sub-problem applications that 
need to be solved.  It is important for operations research 
(OR) practitioners that there are simple, effective and 
efficient solution approaches available to solve these 
problems.  However, it is even more important that OR 
practitioners can guarantee the quality of the solutions that 
are presented to management for implementation.  This is true 
regardless if the OR practitioner is called on to assist with a 
critical strategic planning issue or needs to implement an 
optimization module in a production system that is executed 
daily.  

In general, given a set of test problem instances, 
approximate solution method results are compared to optimal 
or best-known results that were determined by executing an 

exact algorithm for a long period of time—sometimes up to 
24 hours or more!  Researchers assume that, if an 
approximate solution method performs well on a limited set 
of problem instances, it will perform well on other problems. 
This is the weakness of using approximate solution methods 
with no guaranteed bounds on solution quality. 

Some algorithms developed to solve NP-hard 
combinatorial optimization problems (COP) make use of 
commercial integer programming software to solve small or 
moderate-sized subproblems.  On the other hand, for decades, 
OR practitioners have generated feasible solutions to 
industrial applications of COP by executing commercial 
integer programming software for long execution times.  In 
this article, a procedure that iteratively uses commercial 
integer programming software with no algorithm-specific 
code required is documented and applied to solve 270 MKPs 
that are commonly used to test MKP algorithms.  This 
procedure, called the simple sequential increasing tolerance 
(SSIT) matheuristic, will be shown to quickly generate MKP 
solutions that are guaranteed to be very close to the 
optimums.  This multi-pass matheuristic is used in 
conjunction with an integer programming software (Gurobi) 
package and employs a sequence of increasing tolerances that 
are used with the integer programming software.  If a goal 
tolerance bound on the solution is not achieved in a user-
defined time interval, the best solution found at this interval 
is then input as a starting solution for the next time interval 
with looser tolerance. 

SSIT was first discussed in [16], and one key feature of 
the SSIT solutions is that they are guaranteed to be within a 
tight tolerance of the optimum. Another important feature of 
SSIT is its iterative use of any general-purpose integer 
programming software (Gurobi is used in this article, but 
other software packages could be used just as easily).  These 
features combined with a user-defined sequence of loosening 
tolerances and maximum execution times for each tolerance 
makes SSIT a very flexible solution methodology.  SSIT is 
considered a matheuristic because it uses math programming 
combined with a heuristically determined sequence of 
tolerances and execution times. Since SSIT takes advantage 
of the power of a general-purpose exact solution method, and 
it require no problem-specific algorithm.  Because there is no 
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problem-specific algorithm to code, the amount of time 
required to implement a solution to an industrial application 
is greatly reduced.  Furthermore, a unique feature of SSIT is 
that implemented applications will automatically improve in 
performance as newer versions of the general-purpose 
software are implemented for the application. 

In the next section, a mathematical formulation for the 
MKP will be discussed as well as the relevant literature will 
be reviewed. Next, a brief overview of the SSIT matheuristic 
will be provided.  This will be followed by empirical results 
obtained from using the SSIT matheuristic to solve 270 MKP 
test problems available in Beasley’s OR-Library.  The SSIT 
results will then be compared to published results for the 
MKP.  This article will close with some conclusions and 
suggested future work. 

II. LITERATURE BACKGROUND ON THE 0-1 
MULTIDIMENSIONAL KNAPSACK PROBLEM  

A. Mathematical Programming Formulation  

The mathematical formulation for the 0-1 
Multidimensional Knapsack Problem is: 

 
 Decision variables are binary where xj = 1 means that 

item j is packed in the knapsack, and xj = 0 otherwise.  Each 
item j requires aij units of resource consumption in the ith 
knapsack constraint and yields pj units of profit upon 
inclusion in the knapsack.  The goal is to find a subset of 
items that yields maximum profit without exceeding the 
resource capacities (the bi s).  
B. Mathematical Programming-based Solution Approaches 

The solution approaches based on mathematical 
programming can be either exact (guarantees a solution 
within a close tolerance of the optimum) or can be employed 
in a heuristic manner.  If exact, this usually means that if the 
program terminates before the maximum allowed time limit, 
the best solution found is within a tight tolerance of the 
optimum.  For example, the default tolerance for Gurobi 
(version 9.1) is T = 0.0001.   

A number of mathematical programming-based solution 
methods for the MKP have been suggested in the literature 
with some recent (since 2010) examples applied to solve the 
MKP discussed here.  An exact solution approach was 
developed by [4] that employees a multi-level search strategy 
which uses different enumeration schemes at each level.  
Specifically, it combines resolution search, branch-and-
bound, and a depth-first search.  [19] use an integer linear 
programming metaheuristic with new core problem concepts.  
The core problem is solved with a truncated CPLEX 
execution or a memetic algorithm. [2] identify restricted sets 
of promising items (kernel or core) and use an exact solution 
procedure on these sub-problems.  Initially, the continuous 
relaxation of the MKP is solved on the complete set of 
available items.  Information from this solution is then used 
to identify the initial kernel.  Next, a sequence of integer 
linear program (ILP) sub-problems are solved, where each 
sub-problem is restricted to the present kernel and to a subset 

of other items.  Each ILP sub-problem may find better 
solutions with respect to the previous one and identify further 
items to insert into the kernel.  Reference [7] present 
improved core problem based heuristics for the MKP.  A 
basic LP-based core problem approach is presented when 
execution time is limited. Also, a partial enumeration core 
problem approach is presented that is strongly parallelizable.  
[15] present an exact algorithm called CORAL (for CORe 
Algorithm).  This paper solves a number of sub-problems 
limited to a subset of variables and attempts to quickly find 
good quality lower bounds to speed up the search and to 
quickly fix as many variables as possible to their provably 
optimal values.  Reference [9] shows how the Global Lifted 
Cover Inequalities (GLCI) cuts can improve on the core 
problem heuristic.  The GLCIs are presented in the general 
lifting framework and several variants are proposed.  A two-
level core problem heuristic is also proposed for very large 
instances of the MKP.  If the methods mentioned above are 
exact, then they tend to require substantial execution times 
for large problems.  If the methods are heuristic in nature, 
then after-the-fact gaps between the best upper bound and 
best solution can be calculated—but not a priori specified.  

When an OR practitioner is faced with solving a large 
industrial MKP, all of the methodologies mentioned above 
are relatively complex to be implemented.   A considerable 
amount of time can be required for computer coding and 
testing of the selected algorithm, so computer execution time 
for the actual application can be significant.    

C. Bio-inspired Solution Approaches  

There are many approximate bio-inspired solution 
approaches available from the literature.  Some recent (since 
2010) examples applied to solve the MKP include: harmony 
search (HS)-based approaches by [12] and [20], particle 
swarm optimization (PSO)-based approaches by [14] and 
[10], a shuffled complex evolution algorithm by [3], a fruit 
fly optimization algorithm by [17], a guided genetic 
algorithm (GGA) approach by [21], and a teaching-learning 
based optimization (TLBO) by [11].  In order to solve the 
MKP, earlier papers discussed a genetic algorithm by Chu 
and Beasley (1998) and heuristic approaches by [18], [1] and 
[5].  A classic paper [8] discussed both probabilistic and 
worst-case analyses for the MKP.  A recent survey of the 
MKP, which contains 167 references, is given by [13].  

If an OR practitioner wants to use one of these 
approximate solution methodologies, the practitioner would 
be required to code and test the solution approach.  More 
importantly, all the above-mentioned solution procedures 
explicitly designed to solve the MKP provide no guarantees 
on solution quality!  This is in sharp contrast to the SSIT 
matheuristic because SSIT uses strictly general purpose 
software and does provide bounds on the generated solutions 
with no problem-specific coding required. 

III. OVERVIEW OF THE SIMPLE SEQUENTIAL INCREASING 
TOLERANCE (SSIT) MATHEURISTIC 

The motivation ([16]) behind the simple sequential 
increasing tolerance (SSIT) matheuristic is to try to have the 
best of two worlds.  Namely, SSIT makes use of state-of-the-
art optimization software (such as CPLEX or Gurobi) 
combined with loosening tolerances to obtain solutions that 
are guaranteed within known and relatively tight tolerances 
of the optimum in a timely manner.  By using commercially 
available and state-of-the-art optimization software instead of 
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highly complex specialized codes for the particular 
combinatorial optimization problem (COP), SSIT can be 
used in a straightforward manner by both OR practitioners as 
well as researchers with no problem-specific coding required.  
The SSIT matheuristic is very flexible and robust because the 
user can specify the number of tolerances as well as their 
specific values based on their needs.  The maximum 
execution time for each tolerance is also specified based on 
the specific needs of the user.   

As indicated earlier, SSIT can be considered a multi-pass 
methodology in which the program terminates if the goal 
tolerance is met.  If it is not met, then the tolerance is 
“loosened” and the current best solution is used as input for 
the next step in the solution process.  The “loosened” 
tolerance allows the branch-and-bound tree in the 
commercial software to be pruned more quickly.  The worst-
case scenario for SSIT is that it does not terminate until the 
sum of the maximum execution times for each tolerance is 
reached.  In this case only, the software gap at termination 
will indicate how close the best SSIT solution is to the 
optimum instead.  Specifically, for a minimization COP, the 
optimization software provides the gap between the best 
lower bound and the best solution.   

The pseudo code below summarizes the SSIT 
methodology for a generic COP.   

 
The flow chart of SSIT is also provided in the Figure 1 

below. 

 
Figure 1: SSIT flowchart 

The benefit of SSIT using general purpose integer 
programming software such as CPLEX or Gurobi and, at the 
same time, requiring no problem-specific coding is 
significant.  For the SSIT problems discussed in this article, 
all the software default settings were kept except the time and 
tolerance per SSIT pass. In particular, the OR practitioner or 
researcher does not need to develop code or test a problem-
specific algorithm.  Furthermore, practitioners will find that 
there is a wealth of examples that come with most 
optimization software (definitely CPLEX and Gurobi), which 
are ready to run out of the box. These templates often only 
require a few adjustments before they are ready to run domain 
specific combinatorial optimization problems. Practitioners 
can also quickly find answers to many software specific 
questions in the online forums and extensive manuals.  
Additionally, for industrial systems that use SSIT, the 
performance of these systems is “automatically” improved 
when new versions of the optimization software are installed.  
SSIT saves the practitioner time writing extensive code and 
testing different parameter settings with its ability to quickly 
find templates and models for various problems and to run a 
problem with pre-defined defaults that work well with many 
problems.  

It is important to note that there is no need to “optimize” 
either the number of tolerances used or their values as well as 
the execution times for each tolerance.  These values are both 
user and problem specific and can be easily adjusted to meet 
the users’ needs!  

Although it is common for OR practitioners to use 
commercial software at the default tolerance for a fixed 
amount of time and use the best solution generated when the 
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execution time “runs out”, SSIT provides an alternate to this 
approach that will be shown to provide bounded solutions 
quickly. 

IV. EMPIRICAL RESULTS USING BEASLEY’S 270 MKPS 

A. The 270 MKP Instances 

To test and compare solution approaches for the MKP, [6] 
defined 270 MKPs which are available to researchers in 
Beasley’s OR-Library.  These 270 problems are divided into 
9 datasets with 30 problems in each dataset.  In each dataset, 
the first 10 problems have a tightness ratio of 0.25, the next 
10 problems have a tightness ratio of 0.50 and the last 10 
problems have a tightness ratio of 0.75.   A tightness ratio 
implies the size of the right hand side value compared to the 
sum of the variable coefficients for that constraint.  For 
example, a tightness ratio of 0.25 implies that the right hand 
side of the knapsack constraint is 0.25 times the sum of the 
variable coefficients for that constraint.  The problems consist 
of either 100, 250 or 500 variables and the number of 
knapsack constraints are either 5, 10 or 30 for a total of nine 
datasets—one for each combination of the number of 
variables and number of constraints.  

B. SSIT Results for the 270 MKP Instances 

In order to use the SSIT matheuristic to solve MKPs, a 
sequence of increasing tolerances and corresponding 
maximum execution times must be specified for Gurobi.  
Based on limited empirical experimentation, the authors 
found the following sequence of tolerances and maximum 
execution times to work very well for these MKPs: tolerances 
T = 0.0001, 0.001, 0.003, 0.005, 0.007, and 0.009 with 
maximum execution times of 60 seconds for T= 0.0001 and 
120 seconds for all the other tolerances.  Maximum possible 
execution time is 660 seconds, but the actual average 
execution time was 88 seconds.  As practitioners, the authors 
view these tolerances and execution times as very acceptable 
for most industrial applications.  However, the robustness of 
SSIT is that the user can adjust the number of tolerances as 
well as their values.  Also, the user determines the maximum 
execution times at each tolerance and they may be different 
by tolerance.  This flexibility is really the metaheuristic part 
of the SSIT matheuristic. 

Except for tolerances and execution times as specified 
above, all other software parameters will have their default 
settings.  All executions of Gurobi were on a computer with 
the following specifications: an AMD Ryzen 7 3700X 8-Core 
Processor and 16 GB RAM on Windows 10 Home 64-bit. 

The results of executing SSIT to solve the 270 MKP 
instances are summarized in Tables I, II, and III.  As an 
example, detailed results for Dataset 3 are given in Table 4.  
Detailed results for all 270 MKPs are available upon request.  
In Table I average results over the 30 MKPs in each of the 9 
datasets are given.  The guaranteed maximum deviation from 
the optimum column shows the farthest away the SSIT 
solutions can be without knowing the exact value of the 
optimums.  Over all 270 MKPs, the average guaranteed 
farthest deviation the SSIT solutions are from the optimums 
is 0.094%.  However, comparing these 270 SSIT solutions to 
the known optimums or best-known solutions, the SSIT 
solutions, on average, actually only deviated 0.006% from the 
optimums.  Additionally, these very impressive results 
required, on average, only 88 seconds of execution time on a 

standard PC. In particular, the execution times were 180 
seconds or less for about 90% of the MKPs. 

Again, from Table 1, one can see that the most difficult 
MKPs for SSIT to solve were in Datasets 8 and 9.  Even in 
these cases, the average guaranteed deviations from the 
optimums were only 0.359% and 0.250%, and required 
execution time to solve for Data Sets 8 and 9 are 285.7 and 
217.0 seconds respectively. 

TABLE I.  SUMMARY OF SSIT RESULTS FOR THE 270 MKPS  

Data 

Set 

Number 

of 

variables 

Number of 

constraints 

Average 

guaranteed 

maximum 

deviation 

from 

optimum 

(%) 

Average 

actual 

deviation 

from 

optimum 

(%) 

Average 

execution 

time 

(seconds) 

1 100 5 0.000 0.000 0.4 

2 250 5 0.007 0.000 6.1 

3 500 5 0.014 0.001 35.1 

4 100 10 0.001 0.000 2.2 

5 250 10 0.104 0.001 108.4 

6 500 10 0.080 0.011 100.2 

7 100 30 0.028 0.004 37.8 

8 250 30 0.359 0.013 285.7 

9 500 30 0.250 0.022 217.0 
Overall   0.094 0.006 88.1 

 

Tables II and III show the distributions of the tolerances at 
which SSIT terminated by data sets and by constraint tightness 
ratios respectively.  From these tables, one can see that 50% 
of the 270 MKPs terminated in under 60 seconds when the 
tolerance of 0.0001 was in effect.  The power of SSIT is 
evident in that by loosening the tolerance 90.7% of the 270 
MKPs terminated when a tolerance of 0.003 or smaller was in 
effect.  From Table 2 it can be observed that only Datasets 8 
and 9 had MKPs that terminated at tolerances greater than 
0.003 with 15 MKPs from Dataset 8 and 10 MKPs from 
Dataset 9.  From Table 3 it can be observed that of the 25 
MKPs that terminated at tolerances greater than 0.003, 20 of 
them (80%) had a tightness ratio of 0.25 and 5 had a tightness 
ratio of 0.50.  Of the 25 MKPs that terminated at a tolerance 
greater than 0.003, 15 terminated at the tolerance of 0.005, 9 
at a tolerance of 0.007, and only one at a tolerance of 0.009.  
The one MKP that terminated at a tolerance of 0.009, had a 
final gap (guaranteed deviation from the optimum) of 0.0073 
and terminated as soon as the tolerance of 0.007 was loosened 
to 0.009.  The 10 MKPs that terminated at tolerances greater 
than 0.005 were all from Dataset 8 with a tightness ratio of 
0.25.  For the few problems with termination tolerances 
greater than 0.003. if tighter guaranteed bounds were required, 
the execution times for the tolerances could be increased. 
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TABLE II.  SUMMARY OF SSIT TERMINATION TOLERANCES 
DISTRIBUTIONS BY DATASETS 

 Tolerances 

Dataset 0.0001 0.001 0.003 0.005 0.007 0.009 

1 30      

2 30      

3 20 10     

4 30      

5 1 20 9    

6  20 10    

7 24 5 1    

8   15 5 9 1 

9  1 19 10   

Overall 135 56 54 15 9 1 

Percentage 

(%) 

50.0 20.7 20.0 5.6 3.3 0.4 

 

TABLE III.  SUMMARY OF SSIT TERMINATION TOLERANCES 
DISTRIBUTIONS BY TIGHTNESS RATIO 

 Tolerances 

Tightness 

ratio 

0.0001 0.001 0.003 0.005 0.007 0.009 

.25 39 12 19 10 9 1 

.50 45 24 16 5   

.75 51 20 19    

Overall 135 56 54 15 9 1 

Percentage 

(%) 

50.0 20.7 20.0 5.6 3.3 0.4 

 

Table IV details the SSIT solution process for the 30 
MKPs in Dataset 3.  As mentioned previously, detailed 
solutions tolerance-by-tolerance for each of the 270 MKPs 
are available upon request.  As can be observed in Table 4, 
20 of the MKPs terminated in under 60 seconds when the 
guaranteed maximum deviation from the optimums dropped 
below the 0.0001 tolerance.  The other 10 MKPs reached 60 
seconds of execution time and then when the tolerance was 
loosened to 0.001, all 10 terminated immediately because, at 
60 seconds of execution time, the guaranteed maximum 
deviation from the optimums was less than 0.001. 

TABLE IV.  DATASET 3 WITH 500 VARIABLES 5 CONSTRAINTS 

Problem Tolerance Obj Fn Time 

(seconds) 

Final 

Gap 

1 0.0001 

 

120148 60.00  

 0.001 120148 0.00 0.0003 
2 0.0001 

 
117879 13.57 

0.00009 
3 0.0001 

 

121131 60.00  
 0.001 121131 0.00 0.00017 
4 0.0001 

 

120794 60.00  
 0.001 120794 0.00 0.00032 

5 0.0001 

 

122319 24.39 0.00010 
6 0.0001 

 

122024 60.00  
 0.001 122024 0.00 0.00022 
7 0.0001 

 

119127 60.00  
 0.001 119127 0.00 0.00029 
8 0.0001 

 

120568 30.74 0.00010 
9 0.0001 

 
121575 60.00  

 0.001 121575 0.00 0.00033 
10 0.0001 

 
120711 60.00  

 0.001 120711 0.00 0.00032 
11 0.0001 

 
218428 40.22 0.00010 

12 0.0001 

 
221202 29.74 0.00009 

13 0.0001 

 
217542 60.00  

 0.001 217542 0.00 0.00013 
14 0.0001 

 
223560 60.00  

 0.001 223560 0.00 0.00015 
15 0.0001 

 

218966 9.44 0.00010 

16 0.0001 

 

220530 41.22 0.00010 

17 0.0001 

 

219989 32.35 0.00010 

18 0.0001 

 

218215 25.24 0.00010 

19 0.0001 

 

216976 52.72 0.00010 

20 0.0001 

 

219719 60.00  

 0.001 219719 0.00 0.00012 

21 0.0001 

 

295828 3.58 0.00010 

22 0.0001 

 

308086 15.48 0.00010 

23 0.0001 

 

299796 8.02 0.00010 

24 0.0001 

 

306480 25.92 0.00010 

25 0.0001 

 

300342 9.93 0.00010 

26 0.0001 

 

302562 22.41 0.00010 

27 0.0001 

 

301339 6.05 0.00009 

28 0.0001 

 

306454 8.63 0.00008 
29 0.0001 

 

302828 18.45 0.00008 
30 0.0001 

 

299904 34.20 0.00010 
 

In the next section, these SSIT results for these 270 MKP 
instances will be compared to 11 bio-inspired metaheuristics 
from the literature.  However, it is important to note that none 
of these 11 metaheuristics provide any guarantees on solution 
quality.   
C. MKP SSIT Results Compared to Other Metaheuristics 

Although, as OR practitioners, the authors appreciate the 
guaranteed bounds that the SSIT matheuristic provides 
(unless the sum of the maximum times is exceeded which did 
not happen for any of the 270 MKPs), there may be readers 
that are interested in seeing how the SSIT solutions obtained 
in the previous subsection compare to 11 published 
metaheuristics for the MKP.   

In Table II of [11], results of solving the 270 MKPs 
discussed in this article using 11 metaheuristics are 
summarized.  For each of the 11 metaheuristics, this table 
contains the average deviations from the optimum or best 
known solutions for each of the nine datasets discussed in this 
article.  The 11 metaheuristic solution procedures listed in 
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Table II of [11] and cited earlier in this article are Teaching-
Learning Based Optimization (TLBO), guided GA, a GA, 
Primal Effective Capacity Heuristic (PECH), MAG and VZ, 
two solution approaches using Lagrange multipliers, PIR, a 
dual surrogate relaxation heuristic with a branch and bound 
component, Shuffled Complex Evolution (SCE), CB, a GA 
augmented with a feasibility and constraint operator, New 
Reduction (Pirkul) NRP operates a lagrangian dual relaxation 
on MKP, and the Modified Choice Function-Late Acceptance 
Strategy (MCF).  The reader should consult [21] or [11] for 
more details.  The SSIT average deviations from optimum or 
best-known solutions along with corresponding results for 
these 11 metaheuristics are summarized in Table V.  

TABLE V.  DEVIATION FROM OPTIMUM (%)  

 
The SSIT results are given to 3 decimal places because of 

their small values.  SSIT significantly outperformed all other 
metaheuristics.  Over all 270 MKPs, the average deviation 
from the optimum was only 0.006%.  Of the 11 
metaheuristics listed in Table 5, the one closest to the SSIT 
result was the Chu-Beasley (classic) genetic algorithm with 
an average deviation from the optimum of 0.54%.  Even the 
SSIT guaranteed bound of 0.094% is far better than any 
published metaheuristic results.   It is important to note that 
SSIT is a deterministic solution method and the 11 
metaheuristic results are taken from previously published 
results.  Hence, any statistical analysis is unnecessary for this 
comparison.  However, the real benefit of SSIT is its ability 
to guarantee that its generated solutions are within a typically 
very small percentage of the optimum—0.094% for these 270 
MKPs. 

V. SUMMARY AND FUTURE WORK 

Some algorithms developed to solve NP-hard 
combinatorial optimization problems (COP) make use of 
commercial integer programming software to solve small or 
moderate-sized subproblems.  On the other hand, for decades 
OR practitioners have generated feasible solutions to 
industrial applications of COP by executing commercial 
integer programming software for long execution times.  In 
this article, a procedure that iteratively uses commercial 
integer programming software with no algorithm-specific 
code required is used to solve 270 multidimensional knapsack 
problem (MKP) instances from the literature.  This procedure 
called the simple sequential increasing tolerance (SSIT) 
matheuristic was empirically shown to quickly generate MKP 
solutions that are guaranteed to be very close to the 
optimums—on average the SSIT solutions were guaranteed 
within 0.094% of the optimums and it required only 88 
seconds on a standard PC.  When compared to the known 
optimums or the best-known solutions for these 270 MKPs, 
the SSIT solutions actually deviated only 0.006% from the 
optimums.  Both the SSIT guaranteed maximum deviation 

from the optimums of 0.094% and the actual SSIT deviations 
from the optimums of 0.006% are far better than any 
metaheuristic results that appear in the literature.   

This multi-pass matheuristic was used in conjunction with 
the integer programming software Gurobi and employs a 
sequence of increasing tolerances that allows Gurobi to 
quickly generate solutions guaranteed to be close to the 
optimums.  If a goal tolerance bound on the solution is not 
achieved in a user-defined time interval, the best solution 
found at this time interval is then input as a starting solution 
for the next time interval with looser tolerance. 

In addition to SSIT finding bounded solutions quickly, its 
use of general-purpose integer programming software is a 
significant benefit to OR practitioners.  Specifically, it allows 
OR practitioners to quickly develop SSIT models using 
default software parameter values and templates with no need 
for problem-specific algorithms.  Based on the particular 
application, the user has the flexibility to set the number of 
tolerances as well as their values.  Additionally, the user 
determines the maximum execution time for each tolerance.  
Furthermore, OR practitioners who implement SSIT in an 
industrial application that is executed routinely, have the 
added advantage that the performance of their application 
will continue to “automatically” improve as new versions of 
the commercial software are implemented. 

Finally, since the SSIT matheuristic is a general-purpose 
strategy for solving combinatorial optimization problems, the 
authors plan to test the performance of SSIT on solving other 
difficult-to-solve combinatorial optimization problems.   
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