


Abstract—Edge computing refers to decentralized

computing technology to reduce cloud computing's

overload or security problems that redirect local data to a

central data center. Edge computing is emerging as a

technology that complements cloud computing in an IoT

environment where huge amounts of data are generated in

real time. Recently, solid state drives using flash memory

have recently been recognized as a suitable storage for

massive IoT data services. In this study, we propose a new

data recovery scheme based on shadow paging using flash

memory for effective and safe data services in IoT edge

gateways. The proposed scheme recycles invalidated old

data blocks that are discarded when new data is stored.

Thus, The proposed scheme minimizes the burden of

additional storage space required to traditional shadow

paging schemes, and reduces I/O performance degradation.

Simulation results show that the space gain of the proposed

scheme reaches even to 29%.

Keywords—IoT Edge computing, Flash-based System,

Data Recovery, Flash Memory, Reused Shadow

I. INTRODUCTION
Recently, IoT(Internet of Things)[1,2,3] sensor network has

received significant attention in smart system areas. Small IoT
devices can be designed with on-board calculations, wireless
communications and sensor detection abilities (Figure. 1).
Recent work has also begun exploring the potential applications
for measuring various IoT environments.

Figure 1. Examples of IoT Sensor Devices

The amount of data generated by the IoT or mobile devices is
increasing by a large margin. Such IoT devices include sensors,
smart phones and wearables, and have limited computing
resources and battery energy. Although the cloud is a server
with high scalability and superior resources, it is very far away
from most end-users, and the movement of IoT data is putting a
heavy burden on network links. To cope with these important
IoT issues, the model of edge computing was proposed[4,5,6].

In the edge computing environment, useful computing
resources are located on the edge of the network and very close
to end-devices such as IoT sensors. Therefore, IoT computing
resources should be placed close to end-devices to reduce data
traffic and latency. That is, a lot of smart services can be
provided in IoT edge gateway to process and store data close to
end-devices that generate IoT big data. The edge gateway serve
as relay agent to the cloud and can also be used for very low-cost
hardware (table 1).

Table 1: Example of IoT Gateway Device Specification

Items Specification

System Platform Raspberry Pi3
System OS Raspbian
Processor/Core 1.2GHz-64bit/4
Main Mem. 1GB

Sensors
Humidity(%).,Temperature(‘c),
Noise(dB)

Software JAVA, Android-Studio, bmx

Flash memory has become a critical storage component in

building embedded systems such as smart IoT gateway because
of its non-volatile, shock-resistant, and power-economic nature.
Its density and I/O (Input Output) performance have been
improved to a level at which it can be used not only as a main
storage for portable computers but also as a mass storage for
general computing systems. Although flash memory is not as
fast as RAM (Random Access Memory), it is a hundred times
faster than a hard disk in read operations.

Reused Shadow Recovery Scheme for
Flash-based Edge Gateway Servers

Siwoo Byun,
Dept. of Software, Anyang University

22, Samduk-ro, 37th street, Anyang-shi, 137-060
South Korea

 Received: April 14, 2021. Received: October 21, 2021. Accepted: November 10, 2021. Published: December 6, 2021.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.183 Volume 15, 2021

E-ISSN: 1998-4464 1695

II. MOTIVATION

2.1 Components of IoT network environment

In general, an IoT network consists of three components: a
sensor device, an IoT gateway, and a cloud network, each
meaning a data source, a data communication network, and data
processor[4,7].

1) Sensor device: Many sensors are placed in wide areas of
IoT environment. These sensors produce huge volume of
measured data which is a core part of IoT services. The device
serves as a human-computer interface that delivers users'
requirements to IoT network. These sensors and devices are all
be interconnected so that they send sensor data and provide
various IoT application services.

2) IoT gateway: IoT gateway collects measured data from
sensor devices and forwards it to cloud servers. The sensor
devices need to preprocess measured data before they send the
data to cloud servers. For example, IoT gateway performs
preprocessing of measured data to reduce data redundancy and
unnecessary communication overhead.

3) Cloud network: In general, cloud servers have enough
resources such as CPU, memory and storages to support IoT
applications. The cloud server receives sensor data and user
requirements and sends the service results back to the end user
after required data processing.

2.2 Reliable Data Management for IoT Edge Gateways

The data recovery means the ability to restore a database to its
pre-failure state in the event of a disaster failure, such as
physical breakdown, or a non-disaster failure in which a
consistency is destroyed by wrong operation. First,
disaster-oriented failures are usually recovered using historical
copies copied to storage devices such as hard disks. Second,
user-oriented failures are usually recovered by redo/undoing
some operations to the nearest stable data state from the time the
transaction fails. In a database system, data managers(DM) are
linked to the bottom of the transaction manager(TM), which
accesses actual storage device through an internal recovery
manager(RM), so the recovery functionality should always
work smoothly. Thus, the database management system must
maintain information about data changes during the transaction
processing [8].

The techniques for recovering data from non-disaster
failures, such as failed transactions, include immediate
update-in-place approaches[8,9] and shadow paging
approaches[10,11]. In update-in-place approaches, a modified
data item is written directly to the same storage location as hard
disk. On the other hand, the shadow paging techniques store
newly stored data items in different locations on disk storage,
allowing multiple copies to exist on the same data item. The
value before the data item is modified is referred to as "before
image" and the new value after the modification is referred to as
"after image". The shadow paging techniques store both
previous and subsequent values on disk, so unlike the immediate
renewal techniques, logs do not need to be maintained for

recovery.
In general, instant renewal techniques have the advantage of

consuming less storage space compared to shadow paging
techniques, while overhead resulting from redo/undo log
storage commonly results in system performance degradation.
The shadow paging techniques store revisions in different areas
until the transaction is successfully completed, and at
completion point, the revisions are reflected to the database.
Therefore, there is no dirty page, no redo/undo computation of
transactions, so there is no burden on the logs involved, and
recovery failure algorithm is very simple.

On the other hand, a lot of storage space is required to store
the shadow pages, which contribute to increase system overhead
for efficient space management. In addition, the pages of the
updated data are frequently repositioned on disk space, resulting
in disk I/O performance degradation as the associated pages are
distributed without concentration [12].

Due to the rapid development of flash memory technology, it
has been in the spotlight as a good storage memory. In addition,
there is enough space for shadow pages due to the large capacity
of recent flash memory technology. However, unlike traditional
storages such as hard disks and random access memories,
specialized data processing techniques should be developed by
considering the characteristics of flash memory which is
impossible to write in place and takes much more time for write
and erase operations. In this paper, considering the
characteristics of these flash memories, we propose a new data
recovery technique using flash memory and shadow pages for
effective and safe recovery in IoT edge gateways.

III. PROPOSED WORK

3.1 Flash Memory Database Model

Proposed flash memory data management model is s shown
in Figure 2. Flash memory database manager handles flash data
operations from start to commitment and flash memory page
manager handles mapping table. Flash segment manager
comprises four distinct processes: a collector, a cleaner, a cycle
leveler, and an allocator.

Allocator handles the set of free block from which it can
satisfy new requests. The cycle leveler is a process that allows
data to be written evenly across the device, which is essential for
maximizing the capacity and longevity of the memory. Finally,
the collector is responsible to clean the outdated data on flash
memory so as to reduce the overhead of the cleaner.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.183 Volume 15, 2021

E-ISSN: 1998-4464 1696

Figure 2. Flash Memory Data Management

To improve data processing performance, Index techniques

such as hash tables and b-tree search index were proposed.
However, since b-tree index has a very high management cost
due to severe overwrite caused by frequent update in flash
memory, b-tree flash translation layer was proposed [13]. Since
this scheme requires additional memory area and additional
latency, FlashDB scheme was developed through dynamic
automatic tuning. In addition, MicroHash and MicroGF
structures were proposed for small storage spaces such as
sensors which use a small amount of energy, but they are
difficult to apply to large data [14].

3.2. File System for Flash Memory Devices

NAND-type flash memory as a main storage for sensor
devices has different characteristics from conventional
magnetic disks. In flash memory, stored data cannot be
overwritten when data is written. In order to change the
previously stored content, a write operation must be performed
on a new empty block after performing an erase operation on the
block in which the content is stored. In addition, the erasing
each block is limited to about 100,000 times, and if it exceeds
this limit, the block will no longer be writable [13].

A log-structured file system(LFS) is a file system in which
data and meta data are written sequentially to a circular buffer,
called a log. Conventional file systems tend to lay out files with
great care for spatial locality and make in-place changes to their
data structures in order to perform well on optical and magnetic
disks, which tend to seek relatively slowly (Figure 3). On the
other hand, the log structure is naturally suited to media with
append-only zones or pages such as flash storages. LFS buffers
relevant data in main memory and writes it sequentially with
metadata such as inode to the flash memory on segment basis.
Therefore, it does not require search time to update blocks and
inodes.

LFS storage should reclaim free space from the tail of the log
to prevent the file system from becoming full when the head of
the log wraps around to meet it. To reduce the overhead
incurred by this garbage collection, most implementations avoid

purely circular logs and divide up their storage into
segments[15].

Figure 3. Conventional file system vs. Flash file system

The LFS relays the redirection between the inode number and

the inode through the inode map. The input of the map is the
inode number, and the output is the latest address of the inode.
Each segment has a summary block which is linked to a long
chain structure connected by the next summary pointer, so LFS
becomes a long linear log. Due to its random access nature,
flash memory does not require the segments to be adjacent.

The most well-known file system for embedded systems
using flash memory is JFFS2 which is the enhanced version of
Journaling Flash File System (JFFS)[16]. JFFS is an LFS-based
file system developed by Axis Communications in Sweden that
takes into account the nature of flash memory by improving the
general file system. Traditional file systems fix
meta-information to specific blocks and update them each time
the file system is modified. However, JFFS uses the entire
blocks of flash memory evenly without using specific blocks.
JFFS also stores meta-information of the file system every
certain interval to prevent data loss caused by abrupt power
failures.

In this study, proposed scheme recycles invalidated old data
blocks that are discarded when new data is stored. In other
words, proposed scheme exploits recycled shadow pages for
efficient transaction recovery with performance and stability.

3.3 Shadow-based Data Recovery for flash-based Edge

Gateway

Conventional shadow paging techniques copy the current
page table to the shadow page table when the update (write)
transaction begins to execute. The list of current page tables
points to the most recent data pages and is overwritten as the
transaction is performed, while the shadow page tables remain
unmodified until the transaction ends. This means that a copy of
a new page is created when a update transaction is executed, but
the previous copy of the page is not overwritten. Thus, two
versions are maintained for the update transaction. The two
versions are the previous version referenced by the shadow page
table and the new version by the current page table.

If a transaction failure occurs and it needs to be returned to
the previous version, shadow schemes discard the current page
table and replace the previous shadow page table with the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.183 Volume 15, 2021

E-ISSN: 1998-4464 1697

current page table. Otherwise, if the transaction is completed
successfully, the shadow page table is no longer needed and can
be discarded. In this respect, shadow paging schemes are
classified as no-redo/no-undo techniques because there is no
redo/undo operation [8].

Traditional shadow paging schemes require large space to
maintain shadow pages and destroy the original layout of data
pages. To reduce the significant space overhead of the
traditional schemes, Reused Shadow Recovery (RSR) scheme is
proposed. RSR scheme is suitable for IoT edge gateways with
flash memory storage.

However, the characteristics of the flash memory file system
described in the previous section must be considered for
efficient RSR. In the traditional LFS-based approaches, data
blocks are stored once and expired once due to the physical
properties of write-once flash memory.

On the other hand, proposed RSR scheme reuses the expired
blocks of discarded version which are supposed to be disposed.
To reuse these invalidated pages efficiently, we devised a new
shadow paging scheme with deferred cleaning technique. Figure
4 shows the flash memory-based shadow recovery mechanism
and an operation interface for JFFS-like file systems, as follows.

Figure 4. Reused Shadow Page Management for Edge Gateway

1) The user's update application connects to the RSR data
management system by API or system call and performs
write transaction for data updates processing. For this
update transaction, data items stored in the associated
flash file system are accessed through the corresponding
page table.

2) RSR does not overwrite old shadow pages for the data
items, but creates new pages and stores the modified
values on the new pages. The new pages are assigned in
a sequential direction by the flash block allocator.

3) The most recent data pages for the updated data item is
retained in the reused shadow area and used as a backup
page. In RSR, the erase operations for invalidated pages

are pending until the update transaction is completed.
The invalidated pages are recycled as shadow pages for
fast recovery process if the update transaction is
aborted.

4) If the update transaction has reached to commitment
state and the shadow pages are unnecessary, the shadow
pages are registered into the segment erasing area for
actual page cleaning.

5) Periodically, the shadow pages registered in the segment
erasing area are inserted into the free page area after the
segment erasing process.

6) The cleaned pages are inserted into the free page area to
supply new pages by flash allocator. Note that the
shadow pages can be reused when the flash file system
is not completely occupied and there is some free space.
For example, if there is not enough block space for
shadow paging, the advantages of shadow paging are
reduced and system overhead increase because the flash
file system uses new block spaces immediately through
the cleaning process. However, IoT data transactions
are basically read-intensive without roll back for
large-scale data analysis. In addition, general flash
storages typically retain at least 5% free space, so no
overflow occurs.

The proposed RSR scheme allows the update operation to be
processed without logging overhead. Since logging and check
pointing overheads are eliminated, RSR scheme can achieve
high transactions performance with low response time.

The shortcomings of the traditional shadow paging schemes
can be resolved in RSR as follows. First, traditional techniques
have the disadvantage of consuming a lot of storage space for
shadow pages. However, in RSR scheme, the additional space is
not wasted because old data pages that are discarded from the
flash file system are recycled as new shadow pages. Thus, the
space burden for shadow pages can be reduced.

Second, in disk-based file system environments, updated data
pages frequently change their locations on disk storage as
shadow pages increase. This results in poor I/O performance
and consequently poor system performance because the
associated pages are distributed widely rather than
concentrated. However, RSR scheme uses flash memory as data
storage device rather than hard disk device, enabling fast
random access as like main memory. Therefore, this
disadvantage is also overcome because I/O performance
degradation is not caused by the data page distribution.

As a result, the proposed RSR scheme reduces the logging
and rollback overhead caused by update transactions and
increases the transaction performance for IoT gateway systems.
In addition, RSR scheme minimizes the waste of storage space
for shadow paging by recycling old data pages in flash file
systems.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.183 Volume 15, 2021

E-ISSN: 1998-4464 1698

 IV. PERFORMANCE EVALUATION

4.1 Experimental System Model

The researcher compared the performance of RSR(Reused
Shadow Recovery) scheme, UR(Update-in-Place Recovery)
scheme, and SR(Shadow Recovery) scheme. Simulation system
was programmed using C++ and CSIM library [17] for
workload generation and performance analysis. The simulation
model for the flash memory-based data environment is based on
the closed queuing model provided by the CSIM.

The CSIM simulation module generates data transaction
workloads, but actual I/O delay is measured from the built-in
flash memory storage (256GB) to increase its practicality. The
experimental system consists of a user transaction generator, a
transaction manager for the user transaction, a data manager,
and a page manager.

Figure 5. Simulation Model for Performance Evaluation

The user transaction generator generates read or

update(write) transactions at predefined intervals to make the
user transaction workload required for the simulation. The
transaction manager manages and analyzes the user transaction,
and then sends it to the data access request queue of the data
manager. After logical data access for the transaction, the data
manager sends a physical access request to the flash-based
shadow page manager. The shadow page manager manages
recycled shadow pages and perform actual I/O requests in flash
memory for the user transactions.

The performance evaluation metrics for the simulations are
flash storage space consumption, transaction throughput, and
response time of the transaction. The throughput rate is defined
as the number of transactions that are successfully completed
per second, and the response time is defined as the time that
elapses between the submission and the completion of the
transaction. Flash memory space consumption is the amount of
data required to manage shadow pages and related information
accompanied by the transaction execution.

4.2 Test results and their interpretation

In this experiment, the performance of UR, SR, and RSR was
analyzed. We looked at the changes in the workload of each
scheme by varying the number of user transactions in the
experiment. The main result of the experiment are shown in
Figure 6 (transaction throughput), Figure 7 (transaction
response time), and Figure 8 (space consumption).

In Figure 6, the number of transactions entering the CSIM
queuing system gradually increases as the volume of
transactions increases, resulting in a gradual increase in
workload. This increase is mainly due to the increment of
paging congestion that follows the increment of the workload
level. In this experiment, the highest throughput is exhibited by
SR, followed by RSR and UR. Experimental results show that
the graph curves of SR and RSR schemes are located at the top
of the UR scheme in the entire interval, so the transaction
processing results of the two shadow paging schemes are better
than UR scheme.

Figure 7 also shows that the average response time gradually
increases, as the amount of transactions generated per second
increases. The graphs of the two shadow paging schemes shows
that their responsiveness is better than that of the UR scheme
under middle and high workload condition.

Figure 6. Transaction Throughput

Figure 7. Transaction Response Time

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.183 Volume 15, 2021

E-ISSN: 1998-4464 1699

Figure 8. Space Consumption of Flash Storage Device

As the amount of transaction generated per second exceeds

1200 to 1400, the transaction throughput is no longer enhanced
and system performance is gradually degraded. This means that
even though the transaction processing requests beyond that
range, the system suffers from performance degradation caused
by data contention, meaninglessly increasing the system
workload.

As a result of the analysis of the graph above, RSR showed
similar transaction processing and response performance to SR.
SR shows slightly higher performance than RSR in high
workload environment. This small deference is because RSR
also reduces the degree of data contention caused by shadow
paging. On the other hand, RSR effectively reduces the burden
of storage space by recycling data pages that are invalidated and
discarded inside the flash file system. Note that UR should write
new image after erasing the previous image, so it could suffer
from flash overwrite congestion caused by the slow erase
operations, especially in high workload conditions.

Figure 8 shows the results of storage space usage for each
scheme. As previously mentioned, UR does not store previous
images, so it uses the least storage space. Note that RSR scheme
uses much less storage space than SR over the entire interval. In
terms of storage space consumption, RSR scheme uses 29%
lower space than SR scheme. This means less workload is
placed on shadow page storage management. However, if the
recycling shadow area is insufficient, RSR could suffer from
recycling overflows and this could lead to transaction
performance degradation.

V. CONCLUSION
This paper described characteristics of IoT edge computing

and edge gateway device with flash memory storage, as well as
the structure of flash file systems considering the characteristics
of flash memory. This paper proposed a new transaction
recovery scheme for flash memory-based edge gateways.

The proposed shadow recovery scheme reduced the logging
and rollback workload compared to the immediate renewal
technique of conventional recovery schemes. In addition, the
proposed scheme recycled the discarded data pages through the

deferred shadow cleaning to reduce the additional space
overhead of conventional paging schemes, thus increasing the
storage space efficiency and transaction processing
performance. CSIM simulation results show that the space gain
of the proposed scheme reaches even to 29% with respect to
storage consumption.

Future study includes light-weight shadow management for
small-size gateways and extending the proposed scheme to
hybrid storage environment where the types of data storage and
I/O bandwidth are different, and deep learning algorithms to
optimize space consumption .

References
[1] P. Bonnet, J. Gehrke, and P. Seshadri, Towards Sensor

Database Systems, Proceedings of the Second International
Conference on Mobile Data Management, pp.3-14, Hong
Kong , Jan. 2011

[2] S.V.R.K.Rao, M.Saritha Devi, A.R.Kishore, Praveen
Kumar, Wireless sensor Network based Industrial
Automation using Internet of Things (IoT), International
Journal of Advanced Trends in Computer Science and
Engineering, vol.7, no.6, pp.82-86, 2018.

[3] Y. Son, Y. Lee, “A Study on the Interpreter for the
Light-Weighted Virtual Machine on IoT Environments,”
International Journal of Web Science and Engineering for
Smart Devices, Vol.3.2, pp.19-24, 2016

[4] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher,
Chao Lu, Jie Lin, Xinyu Yang, A Survey on the Edge
Computing for the Internet of Things, IEEE Access, vol.6,
pp.6900-6919, Nov. 2017.

[5] Gopika Premsankar, Mario Di Francesco, and Tarik Taleb,
Edge Computing for the Internet of Things: A Case Study,
IEEE Internet Of Things Journal, vol.5, No.2, 2018

[6] Amir M. Rahmani, T. Nguyen Gia, B. Negash, A.
Anzanpour, I. Azimi, M. Jiang, P. Liljeberg, Exploiting
smart e-Health gateways at the edge of healthcare
Internet-of-Things: A fog computing approach, Future
Generation Computer Systems, vol. 78, no.2, pp. 641-658,
2018

[7] A. ElSharif Karrar, M. Fadl Idris Fadl, Security Protocol
for Data Transmission in Cloud Computing, International
Journal of Advanced Trends in Computer Science and
Engineering, vol.7, no.1, pp.1-5, 2018.

[8] Tamer Ozsu, and Patrick Valduriez, Principles of
Distributed Database Systems, Springer New York, 2011.

[9] Vijay Kummar, Albert Burger, "Performance Measurement
of Main Memory Database Recovery Algorithms Based on
Update-in-Place and Shadow Approaches", IEEE
Transactions on Knowledge and Data Engineering, 4(6),
1992, pp. 567-571.

[10] Jack Kent, Hector Garcia-Molina, "Optimizing Shadow
Recovery Algorithms", IEEE Transactions on Software
Engineering, 14(2), Feb. 1988, pp. 155-168.

[11] J. Kim, S.Joo, H. Kang, An Efficient Recovery System for
Spatial Main Memory DBMS, Journal of the Korea Spatial
Information Society, Vol 8 No. 03, pp. 1-14, 2006.12

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.183 Volume 15, 2021

E-ISSN: 1998-4464 1700

[12] E. M. Song, Y. K., Kim and C. H., Ryu "No-Log Recovery
Mechanism Using Stable Memory for Real-Time Main
Memory Database Systems", RTCSA'99, IEEE CS, Dec
1999, pp. 428-431.

[13] S.W. Byun, M. H. Hur, “An index management using
CHC-cluster for flash memory databases”, Journal of
Systems and Software, 82(5), 2009, pp.825-835.

[14] E. J. Lee, M. S. Jeong, H. K. Bahn. “NVM-based Write
Amplification Reduction to Avoid Performance
Fluctuation of Flash Storage”, The Journal of The Institute
of Internet, Broadcasting and Communication, 16(4), 2016,
pp.15-20.

[15] Log-structured file system, https://en.wikipedia.org/wiki
/Log-structured_file_system

[16] Journaling Flash File System version 2, https://
en.wikipedia.org/wiki/JFFS2

[17] CSIM,https://www.csim.com/overview.html,Introductiont
oCSIMModelingEnvironment.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.183 Volume 15, 2021

E-ISSN: 1998-4464 1701

