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Abstract- The application of the Z-transform,
a manipulation tool from the discrete signal pro-
cessing (DSP) toolbox, on an ecological model
was motivated by the mathematical similarities
between an age-structured fish population model
with a non linear density regulation and a lin-
ear time invariant (LTI) control system. Both
models include a switching mechanism in regulat-
ing stock/signal throughput in accordance with
a given density limitation/set value and both
models can be expressed in terms of a nega-
tive feedback loop difference equations (Getz &
Haight,1989; Åström & Murray, 2008). In the
fish model, the switching mechanism is a den-
sity regulated stock-recruitment (SR) function
which models the strategies implemented by the
population in keeping the vulnerable egg-larvae-
juvenile densities within an environmental limi-
tation thereof (Subbey et al, 2014). A switching
mechanism is also present in control engineer-
ing, for example, in the mechanism associated
with cruise control in cars which keeps travel-
ing speed close to a chosen set value midst vary-
ing weather and road conditions (Antsaklis and
Gao, 2005). In both cases, the choosing of the
control action and the tuning of its parameters
requires careful consideration to avoid failures
such as incorrectly timed switching actions in a
control plant (see Kuphaldt (2019)) and errors
in estimating total allowable catch (TAC) in the
fishing industry (see Borlestean et al (2015), Sk-
agen et al (2013) and Taboadai and R. Anadn
(2016)). The Z-transform has proven itself useful
in tuning LTI control models for a desired control
action (see Orfanidis, (2010) and Smith, (1999))
and it is on this account that its application was
extended to the ecological model in pursuit of a
more efficient way of estimating SR parameters
to simulate an already existing output. It was
however found that it could not be used for pa-

rameter tuning but rather for the extraction of
the SR component hidden in the output together
with components resulting from the age struc-
ture itself. Such an extraction can greatly assist
in the mathematical identification of the SR, re-
ducing the complexity of its choosing as there are
many different types used in the fishing indus-
try such as the classic Beverton-Holt model, the
Ricker model and Shepherd model (Myers, 2001;
Iles, 1994; Shepherd, 1982). It can also be used
to monitor changes in the SR over time which
can indicate the presence of strategy evolution
(Apaloo et al, 2009; Brännström et al, 2013). In
1998 Schoombie and Getz investigated the lat-
ter by subjecting the Shepherd SR to strategy
optimization with regards to a parameter associ-
ated with population interventions in regulating
recruitment throughput and it is because of this
versatility that the Shepherd SR is chosen for
the intended extraction. In true control style,
Simulink, a graphic environment for designing
control simulations, is used to visualize the pro-
duction of the output as well as the extraction of
the SR from it. This paper showcases the versa-
tility of the Z transform and the possibilities and
unexpected finds when applied to similar systems
designed to regulate signals or, in this case, re-
cruitment densities.

Keywords- Age-structure, Stock-recruitment,
Z-transform, Shepherd function, Simulink

I. Introduction

In control engineering, a subfield of DSP, a controller
or regulator measures the error between a deterministic
system’s output y and a given set value K upon which
it relays a correction response x back to the system for
the assembly of the next output with value closer to the
desired set value [1, 8]. This behavior is similar to that
of an SR mechanism at the recruitment level of an age-
structured marine fish population. The SR, indicated
as ψ, weighs the parental stock biomass y against its
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environmental limitation K upon which the throughput
of the implicated egg-larvae-juvenile population to the
recruitment population x is adjusted before being prop-
agated through the age-structure for the assembly of the
next generation of parental stock [17]. In both mod-
els the output is relayed back to the system, a process
referred to as negative feedback which aims to stabilize
processes by lessening the difference between a measured
variable and its desired value [13].

Determining a suitable control action (cause) in a
control model is based on a desired outcome (effect), for
example, a simple bang-bang control is chosen to switch
very basic water heaters on/off when temperatures are
lower/higher than the set value. Another example is pro-
portional integral (PI) control which can be found in
cruise control where the controller output x adjusts the
throttle in proportion to the magnitude of the error mea-
sured between the set value K and the current speed y.
From Kuphaldt (2019) and Åström and Murray (2008)
a very basic definition of control is

x = w(K − y) + r

Here w is the proportional gain affecting the intensity
of the correction action and r is the bias or constant
response when the error K − y is zero. The parameter
w can be tuned to suit a variety of applications.

In the ecological model on the other hand, the SR
(cause) is chosen to simulate existing data tendencies (ef-
fect) and is not chosen with intent as is the case in the
control model [25]. The Ricker SR function (developed
in 1954 for fisheries), for example, models a dome shaped
relationship (observed for sockeye salmon) where a rapid
increase in x was observed at low densities of y, reaching
a maximum or saturation at a y ≈ K after which there
was a fast decline in x [19, 20]. The 2 parameter (re-
ferring to r and K) Ricker model shares characteristics
with bang-bang control and is expressed as

x = ψ
R
y

where ψ
R

= er(1− y

K )

In the above, er is the intrinsic growth rate which is the
maximum growth rate this population can experience
when y densities are very low and is measured in recruits
per unit biomass. In a study conducted by Borlestean
et al (2015) on an alga population it was found that
the population studied adapted their density regulation
when resources were limited. The cause of the observed
effect was matched to the theta-Ricker model

ψ
T R

= er(1−( y

K )
w
)

which has a third parameter w allowing increased shape
fitting flexibility (tuning) in matching the variation in
density curves in the different control groups. To include
more diversity in fisheries, Shepherd (1982) developed
an S or sigmoid shaped SR model (North Sea herring)
showing a slow increase in x at low densities of y, be-
coming more rapid as y increases, reaching saturation

at y ≈ K after which x remains saturation bound either
asymptotically or oscillatory. This model also contains w
which models a variety of egg-larvae-juvenile saturation
responses which can be ascribed to changes in endoge-
nous processes (a change in drift route, predation, can-
nibalism, competition for resources) and give rise to the
observed variations (see Canales et al (2020), Hutchings
(2013), Myers (2001) and Subbey et al (2014) for ex-
tensive discussions). It is on this account that Schoom-
bie and Getz (1998) in the non age-structured model
perceived w in the Shepherd SR as an evolving strat-
egy. It was envisioned that a population, through small
mutations in endogenous processes, will evolve to a w-
density pattern securing invasion immunity from more
such adaptations/mutations. Such an optimal strategy
was termed evolutionary stable (ESS) and represented
an evolutionary halt in the ability to better occupy a re-
source capped space [3, 6]. The Shepherd SR function
shares characteristics with PI control and is expressed as
the three parameter model

x =
r

1 +
(

y
K

)w y

= ψ
S
y

where ψ
S

=
r

1 +
(

y
K

)w (1)

Here r represents the intrinsic growth rate. The model
with w = 1 is the classic 2 parameter Beverton-Holt
model introduced in the context of fisheries in 1957 by
Beverton and Holt.

A typical demonstration of model fitting using
recorded scientific data can be found in Taboadai and
R. Anadn (2016) where abundance estimates for Eu-
ropean anchovy for the period 1987 to 2011 as logged
in ICES (2012) was used to populate an age-structured
model. Parameters were estimated under a Bayesian
framework for a variety of nonlinear, age-structured pop-
ulation models, each containing a combination of mech-
anisms including self regulation and harvesting hypoth-
esized to be responsible for the observed population out-
come. In this model, the 3 parameter DerisoSchnute SR
was matched to the data and is defined as

ψ
DS

= r
(

1 +
y

K

)w

The case w = −1 is again the classic Beverton-Holt
model. Each model was initiated with randomly selected
initial values and parameter estimates and involved mul-
tiple iterations until one could be identified as true to
documented data within an acceptable margin of error.
It is at this point noteworthy that the output data, which
contains information/frequencies induced by both the SR
and the age-structure, is not directly used, only matched.
The inclusion of additional flexibility in an SR increases
its application range but it adds to the already compli-
cated logistics of fitting parameters to other endogenous
processes included in the model construction [23]. If the
existing data can be used to reverse engineer the SR, it
would alleviate some of the logistics but this will only
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be possible for data representing a periodic equilibrium
and when the age related survival rates and replacement
rates are known and constant.

II. Model construction

Borrowing from Getz and Haight (1989), the age-
structured population model with m distinct age groups
is constructed with the SR at time n − 1 placed at the
recruitment level, acting as a density regulated survival
rate of the stock y(n − 1) (eggs spawned from all the
individual adult age groups y

k
(n− 1), k = 1, .., m). The

survivors of the density regulation, also referred to as
the recruitment population x(n− 1) = ψ(n− 1)y(n− 1),
are then further exposed to a non density regulated sur-
vival rate s

o
before being propagated to the first adult

(spawning) age group y
1

at time n which is modeled as

y
1
(n) = s

o
x(n− 1) (2)

The remaining m− 1 age groups are generated from (2)
in a linear fashion by assuming constant survival rates
s̄ = {s

k
}, k = 0, .., m− 1 where s

k
models the transition

from age group k to k + 1 as

y
k
(n) = s

k−1
y

k−1
(n− 1) k = 2, .., m (3)

The next generation of stock y(n) is then compiled from
the spawning contribution from each of the individual y

k

as

y(n) =
m
∑

k=1

b
k
y

k
(n) (4)

where b̄ = {b
k
}, k = 1, .., m are constant stock replace-

ment rates.
Recursions of (3), ending in (2), lead to expressing

each adult age group y
k

in terms of the recruitment pop-
ulation it generated from as

y
k
(n) =

(

k−1
∏

i=0

s
i

)

x(n− k) k = 1, .., m (5)

Combining (4) and (5), the next generation of stock y(n)
is expressed in terms of previous recruitment generations
as

y(n) =
m
∑

k=1

Akx(n− k) (6)

with Ak = b
k

(

k−1
∏

i=0

s
i

)

k = 1, .., m

As all entries of the age-structure defining parameters
Ā = {A

k
} are constant, the relationship between stock

and recruitment in (6) is linear as well as time invariant
(LTI) making it mathematically suitable for the appli-
cation of the Z-transform [18]. In a control system, the
coefficients of x(n) represent the independent gain or in-
put imposed on the natural feedback system (from sen-
sors placed at strategic positions in the model) defined

by the coefficients of the output y(n) and, for physically
realizable control systems, the latter amount of coeffi-
cients should be in the majority as degenerative neg-
ative feedback from the output improves stability and
reduces the effects of the gain, also known as BIBO sta-
bility (bounded input - bounded output) [13, 25]. In
the ecological model (6) however, the coefficient of y(n)
is in the minority. Conforming to a physically realiz-
able control model, the roles of x(n) and y(n) in (6)
must therefore be switched, an action not supported in
the ecological space but can be realized in the Z-space
through the application of the Z-transform.

III. From Ecology to Signal Processing

The materials required in generating a population
output to serve as the input of the intended extraction
formula is an age-structured model (6) with a known
SR and age-specific survival and replacement rates (hy-
pothetical parameters will be chosen). The methodol-
ogy is to recurse the population model over several time
units until a periodic equilibrium population output is
achieved. The Z transform, a discrete-time equivalent of
the Laplace transform, will be used to convert the age-
structured cause and effect model into an effect and cause
model in the Z-domain. The Z-domain is suited to the
algebraic manipulation of the expression which consists
largely of partial fraction decomposition, after which the
inverse Z-transform will reveal the effect and cause model
in the ecological domain, enabling the extraction of the
SR [18, 25]. The extraction formula will then be applied
to the periodic equilibrium outputs of three hypothetical
models, extracting the SR in each case. The extractions
will be compared to the true SR from which the accu-
racy of the formula can be determined. Setting the stage
(and suited to a Simulink demonstration), the following
two-age-group population model is chosen:

Model number I

age groups m = 2

initial stock densities y(0) = 0.2, y(1) = 0.2

age group parameters Ā = [0.4 0.56]

equation (6) y(n) = 0.4x(n− 1) + 0.56x(n− 2)

SR relationship ψ(n) =
r

1 +
(

y(n)
K

)w

intrinsic growth rate r = 1.75

scaled density limitation K = 1

intensity parameter w = 8.6178

The Simulink diagram for model I is captured in sub-
system B of Fig.1. The initial conditions y(0) and y(1)
serve as initiators of the feedback loop after which the
output y(n) will sustain the system. The shaded block
in this diagram is subsystem A with detailed diagram
shown in Fig.2. Starting the time clock at n = 2, sub-
system A crafts the SR output x(n − 2) = x(0) and
x(n−1) = x(1) from y(0) and y(1) which is then exported
to subsystem B where the delay blocks z−2 and z−1 keep
them in time order z−2 : x(0) and z−1 : x(1). They
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are then amplified through the triangular gain blocks to
amplitudes A

1
= 0.4 and A

2
= 0.56 respectively and

added through the summation block to produce y(2) af-
ter which y(2) flows back (negative feedback) into sub-
system A for the calculation of x(2) and the process re-
peats. The ψ(n) and y(n) output of subsystem B can
be viewed in Fig.3. After several recursions, the stock
output of model I reaches the period 3 equilibrium:

period three ȳ = [0.7520 1.1229 0.8903]

A. The Z-transform properties

There is an abundance of literature on the proper-
ties and uses of the Z-transform in DSP. The next two
subsections will however be grounded in the versions of
Orfanidis (2010) and Smith (1999).
For an infinite real or complex input signal x(n) =
{.., x(−1), x(0), x(1), ..}, the Z-transform is defined as
the infinite summation

Z{x(n)} =
∞
∑

k=−∞

x(k)z−k

= ..+ x(−1)z + x(0) + x(1)z−1 + ..

= X(z)

The properties and definitions of the Z-transform re-
quired in the derivation of the extraction formula are:

1) The inverse Z-transform is the operation Z−1 where

Z−1{X(z)} = Z−1{Z{x(n)}} = x(n)

2) The Z-transform is termed causal if the summation
range is limited to k ≥ 0 and anti-causal if the range
is limited to k < 0.

3) The function u(n) is the unit function where u(n) =
1, n ≥ 0 and u(n) = 0, n < 0

4) The region of convergence (ROC) is the region in
the complex z-plain for which the Z-transform sum-
mation converges. As a series, the ROC comprises
all z such that |z| > 0, but in cases where the infi-
nite series can be expressed in closed form, the ROC
is the z-domain defined by this process. The closed
forms used in this derivation are

• The causal Z-transforms of x(n) = pnu(n) de-
fined for |p| < 1 where

Z{pnu(n)} = 1 + pz−1 + (pz−1)2 + ..

=
1

1 − pz−1

or =
z

z − p

provided that |pz−1| < 1 or rather |z| > |p|
which defines the ROC in this case.

• The anti-causal case defined for x(n) =
−pnu(−n − 1) defined for |p| > 1 where

Z{−pnu(−n− 1)} = −p−1z − (p−1z)2 − ..

=
1

1 − pz−1

or =
z

z − p

provided that |p−1z| < 1 defining the ROC as
|z| < |p|. The ROC ensures a unique trans-
form allocation as the closed forms above are
otherwise the same.

5) BIBO stability (the consequence of negative feed-
back in both the control model and ecological
model) requires absolute convergence in the real
space which is why, when transforming z

z−p
} back to

the real space, p 6= 1, p < 1 is interpreted as having
a causal response,

Z−1{
z

z − p
} = pnu(n) if |p| < 1 (7)

and p > 1 as having an anti-causal response,

Z−1{
z

z − p
} = −pnu(−n− 1) if |p| > 1 (8)

In the context of (7) and (8), p is referred to as a
pole.

6) The shift theorems required are

Z{x(n− k)} = z−kX(z)

Z{x(n+ k)} = zkX(z) −

k−1
∑

i=0

zk−ix(i) (9)

where the x(i), i = 0, .., k − 1 are the initial val-
ues of x(n). For the ecological model (6), x(i), i =
0, .., k−1 represent the initial densities of the recruit-
ment population which is assumed to be negligible
in comparison to the eventual output and can there-
fore be omitted from (9) reducing this expression to

Z{x(n+ k)} = zkX(z) (10)

B. The effect and cause transfer function

The application of the Z-transform and its properties
to (6) will result in a mathematical equation suited to
an effect and cause view compatible with BIBO stability
as well as the extraction of ψ. The steps are:

1) Apply the causal Z-transform and shift theorems to
(6):

Z{y(n)} =

m
∑

k=1

AkZ{x(n− k)}

Y (z) =

m
∑

k=1

Akz
−kX(z)

=

(∑m

k=1Akz
m−k

zm

)

X(z)

= G(z)X(z), (11)
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Fig. 1: Subsystem B models the recursion equation of model I with m = 2, r = 1.75, w = 8.618, A
1

= 0.4 and
A

2
= 0.56. Subsystem A crafts the corresponding recruitment population x(n) from the stock feedback y(n).

Subsystem B’s output is the next generation of stock y(n) and relays the true representation of ψ(n) from its
construction in subsystem A.

Fig. 2: Subsystem A crafts the recruitment population x(n) from the feedback stock y(n) and the density regulation
ψ(n). Subsystem A’s output, x(n) and ψ(n), is subsystem B’s input.

Fig. 3: The Simulink scope representation of subsystem B’s output, comparing the density output y(n) and the true
ψ(n) as a function of time n.

G(z) =

∑

m

k=1
Akzm−k

zm is the transfer function sup-
porting the cause and effect action in the Z-space.
The effect and cause version will require presenting

X(z) in (11) as the subject of the equation:

X(z) =
1

G(z)
Y (z)
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= G−1(z)Y (z) (12)

G−1(z) =
zm

∑m

k=1Akzm−k
(13)

2) If A1 is the first non zero term in Ā, the m − 1
degree polynomial in the denominator of (13) can
be expressed in terms of its m− 1 poles p

k
as

G−1(z) =
zm

A1

∏m−1
k=1 (z − p

k
)

=
zm

A1

(

1
∏m−1

k=1 (z − p
k
)

)

(14)

When there is more than one pole, the ROC is
defined as follows:

• in the causal case, as the region P de-
fined by the pole with maximum magnitude
|z| > |pmax| and

• in the anti-causal case, as the region Q de-
fined by the pole with minimum magnitude
|z| < |pmin| .

• in the mixed case, it is defined as the region
defined by the doughnut shaped intercept
P ∩Q.

The unit circle is always included in the ROC.

3) Continuing from (14), partial fractions is applied to
1

∏

m−1

k=1
(z−p

k
)
, resulting in m− 1 individual terms

G−1(z) =
zm

A
1

m−1
∑

k=1

D
k

z − p
k

where D
k
, k = 1, .., m− 1 are the partial fraction

constants. In preparation of taking the inverse Z-
transform using (7) and (8), zm is expressed as
zm−1z leading to

G−1(z) =
zm−1

A
1

m−1
∑

k=1

D
k

z

z − p
k

(15)

In realizing BIBO stability, these terms will trans-
form back to the physical space as either pn

k
u(n) or

−pn
k
u(−n− 1) depending on the magnitudes of p

k
.

C. Extracting ψ from the output

In demonstrating the extraction of ψ from (6), a hy-
pothetical model with m age groups, period T = 3 out-
put and A1 6= 0 will be assumed. The extraction formula
in terms of a general period T and in terms of the first
non zero entry Aa of Ā will be formulated thereafter.
The steps are:

1) Return to (12) and use expression (15) for G−1

A1z
−m+1X(z) =

m−1
∑

k=1

D
k

z

(z − p
k
)
Y (z)

where D
k

=
1

∏

i 6=k(p
k
− p

i
)
k = 1, .., m− 1 m > 2

For models with m = 2, no partial fractions are
required and D

1
= 1.

2) Separate the causal (C) poles from the anti-causal
(AC) poles in the above summation by labeling
|p

k
| > 1, k = 1, ..v and |p

k
| < 1, k = v + 1, ..m− 1

which results in the two summations

A1z
−m+1X(z) = AC +C

AC =

(

v
∑

k=1

D
k

z

z − p
k

)

Y (z)

C =

(

m−1
∑

k=v+1

D
k

z

z − p
k

)

Y (z)

(16)

3) Expanding AC according to (8),

AC =

v
∑

k=1

D
k

z

z − p
k

Y (z)

= −
v
∑

k=1

D
k

(

p−1
k
z + p−2

k
z2 + ..

)

Y (z)

= −

v
∑

k=1

D
k

(

p−1
k
zY (z) + p−2

k
z2Y (z) + ..

)

Taking the inverse Z-transform of AC and applying
the shift theorems (10),

Z−1{AC}

= −

v
∑

k=1

D
k

(

p−1
k
y(n + 1) + p−2

k
y(n + 2) + ..

)

(17)

A period 3 equilibrium of (17) will reduce the right
hand side to three terms,

Z−1{AC}

= −

v
∑

k=1

D
k

(B1y(n + 1) +B2y(n + 2) + B3y(n + 3))

(18)

where

B1 = p−1
k

(

1 + p−3
k

+ p−6
k

+ ..
)

=
p−1

k

1 − p−3
k

= −
p2

k

1 − p3
k
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Similarly,

B2 = −
p

k

1 − p3
k

and B3 = −
1

1 − p3
k

4) Expanding C according to (7),

C =

m−1
∑

k=v+1

D
k

z

z − p
k

Y (z)

=
m−1
∑

k=v+1

D
k

(

1 + p
k
z−1 + p2

k
z−2 + ..

)

Y (z)

=
m−1
∑

k=v+1

D
k

(

Y (z) + p
k
z−1Y (z) + p2

k
z−2Y (z) + ..

)

Taking the inverse Z-transform and enforcing a pe-
riod 3 equilibrium,

Z−1{C}

=

m−1
∑

k=v+1

D
k

(

y(n) + p
k
y(n − 1) + p2

k
y(n − 2) + ..

)

=
m−1
∑

k=v+1

D
k
(B4y(n) +B5y(n − 1) + B6y(n − 2))

(19)

where

B4 =
(

1 + p3
k

+ p6
k

+ ..
)

=
1

1 − p3
k

Similarly,

B5 =
p

k

1 − p3
k

and B6 =
p2

k

1 − p3
k

5) The inverse Z-transform of the left hand side of (16)
is Z−1{A1z

−m+1X(z)} = A1x(n−m+ 1))

6) The inverse Z-transform of (16) is then

A1x(n−m+ 1)) =
v
∑

k=1

D
k

1 − p3
k

(

p2
k
y(n + 1) + p

k
y(n + 2) + y(n + 3)

)

+
m−1
∑

k=v+1

D
k

1 − p3
k

(

y(n) + p
k
y(n − 1) + p2

k
y(n − 2)

)

Enforcing T = 3, y(n+3) = y(n), y(n−1) = y(n+2)
and y(n − 2) = y(n + 1) leading to

A1x(n−m+ 1) =
v
∑

k=1

D
k

1 − p3
k

(

p2
k
y(n + 1) + p

k
y(n + 2) + y(n + 3)

)

+
m−1
∑

k=v+1

D
k

1 − p3
k

(

y(n + 3) + p
k
y(n + 2) + p2

k
y(n + 1)

)

As the expressions inside the two summations are
the same irrelevant of the magnitude of p, they can
be combined into a single summation,

A1x(n−m+ 1)

=

m−1
∑

k=1

D
k

1 − p3
k

(

y(n + 3) + p
k
y(n + 2) + p2

k
y(n + 1)

)

=

m−1
∑

k=1

D
k

1 − p3
k

3
∑

i=1

(p
k
)3−iy(n + i)

7) In general, for a period T with A1 the first non zero
term:

A1x(n−m+ 1)

=

m−1
∑

k=1

D
k

1 − pT
k

T
∑

i=1

(p
k
)T−iy(n + i)

If A
a

is the first non zero term of Ā, the summation
in equation (6) will initiate at k = a and there will
be m − a roots which will change the summation
upper limit of equation (15) to m − a. The gen-
eral formula expressing the recruitment densities in
terms of stock densities with a finite period T and
first non zero model parameter A

a
is given by

Aax(n−m+ 1) =

m−a
∑

k=1

D
k

1 − pT
k

T
∑

i=1

(p
k
)T−iy(n + i)

or rather

Aax(n) =

m−a
∑

k=1

D
k

1 − pT
k

T
∑

i=1

(p
k
)T−iy(n +m− 1 + i)

(20)

8) The formula that extracts ψ(n) from x(n) =
ψ(n)y(n) in (20) is then

ψ(n) =

1

Aay(n)

m−a
∑

k=1

D
k

1 − pT
k

T
∑

i=1

(p
k
)T−iy(n +m− 1 + i)

(21)

The ROC is the region bounded by the largest causal
pole and the smallest anti-causal pole. Formula (21)
requires stock data in the present and future which
can be changed to present vs past by replacing n in
y(n + m − 1 + i) with its periodic equivalent n − hT

where h = 1, 2, ... Formula (21) holds for all finite T and
m. In quasi-periodic cases where T is sufficiently large
but can be defined as finite within a boundary of toler-
ance, if all poles lie within the unit circle as |p

k
|T ≈ 0 for

all k. In pure causal events, large T values will reduce
(21) to the quasi-causal approximation

ψ(n) ≈
1

Acy(n)

m−c
∑

k=1

D
k

T
∑

i=1

(p
k
)T−iy(n +m− 1 + i)

(22)
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IV. Results and Discussion

Returning to the Simulink model I, this section will
demonstrate how (21) is used to extract ψ(n) from the
output y(n) of subsystem B and population parameters
Ā. After the extraction, the true form of ψ(n) from
subsystem A will be compared to that of the extraction
model (21) for comparison. The extraction equation will
be applied to another two hypothetical models, model II
with T = 4 and m = 6 and model III with T =quasi-
causal and m = 6. For model I,

Model number I

age groups m = 2

age group parameters Ā = [0.4 0.56]

T = 3 stock output ȳ = [0.7520 1.1229 0.8903]

The single pole calculated from 0.4z + 0.56 is p = −1.4
with anti causal ROC |z| < 1.4. No partial fractions are
required in this case with D

1
= 1 which reduces formula

(21) to

ψ(n) =

(

p2y(n + 2) + py(n + 3) + y(n + 4)
)

A
1
y(n)(1 − p3)

(23)

The application of Simulink requires a present verses
past relationship (cause and effect) which motivates
shifting y(n + 2), y(n + 3), y(n + 4) to their respective
periodic equivalents y(n − 1), y(n) and y(n − 2),

ψ(n) =

(

p2y(n − 1) + py(n) + y(n − 2)
)

A
1
y(n)(1 − p3)

(24)

The extraction process is captured in the Simulink dia-
gram Fig.4 with output:

ψ̄ = [1.6118 0.4710 1.2798]

which corresponds with the true values generated from
subsystem A for the Shepherd ψ function and model pa-
rameters K = 1, r = 1.75 and w = 8.618. A comparison
of the true and extracted density regulation is shown in
Fig.5.

For the second model,

Model number II

age groups m = 6

age group parameters

Ā = [0.2 0.5 0.2 0.1 0.01 0.001]

T = 4 stock output

ȳ = [1.0885 1.0506 0.8757 0.9188]

The five poles from

0.2z5 + 0.5z4 + 0.2z3 + 0.1z2 + 0.01z + 0.001

as well as the associated partial fraction coefficients are

p
1

= −2.1366 D
1

= 0.0547

p
2

= −0.1301 + 0.4088i D
2

= 2.0662 + 2.9998i

p
3

= −0.1301− 0.4088i D
3

= 2.0662− 2.9998i

p
4

= −0.0516 + 0.1003i D
4

= −2.0935− 14.4126i

p
5

= −0.0516− 0.1003i D
5

= −2.0935 + 14.4126i

with ROC 0.4289 < |z| < 2.1366. The output of the
extraction formula is:

ψ̄ = [0.6475 0.7696 1.4011 1.2522]

which is consistent with choosing the parameters in the
Shepherd function as r = 1.9, K = 1 and w = 7.78. The
true and extracted regulation is compared in Fig.6.

In the third model,

Model number III

age groups m = 6

age group parameters Ā = [0 0 0.3 0.25 0.3 0.2]

quasi-periodic stock output see F ig.7

The stock output is almost periodic output with period
T = 210 if the tolerance is set to |y(n+T )−y(n)| < 0.001
and T = 9 if it is relaxed to |y(n + T ) − y(n)| < 0.01.
The first non zero entry is A

3
= 0.3 with poles calculated

from 0.3z3+0.25z2+0.3z+0.2 all located inside the unit
circle with

p
1

= −0.7240 D
1

= 0.7322

p
2

= −0.0547 + 0.958i D
2

= −0.3661− 0.2558i

p
3

= −0.0547− 0.958i D
3

= −0.3661 + 0.2558i

and causal ROC |z| > 0.9596. For T = 210, the quasi-
causal formula (22) is used and for T = 9, the original
formula (21) is used. The extracted density regulations
for these two cases are shown in Fig.8. They approx-
imately correspond to the density regulation generated
by subsystem A when choosing r = 1.9, w = 4.812 and
K = 1 which is also shown in Fig.8. On a practical side,
the relaxed T = 9 version requires less data for a similar
extraction result.

V. Conclusion

In a cruise control model, the functionality of the
actuator is determined by separating its contribution
from the data output stored in the electronic control
unit (ECU) and then comparing it to expected values
through a diagnostic comparison [2]. This is what the
extraction formula does for the ecological model, it sep-
arates the density component from the data stored in the
periodic output which can then be used to mathemati-
cally identify the SR or it can be compared to previous
values from which changes in population behavior can
be determined. Schoombie and Getz (1998) linked the
parameter w in the non age-structured Shepherd model
to the intensity of the behavioral interventions of a fish
population in keeping stock (not recruitment) densities
within the boundaries of K. They determined through a
series of competitions (game theory) between an equilib-
rium population and a low density mutation practicing a
slightly different version of w that an ESS w exists rep-
resenting an invasion immune set of exclusive behavioral
interventions in keeping densities within the boundaries
of K. Future research will investigate the potential of us-
ing the extraction formula in determining where on the
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Fig. 4: Extraction model for model I with m = 2, r = 1.75, w = 8.618, K = 1 and Ā = [0.4 0.56]. Subsystem B
generates stock densities from which the extractor reassembles ψ(n).

Fig. 5: The Simulink scope comparing the true ψ(n) and the extracted ψ(n) for model I.

strategy evolution landscape a population is with regards
to its ESS. The extraction formula requires a model with
a periodic equilibrium, constant survival and reproduc-
tion rates and the SR at the recruitment level of the
age-structured model which puts it into the category of
a novel application, yet, it opens the door to alternative
modeling procedures and the freedom to experiment with
manipulation tools such as the Z-transform from differ-
ent fields.
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