
A Simple and Efficient Technique to Generate
Bounded Solutions for the Multidimensional

Knapsack Problem: a Guide for OR Practitioners

Yun Lu
Department of Mathematics

Kutztown University
Kutztown, PA, U.S.A.

lu@kutztown.edu

Bryan McNally
Department of Computer Science and

Information Technology
Kutztown University

Kutztown, PA, U.S.A.
bmcna842@live.kutztown.edu

Francis J. Vasko
Department of Mathematic

Kutztown University
Kutztown, PA, U.S.A.
vasko@kutztown.edu

Received: May 3, 2021. Received: October 17, 2021. Accepted: October 30, 2021. Published: November 12, 2021.

Emre Shively-Ertas
Department of Computer Science and

Information Technology
Kutztown University

Kutztown, PA, U.S.A.
eshiv901@live.kutztown.edu

Abstract— The 0-1 Multidimensional Knapsack Problem

(MKP) is a NP-Hard problem that has important applications

in business and industry. Approximate solution approaches for

the MKP in the literature typically provide no guarantee on how

close generated solutions are to the optimum. This article

demonstrates how general-purpose integer programming

software (Gurobi) is iteratively used to generate solutions for the

270 MKP test problems in Beasley’s OR-Library such that, on

average, the solutions are guaranteed to be within 0.094% of the

optimums and execute in 88 seconds on a standard PC. This

methodology, called the simple sequential increasing tolerance

(SSIT) matheuristic, uses a sequence of increasing tolerances in

Gurobi to generate a solution that is guaranteed to be close to

the optimum in a short time. This solution strategy generates

bounded solutions in a timely manner without requiring the

coding of a problem-specific algorithm. The SSIT results

(although guaranteed within 0.094% of the optimums) when

compared to known optimums deviated only 0.006% from the

optimums—far better than any published results for these 270

MKP test instances.

Keywords— matheurstic; Gurobi; Multidimensional Knapsack

Problem; bounded solutions; simple sequential increasing

tolerance matheuristic.

I. INTRODUCTION
Since the 0-1 Multidimensional Knapsack Problem

(MKP) is NP-hard and most real-world applications are
typically large in scale, exact solution approaches are usually
not appropriate. Nevertheless, the MKP has numerous real-
world direct applications or sub-problem applications that
need to be solved. It is important for operations research
(OR) practitioners that there are simple, effective and
efficient solution approaches available to solve these
problems. However, it is even more important that OR
practitioners can guarantee the quality of the solutions that
are presented to management for implementation. This is true
regardless if the OR practitioner is called on to assist with a
critical strategic planning issue or needs to implement an
optimization module in a production system that is executed
daily.

In general, given a set of test problem instances,
approximate solution method results are compared to optimal
or best-known results that were determined by executing an

exact algorithm for a long period of time—sometimes up to
24 hours or more! Researchers assume that, if an
approximate solution method performs well on a limited set
of problem instances, it will perform well on other problems.
This is the weakness of using approximate solution methods
with no guaranteed bounds on solution quality.

Some algorithms developed to solve NP-hard
combinatorial optimization problems (COP) make use of
commercial integer programming software to solve small or
moderate-sized subproblems. On the other hand, for decades,
OR practitioners have generated feasible solutions to
industrial applications of COP by executing commercial
integer programming software for long execution times. In
this article, a procedure that iteratively uses commercial
integer programming software with no algorithm-specific
code required is documented and applied to solve 270 MKPs
that are commonly used to test MKP algorithms. This
procedure, called the simple sequential increasing tolerance
(SSIT) matheuristic, will be shown to quickly generate MKP
solutions that are guaranteed to be very close to the
optimums. This multi-pass matheuristic is used in
conjunction with an integer programming software (Gurobi)
package and employs a sequence of increasing tolerances that
are used with the integer programming software. If a goal
tolerance bound on the solution is not achieved in a user-
defined time interval, the best solution found at this interval
is then input as a starting solution for the next time interval
with looser tolerance.

SSIT was first discussed in [16], and one key feature of
the SSIT solutions is that they are guaranteed to be within a
tight tolerance of the optimum. Another important feature of
SSIT is its iterative use of any general-purpose integer
programming software (Gurobi is used in this article, but
other software packages could be used just as easily). These
features combined with a user-defined sequence of loosening
tolerances and maximum execution times for each tolerance
makes SSIT a very flexible solution methodology. SSIT is
considered a matheuristic because it uses math programming
combined with a heuristically determined sequence of
tolerances and execution times. Since SSIT takes advantage
of the power of a general-purpose exact solution method, and
it require no problem-specific algorithm. Because there is no

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.178 Volume 15, 2021

E-ISSN: 1998-4464 1650

problem-specific algorithm to code, the amount of time
required to implement a solution to an industrial application
is greatly reduced. Furthermore, a unique feature of SSIT is
that implemented applications will automatically improve in
performance as newer versions of the general-purpose
software are implemented for the application.

In the next section, a mathematical formulation for the
MKP will be discussed as well as the relevant literature will
be reviewed. Next, a brief overview of the SSIT matheuristic
will be provided. This will be followed by empirical results
obtained from using the SSIT matheuristic to solve 270 MKP
test problems available in Beasley’s OR-Library. The SSIT
results will then be compared to published results for the
MKP. This article will close with some conclusions and
suggested future work.

II. LITERATURE BACKGROUND ON THE 0-1
MULTIDIMENSIONAL KNAPSACK PROBLEM

A. Mathematical Programming Formulation

The mathematical formulation for the 0-1
Multidimensional Knapsack Problem is:

 Decision variables are binary where xj = 1 means that

item j is packed in the knapsack, and xj = 0 otherwise. Each
item j requires aij units of resource consumption in the ith
knapsack constraint and yields pj units of profit upon
inclusion in the knapsack. The goal is to find a subset of
items that yields maximum profit without exceeding the
resource capacities (the bi s).
B. Mathematical Programming-based Solution Approaches

The solution approaches based on mathematical
programming can be either exact (guarantees a solution
within a close tolerance of the optimum) or can be employed
in a heuristic manner. If exact, this usually means that if the
program terminates before the maximum allowed time limit,
the best solution found is within a tight tolerance of the
optimum. For example, the default tolerance for Gurobi
(version 9.1) is T = 0.0001.

A number of mathematical programming-based solution
methods for the MKP have been suggested in the literature
with some recent (since 2010) examples applied to solve the
MKP discussed here. An exact solution approach was
developed by [4] that employees a multi-level search strategy
which uses different enumeration schemes at each level.
Specifically, it combines resolution search, branch-and-
bound, and a depth-first search. [19] use an integer linear
programming metaheuristic with new core problem concepts.
The core problem is solved with a truncated CPLEX
execution or a memetic algorithm. [2] identify restricted sets
of promising items (kernel or core) and use an exact solution
procedure on these sub-problems. Initially, the continuous
relaxation of the MKP is solved on the complete set of
available items. Information from this solution is then used
to identify the initial kernel. Next, a sequence of integer
linear program (ILP) sub-problems are solved, where each
sub-problem is restricted to the present kernel and to a subset

of other items. Each ILP sub-problem may find better
solutions with respect to the previous one and identify further
items to insert into the kernel. Reference [7] present
improved core problem based heuristics for the MKP. A
basic LP-based core problem approach is presented when
execution time is limited. Also, a partial enumeration core
problem approach is presented that is strongly parallelizable.
[15] present an exact algorithm called CORAL (for CORe
Algorithm). This paper solves a number of sub-problems
limited to a subset of variables and attempts to quickly find
good quality lower bounds to speed up the search and to
quickly fix as many variables as possible to their provably
optimal values. Reference [9] shows how the Global Lifted
Cover Inequalities (GLCI) cuts can improve on the core
problem heuristic. The GLCIs are presented in the general
lifting framework and several variants are proposed. A two-
level core problem heuristic is also proposed for very large
instances of the MKP. If the methods mentioned above are
exact, then they tend to require substantial execution times
for large problems. If the methods are heuristic in nature,
then after-the-fact gaps between the best upper bound and
best solution can be calculated—but not a priori specified.

When an OR practitioner is faced with solving a large
industrial MKP, all of the methodologies mentioned above
are relatively complex to be implemented. A considerable
amount of time can be required for computer coding and
testing of the selected algorithm, so computer execution time
for the actual application can be significant.

C. Bio-inspired Solution Approaches

There are many approximate bio-inspired solution
approaches available from the literature. Some recent (since
2010) examples applied to solve the MKP include: harmony
search (HS)-based approaches by [12] and [20], particle
swarm optimization (PSO)-based approaches by [14] and
[10], a shuffled complex evolution algorithm by [3], a fruit
fly optimization algorithm by [17], a guided genetic
algorithm (GGA) approach by [21], and a teaching-learning
based optimization (TLBO) by [11]. In order to solve the
MKP, earlier papers discussed a genetic algorithm by Chu
and Beasley (1998) and heuristic approaches by [18], [1] and
[5]. A classic paper [8] discussed both probabilistic and
worst-case analyses for the MKP. A recent survey of the
MKP, which contains 167 references, is given by [13].

If an OR practitioner wants to use one of these
approximate solution methodologies, the practitioner would
be required to code and test the solution approach. More
importantly, all the above-mentioned solution procedures
explicitly designed to solve the MKP provide no guarantees
on solution quality! This is in sharp contrast to the SSIT
matheuristic because SSIT uses strictly general purpose
software and does provide bounds on the generated solutions
with no problem-specific coding required.

III. OVERVIEW OF THE SIMPLE SEQUENTIAL INCREASING
TOLERANCE (SSIT) MATHEURISTIC

The motivation ([16]) behind the simple sequential
increasing tolerance (SSIT) matheuristic is to try to have the
best of two worlds. Namely, SSIT makes use of state-of-the-
art optimization software (such as CPLEX or Gurobi)
combined with loosening tolerances to obtain solutions that
are guaranteed within known and relatively tight tolerances
of the optimum in a timely manner. By using commercially
available and state-of-the-art optimization software instead of

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.178 Volume 15, 2021

E-ISSN: 1998-4464 1651

highly complex specialized codes for the particular
combinatorial optimization problem (COP), SSIT can be
used in a straightforward manner by both OR practitioners as
well as researchers with no problem-specific coding required.
The SSIT matheuristic is very flexible and robust because the
user can specify the number of tolerances as well as their
specific values based on their needs. The maximum
execution time for each tolerance is also specified based on
the specific needs of the user.

As indicated earlier, SSIT can be considered a multi-pass
methodology in which the program terminates if the goal
tolerance is met. If it is not met, then the tolerance is
“loosened” and the current best solution is used as input for
the next step in the solution process. The “loosened”
tolerance allows the branch-and-bound tree in the
commercial software to be pruned more quickly. The worst-
case scenario for SSIT is that it does not terminate until the
sum of the maximum execution times for each tolerance is
reached. In this case only, the software gap at termination
will indicate how close the best SSIT solution is to the
optimum instead. Specifically, for a minimization COP, the
optimization software provides the gap between the best
lower bound and the best solution.

The pseudo code below summarizes the SSIT
methodology for a generic COP.

The flow chart of SSIT is also provided in the Figure 1

below.

Figure 1: SSIT flowchart

The benefit of SSIT using general purpose integer
programming software such as CPLEX or Gurobi and, at the
same time, requiring no problem-specific coding is
significant. For the SSIT problems discussed in this article,
all the software default settings were kept except the time and
tolerance per SSIT pass. In particular, the OR practitioner or
researcher does not need to develop code or test a problem-
specific algorithm. Furthermore, practitioners will find that
there is a wealth of examples that come with most
optimization software (definitely CPLEX and Gurobi), which
are ready to run out of the box. These templates often only
require a few adjustments before they are ready to run domain
specific combinatorial optimization problems. Practitioners
can also quickly find answers to many software specific
questions in the online forums and extensive manuals.
Additionally, for industrial systems that use SSIT, the
performance of these systems is “automatically” improved
when new versions of the optimization software are installed.
SSIT saves the practitioner time writing extensive code and
testing different parameter settings with its ability to quickly
find templates and models for various problems and to run a
problem with pre-defined defaults that work well with many
problems.

It is important to note that there is no need to “optimize”
either the number of tolerances used or their values as well as
the execution times for each tolerance. These values are both
user and problem specific and can be easily adjusted to meet
the users’ needs!

Although it is common for OR practitioners to use
commercial software at the default tolerance for a fixed
amount of time and use the best solution generated when the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.178 Volume 15, 2021

E-ISSN: 1998-4464 1652

execution time “runs out”, SSIT provides an alternate to this
approach that will be shown to provide bounded solutions
quickly.

IV. EMPIRICAL RESULTS USING BEASLEY’S 270 MKPS

A. The 270 MKP Instances

To test and compare solution approaches for the MKP, [6]
defined 270 MKPs which are available to researchers in
Beasley’s OR-Library. These 270 problems are divided into
9 datasets with 30 problems in each dataset. In each dataset,
the first 10 problems have a tightness ratio of 0.25, the next
10 problems have a tightness ratio of 0.50 and the last 10
problems have a tightness ratio of 0.75. A tightness ratio
implies the size of the right hand side value compared to the
sum of the variable coefficients for that constraint. For
example, a tightness ratio of 0.25 implies that the right hand
side of the knapsack constraint is 0.25 times the sum of the
variable coefficients for that constraint. The problems consist
of either 100, 250 or 500 variables and the number of
knapsack constraints are either 5, 10 or 30 for a total of nine
datasets—one for each combination of the number of
variables and number of constraints.

B. SSIT Results for the 270 MKP Instances

In order to use the SSIT matheuristic to solve MKPs, a
sequence of increasing tolerances and corresponding
maximum execution times must be specified for Gurobi.
Based on limited empirical experimentation, the authors
found the following sequence of tolerances and maximum
execution times to work very well for these MKPs: tolerances
T = 0.0001, 0.001, 0.003, 0.005, 0.007, and 0.009 with
maximum execution times of 60 seconds for T= 0.0001 and
120 seconds for all the other tolerances. Maximum possible
execution time is 660 seconds, but the actual average
execution time was 88 seconds. As practitioners, the authors
view these tolerances and execution times as very acceptable
for most industrial applications. However, the robustness of
SSIT is that the user can adjust the number of tolerances as
well as their values. Also, the user determines the maximum
execution times at each tolerance and they may be different
by tolerance. This flexibility is really the metaheuristic part
of the SSIT matheuristic.

Except for tolerances and execution times as specified
above, all other software parameters will have their default
settings. All executions of Gurobi were on a computer with
the following specifications: an AMD Ryzen 7 3700X 8-Core
Processor and 16 GB RAM on Windows 10 Home 64-bit.

The results of executing SSIT to solve the 270 MKP
instances are summarized in Tables I, II, and III. As an
example, detailed results for Dataset 3 are given in Table 4.
Detailed results for all 270 MKPs are available upon request.
In Table I average results over the 30 MKPs in each of the 9
datasets are given. The guaranteed maximum deviation from
the optimum column shows the farthest away the SSIT
solutions can be without knowing the exact value of the
optimums. Over all 270 MKPs, the average guaranteed
farthest deviation the SSIT solutions are from the optimums
is 0.094%. However, comparing these 270 SSIT solutions to
the known optimums or best-known solutions, the SSIT
solutions, on average, actually only deviated 0.006% from the
optimums. Additionally, these very impressive results
required, on average, only 88 seconds of execution time on a

standard PC. In particular, the execution times were 180
seconds or less for about 90% of the MKPs.

Again, from Table 1, one can see that the most difficult
MKPs for SSIT to solve were in Datasets 8 and 9. Even in
these cases, the average guaranteed deviations from the
optimums were only 0.359% and 0.250%, and required
execution time to solve for Data Sets 8 and 9 are 285.7 and
217.0 seconds respectively.

TABLE I. SUMMARY OF SSIT RESULTS FOR THE 270 MKPS

Data

Set

Number

of

variables

Number of

constraints

Average

guaranteed

maximum

deviation

from

optimum

(%)

Average

actual

deviation

from

optimum

(%)

Average

execution

time

(seconds)

1 100 5 0.000 0.000 0.4

2 250 5 0.007 0.000 6.1

3 500 5 0.014 0.001 35.1

4 100 10 0.001 0.000 2.2

5 250 10 0.104 0.001 108.4

6 500 10 0.080 0.011 100.2

7 100 30 0.028 0.004 37.8

8 250 30 0.359 0.013 285.7

9 500 30 0.250 0.022 217.0
Overall 0.094 0.006 88.1

Tables II and III show the distributions of the tolerances at
which SSIT terminated by data sets and by constraint tightness
ratios respectively. From these tables, one can see that 50%
of the 270 MKPs terminated in under 60 seconds when the
tolerance of 0.0001 was in effect. The power of SSIT is
evident in that by loosening the tolerance 90.7% of the 270
MKPs terminated when a tolerance of 0.003 or smaller was in
effect. From Table 2 it can be observed that only Datasets 8
and 9 had MKPs that terminated at tolerances greater than
0.003 with 15 MKPs from Dataset 8 and 10 MKPs from
Dataset 9. From Table 3 it can be observed that of the 25
MKPs that terminated at tolerances greater than 0.003, 20 of
them (80%) had a tightness ratio of 0.25 and 5 had a tightness
ratio of 0.50. Of the 25 MKPs that terminated at a tolerance
greater than 0.003, 15 terminated at the tolerance of 0.005, 9
at a tolerance of 0.007, and only one at a tolerance of 0.009.
The one MKP that terminated at a tolerance of 0.009, had a
final gap (guaranteed deviation from the optimum) of 0.0073
and terminated as soon as the tolerance of 0.007 was loosened
to 0.009. The 10 MKPs that terminated at tolerances greater
than 0.005 were all from Dataset 8 with a tightness ratio of
0.25. For the few problems with termination tolerances
greater than 0.003. if tighter guaranteed bounds were required,
the execution times for the tolerances could be increased.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.178 Volume 15, 2021

E-ISSN: 1998-4464 1653

TABLE II. SUMMARY OF SSIT TERMINATION TOLERANCES
DISTRIBUTIONS BY DATASETS

 Tolerances

Dataset 0.0001 0.001 0.003 0.005 0.007 0.009

1 30

2 30

3 20 10

4 30

5 1 20 9

6 20 10

7 24 5 1

8 15 5 9 1

9 1 19 10

Overall 135 56 54 15 9 1

Percentage

(%)

50.0 20.7 20.0 5.6 3.3 0.4

TABLE III. SUMMARY OF SSIT TERMINATION TOLERANCES
DISTRIBUTIONS BY TIGHTNESS RATIO

 Tolerances

Tightness

ratio

0.0001 0.001 0.003 0.005 0.007 0.009

.25 39 12 19 10 9 1

.50 45 24 16 5

.75 51 20 19

Overall 135 56 54 15 9 1

Percentage

(%)

50.0 20.7 20.0 5.6 3.3 0.4

Table IV details the SSIT solution process for the 30
MKPs in Dataset 3. As mentioned previously, detailed
solutions tolerance-by-tolerance for each of the 270 MKPs
are available upon request. As can be observed in Table 4,
20 of the MKPs terminated in under 60 seconds when the
guaranteed maximum deviation from the optimums dropped
below the 0.0001 tolerance. The other 10 MKPs reached 60
seconds of execution time and then when the tolerance was
loosened to 0.001, all 10 terminated immediately because, at
60 seconds of execution time, the guaranteed maximum
deviation from the optimums was less than 0.001.

TABLE IV. DATASET 3 WITH 500 VARIABLES 5 CONSTRAINTS

Problem Tolerance Obj Fn Time

(seconds)

Final

Gap

1 0.0001

120148 60.00

 0.001 120148 0.00 0.0003
2 0.0001

117879 13.57

0.00009
3 0.0001

121131 60.00
 0.001 121131 0.00 0.00017
4 0.0001

120794 60.00
 0.001 120794 0.00 0.00032

5 0.0001

122319 24.39 0.00010
6 0.0001

122024 60.00
 0.001 122024 0.00 0.00022
7 0.0001

119127 60.00
 0.001 119127 0.00 0.00029
8 0.0001

120568 30.74 0.00010
9 0.0001

121575 60.00

 0.001 121575 0.00 0.00033
10 0.0001

120711 60.00

 0.001 120711 0.00 0.00032
11 0.0001

218428 40.22 0.00010

12 0.0001

221202 29.74 0.00009

13 0.0001

217542 60.00

 0.001 217542 0.00 0.00013
14 0.0001

223560 60.00

 0.001 223560 0.00 0.00015
15 0.0001

218966 9.44 0.00010

16 0.0001

220530 41.22 0.00010

17 0.0001

219989 32.35 0.00010

18 0.0001

218215 25.24 0.00010

19 0.0001

216976 52.72 0.00010

20 0.0001

219719 60.00

 0.001 219719 0.00 0.00012

21 0.0001

295828 3.58 0.00010

22 0.0001

308086 15.48 0.00010

23 0.0001

299796 8.02 0.00010

24 0.0001

306480 25.92 0.00010

25 0.0001

300342 9.93 0.00010

26 0.0001

302562 22.41 0.00010

27 0.0001

301339 6.05 0.00009

28 0.0001

306454 8.63 0.00008
29 0.0001

302828 18.45 0.00008
30 0.0001

299904 34.20 0.00010

In the next section, these SSIT results for these 270 MKP
instances will be compared to 11 bio-inspired metaheuristics
from the literature. However, it is important to note that none
of these 11 metaheuristics provide any guarantees on solution
quality.
C. MKP SSIT Results Compared to Other Metaheuristics

Although, as OR practitioners, the authors appreciate the
guaranteed bounds that the SSIT matheuristic provides
(unless the sum of the maximum times is exceeded which did
not happen for any of the 270 MKPs), there may be readers
that are interested in seeing how the SSIT solutions obtained
in the previous subsection compare to 11 published
metaheuristics for the MKP.

In Table II of [11], results of solving the 270 MKPs
discussed in this article using 11 metaheuristics are
summarized. For each of the 11 metaheuristics, this table
contains the average deviations from the optimum or best
known solutions for each of the nine datasets discussed in this
article. The 11 metaheuristic solution procedures listed in

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.178 Volume 15, 2021

E-ISSN: 1998-4464 1654

Table II of [11] and cited earlier in this article are Teaching-
Learning Based Optimization (TLBO), guided GA, a GA,
Primal Effective Capacity Heuristic (PECH), MAG and VZ,
two solution approaches using Lagrange multipliers, PIR, a
dual surrogate relaxation heuristic with a branch and bound
component, Shuffled Complex Evolution (SCE), CB, a GA
augmented with a feasibility and constraint operator, New
Reduction (Pirkul) NRP operates a lagrangian dual relaxation
on MKP, and the Modified Choice Function-Late Acceptance
Strategy (MCF). The reader should consult [21] or [11] for
more details. The SSIT average deviations from optimum or
best-known solutions along with corresponding results for
these 11 metaheuristics are summarized in Table V.

TABLE V. DEVIATION FROM OPTIMUM (%)

The SSIT results are given to 3 decimal places because of

their small values. SSIT significantly outperformed all other
metaheuristics. Over all 270 MKPs, the average deviation
from the optimum was only 0.006%. Of the 11
metaheuristics listed in Table 5, the one closest to the SSIT
result was the Chu-Beasley (classic) genetic algorithm with
an average deviation from the optimum of 0.54%. Even the
SSIT guaranteed bound of 0.094% is far better than any
published metaheuristic results. It is important to note that
SSIT is a deterministic solution method and the 11
metaheuristic results are taken from previously published
results. Hence, any statistical analysis is unnecessary for this
comparison. However, the real benefit of SSIT is its ability
to guarantee that its generated solutions are within a typically
very small percentage of the optimum—0.094% for these 270
MKPs.

V. SUMMARY AND FUTURE WORK

Some algorithms developed to solve NP-hard
combinatorial optimization problems (COP) make use of
commercial integer programming software to solve small or
moderate-sized subproblems. On the other hand, for decades
OR practitioners have generated feasible solutions to
industrial applications of COP by executing commercial
integer programming software for long execution times. In
this article, a procedure that iteratively uses commercial
integer programming software with no algorithm-specific
code required is used to solve 270 multidimensional knapsack
problem (MKP) instances from the literature. This procedure
called the simple sequential increasing tolerance (SSIT)
matheuristic was empirically shown to quickly generate MKP
solutions that are guaranteed to be very close to the
optimums—on average the SSIT solutions were guaranteed
within 0.094% of the optimums and it required only 88
seconds on a standard PC. When compared to the known
optimums or the best-known solutions for these 270 MKPs,
the SSIT solutions actually deviated only 0.006% from the
optimums. Both the SSIT guaranteed maximum deviation

from the optimums of 0.094% and the actual SSIT deviations
from the optimums of 0.006% are far better than any
metaheuristic results that appear in the literature.

This multi-pass matheuristic was used in conjunction with
the integer programming software Gurobi and employs a
sequence of increasing tolerances that allows Gurobi to
quickly generate solutions guaranteed to be close to the
optimums. If a goal tolerance bound on the solution is not
achieved in a user-defined time interval, the best solution
found at this time interval is then input as a starting solution
for the next time interval with looser tolerance.

In addition to SSIT finding bounded solutions quickly, its
use of general-purpose integer programming software is a
significant benefit to OR practitioners. Specifically, it allows
OR practitioners to quickly develop SSIT models using
default software parameter values and templates with no need
for problem-specific algorithms. Based on the particular
application, the user has the flexibility to set the number of
tolerances as well as their values. Additionally, the user
determines the maximum execution time for each tolerance.
Furthermore, OR practitioners who implement SSIT in an
industrial application that is executed routinely, have the
added advantage that the performance of their application
will continue to “automatically” improve as new versions of
the commercial software are implemented.

Finally, since the SSIT matheuristic is a general-purpose
strategy for solving combinatorial optimization problems, the
authors plan to test the performance of SSIT on solving other
difficult-to-solve combinatorial optimization problems.

REFERENCES
[1] Y. Akcay, H. Li, and SH Xu, “Greedy algorithm for the general

multidimensional knapsack problem,” Ann Oper Res., vol.150, pp. 17-
29, 2007.

[2] E. Angelelli, R. Mansini, and MG. Speranza, “Kernel search: a general
heuristic for the multi-dimensional knapsack problem,” Comput. Oper.
Res., vol 37, pp. 2017-2026, 2010.

[3] MDV. Baroni and FM. Varejao, “A shuffled complex evolution
algorithm for the multidimensional knapsack problem,” Iberoamerican
Congress on Pattern Recognition, Springer, pp. 768-775, 2015.

[4] S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi, and P. Michelon, “A
multi-level search strategy for the 0-1 multidimensional knapsack
problem,” Discr. App. Math., vol. 158, pp. 97-109, 2010.

[5] V. Boyer, M. Elkihel, D. El Baz, “Heuristics for the 0-1
multidimensional knapsack problem,” European Journal of
Operational Research, vol. 199, pp. 658-664, 2009.

[6] P. Chu and J. Beasley, “A genetic algorithm for the multidimensional
knapsack problem,” Journal of Heuristics, vol 4, pp. 63-86, 1998.

[7] F. Della Croce and A. Grosso, “Improved core problem based
heuristics for the 0/1 multi-dimensional knapsack problem,” Comput.
Oper. Res., vol. 39, pp. 27-31, 2012.

[8] AM. Frieze and MRB. Clarke, “Approximation algorithms for the m-
dimensional 0-1 knapsack problem: worst-case and probabilistic
analyses,” European Journal of Operations Research, vol. 15, pp.100-
109, 1984.

[9] H. Gu, “Improving problem reduction for 0-1 multidimensional
knapsack problems with valid inequalities,” Comput. Oper. Res., vol.
71, pp. 82-89, 2016.

[10] K. Kang, “A Fast Particle Swarm Optimization algorithm for large
scale multidimensional knapsack problems,” Journal of Computational
Information Systems, vol. 8(7), pp. 2709-2716, 2012.

[11] Z. Kern, Y. Lu, and FJ. Vasko, “An OR practitioner’s solution
approach to the multidimensional knapsack problem,” International
Journal of Industrial Engineering Computations, vol. 11(1), pp.1-10,
2020.

[12] X. Kong, L. Gao, H. Ouyang, and S. Li, “Solving large-scale
multidimensional knapsack problems with a new binary harmony

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.178 Volume 15, 2021

E-ISSN: 1998-4464 1655

search algorithm,” Computers & Operations Research, vol. 63, pp. 7-
22, 2015.

[13] S. Laabadi, M. Naimi, H. El Amri, and B. Achchab, “The 0/1
multidimensional knapsack problem and its variants: a survey of
practical models and heuristic approaches,” American Journal of
Operations Research, vol. 8, pp. 395-439, 2018.

[14] S. Labed, A. Gherboudj, and S. Chikhi, “A modified hybrid particle
swarm optimization algorithm for multidimensional knapsack
problem,” International Journal of Computer Applications, vol. 34(2),
pp. 11-16, 2011.

[15] R. Mansini and MG. Speranza, “CORAL: an exact algorithm for the
multidimensional knapsack problem,” INFORMS J. Comput., vol. 24,
pp. 399-415, 2012.

[16] B. McNally, “A simple sequential increasing tolerance matheuristic
that generates bounded solutions for combinatorial optimization
problems,” Master’s Thesis, Kutztown University of Pennsylvania,
2021.

[17] T. Meng and QK. Pan, “An improved fruit fly optimization algorithm
for solving the multidimensional knapsack problem,” Applied Soft
Computing., vol. 50, pp. 79-93, 2017.

[18] RJ. Moraga, WG. DePuy, and GE. Whitehouse, “Meta-RaPS approach
for the 0-1 multidimensional knapsack problem,” Computers &
Industrial Engineering, vol. 43, pp. 83-96, 2005.

[19] J. Puchinger, GR. Raidl, and U. Pferschy, “The multidimensional
knapsack problem: structure and algorithms,” INFORMS J. Comput.,
vol. 22, pp. 250-265, 2010.

[20] A. Rezoug and D. Boughaci, “A self-adaptive harmony search
combined with a stochastic local search for the 0–1 multidimensional
knapsack problem,” Int J Bio Inspired Comput., vol. 8(4), pp. 234–239,
2016.

[21] A. Rezoug, M. Bader-El-Den, and D. Boughaci, “Guided genetic
algorithm for the multidimensional knapsack problem,” Memetic
Computing, vol. 10, pp. 29-42, 2018.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.178 Volume 15, 2021

E-ISSN: 1998-4464 1656

