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Abstract: We study the steady state behavior of a 

batch arrival single server queue in which the first 

service consisting of two stages with general service 

times 1G and 2G  is compulsory. After completion 

of the two stages of the first essential service, a 

customer has the option of choosing one of the two 

types of additional service with respective general 

service times 1G and 2G . Just after completing 

both stages of first essential service with or without 

one of the two types of additional optional service, 

the server has the choice of taking an optional 

deterministic vacation of fixed (constant) length of 

time. We obtain steady state probability generating 

functions for the queue size for various states of the 

system at a random epoch of time in explicit and 

closed forms. The steady state results of some 

interesting special cases have been derived from the 

main results. 
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I. INTRODUCTION 
Vacation queueing systems with a variety of vacation policies 

have been studies by many authors. Choudhury [1], Doshi [2], 

Gaver [3], Fuhrman [4], Kalita et al [5], Keilson and Servi [7], 

Scholl and Kleinrock [18]), Madan ([8], [10], [12]) and 

Shanthikumar [16], Takagi [19] and Tegham [20] have 

studied queueing systems with server vacations assuming 

various vacation policies including Bernoulli schedules. In the 

same category of work on vacation queues, we mention J. C. 

Ke [6] who studied vacations and breakdown together and 

Rosen and Yechialli [15] who studied multiple vacations and 

Scholl and Kleinrock [17] who named vacations as rest 

periods.  Madan [9], who first studied an M/G/1 queue with 

second optional service without server vacations, Madan, 

Abu-Dayyeah and MF Saleh [11] studied an M/G/1 queue 

with second optional service and Binomial schedule server 

vacations. Recently Madan [13] has studied a batch arrival 

single server queue with generalized Coxian-2 service and 

optional generalized Coxian-2 vacation in which the second 

stage service and the second stage vacation both are optional. 

More recently, Madan [14] has studied an 1//][ GM X queue 

with a single server providing two phases of the first essential 

service followed by optional two phases of the second 

additional service. In addition, the server may take a single 

optional vacation at the epoch when a customer is leaving 

after completing his required service (s). In the present paper 

we study a batch arrival queueing system in which the server 

provides a two stage first essential service followed by one of 

the two types of additional optional service and optional 

deterministic server vacations. Symbolically, we denote our 

system as 𝑀[𝑋]/(𝐸(𝐺1, 𝐺2)/𝑂(
𝐺1

𝐺2
) /𝐷/1 Queue. With 

deterministic vacation.  The mathematical model of our study 

is briefly described by the following underlying assumptions: 

II. THE MATHEMATICAL MODEL 

 Customers arrive at the system in batches of variable 
size in accordance with a compound Poisson process. 
Let dtci ( ...,3,2,1i ) be the first order 
probability that a batch of  i  customers arrives at the 
system during a short interval of time ],( dttt  , 
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where 10  ic , 1
1




i

ic and 0  is the mean 

arrival rate of batches. The arriving batches wait in 
the queue in the order of their arrival. It is further  

 assumed that customers with each batch are pre-
ordered for the purpose of service.  

 
 There is a single server who provides first essential 

service in two stages, (stage 1 service 1G  followed 

by stage 2 service, 2G ) to all customers one by one 

on a first-come, first-served basis. Let )(1 xA j and

)(1 xa j respectively be the distribution function and 

the density function of the service time of phase j of 

the first essential service and let dxxj )(1  be the 

conditional probability  of completion of jth stage of 

first essential service, given that the elapsed time is x 

, so that 

   
)(1

)(
)(

1

1
1

xA

xa
x

j

j

j


              (2.1)    

 
   and, therefore, 
 
    𝑎1𝑗(𝑣) = 𝜇1𝑗(𝑣)𝑒

− ∫ 𝜇1𝑗(𝑥)𝑑𝑥
𝑣

0   ,  2,1j
.
     

                              (2.2) 
           

 After completion of the second stage of the first 

essential service, a customer may choose type 1 or 

type 2 additional service with respective probabilities 

𝛼𝛽1 and 𝛼𝛽2, where 𝛽1 + 𝛽2=1 or else with 

probability 1 may leave the system. Let )(2 vA j

and )(2 va j respectively be the di or else with 

probability distribution function and the density 

function of the jth type additional optional service 

time and let dxxj )(2  be the conditional 

probability  of completion of   jth type  additional 

optional service, given that the elapsed time is x , so 

that 

 

   𝜇2𝑗(𝑥) =
𝑎2𝑗(𝑥)

1−𝐴2𝑗(𝑥)
               (2.3)  

      
   and, therefore, 

    




v

dxx

evva 0

21 )(

22 )()(


    ,   2,1j
. 
 (2.4) 

         
 As soon as the services required by a customer i. e. 

either the two stages of the first essential service or 

the two stages of the first essential service followed 

by one of the two types of additional optional service 

are completed, the server may opt to take a vacation 

with probability p, or else with probability 1-p he may 

continue staying in the system. In queueing literature 

this phenomenon is termed as Bernoulli schedules.  

 

 Whenever the server decides to take a vacation, his 

vacation period is deterministic with constant length 

of vacation period ‘d’.  

 
 On completion of a vacation the server instantly takes 

up a customer (at the head of the queue) for the first 

stage of the first essential service if there are 

customers waiting in the queue. However, if on 

returning the server finds the queue empty, the server 

remains idle until a new batch of customers arrives in 

the system. 

 

 Various stochastic processes involved in the system 
are independent of each other. 

 

III. DEFINITIONS AND NOTATIONS 
We assume 

   

 ),(),1( txW j

n , 2,1j  is the probability that at 
time t, there are n (0) customers in the queue 
excluding  one customer in j  th stage  of first 
essential  service with elapsed service time x. 

Accordingly,  





0

),1()1( ),()(
x

j

n

j

n txWtW  denotes 

the probability that at time t, there are n customers in 
the queue excluding one customer in the j  th stage 
of first essential  service irrespective of the value of 
x.  

 
 ),(),2( txW j

n , 2,1j  is the probability that at 
time t, there are n (0) customers in the queue 
excluding  one customer in j  th type  of additional 
optional  service with elapsed service time x. 
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Accordingly,  





0

),2()2( ),()(
x

j

n

j

n txWtW  denotes 

the probability that at time t, there are n customers in 
the queue excluding one customer in the j  th type  
of additional  optional service irrespective of the 
value of x.   

 
  𝑉𝑛(𝑡) is the probability that at time t, there 

are n (0) customers in the queue and the 
server is on vacation. 

 

 )()()()( ),2(
2

1

),1(
2

1
tVtWtWtP n

j

n

j

j

n

j

n  


 

denote the probability that at time t there 
are n (0) customers in the queue 
irrespective of whether the server is 
providing service or is on vacation.    

 
 Q (t) is the probability that there is no 

customer in the system and the server is idle.  

 We assume that all stochastic processes 

involved in the system are independent of 

each other. 

Now, if the steady state exists, we define the 

following limiting probabilities as the steady state 

probabilities corresponding to the probabilities 

defined above for the various states of the system: 

 

)(),( ),(),( xWtxWLim jk

n

jk

n
t




,   

),(),( )( jk

n

jk

n
t

WtWLim 


,  𝐿𝑖𝑚
𝑡→∞

𝑉𝑛(𝑡) = 𝑉𝑛,     

𝐿𝑖𝑚
𝑡→∞

𝑃𝑛(𝑡) = ∑ 𝐿𝑖𝑚
𝑡→∞

2
𝑗=1 𝑊𝑛

(1,𝑗)
(𝑡) +

∑ 𝐿𝑖𝑚
𝑡→∞

2
𝑗=1 𝑊𝑛

(2,𝑗)
(𝑡) + 𝑉𝑛(𝑡) = 𝑃𝑛,   

2,1j , 2,1k  ,    
𝑳𝒊𝒎
𝒕→∞

 Vn(t) = Vn , 𝑳𝒊𝒎 
𝒕→∞

Q(t) = Q             (3.1) 
             
We further assume that 𝐾𝑟 is the probability of r 

arrivals during the deterministic period of vacation 

and therefore,  

𝑘𝑟 =
𝑒𝑥𝑝(𝜆𝑑)(𝜆𝑑)𝑟

𝑟!
, 𝑟 = 0,1,2,   .  .  . 

                   (3.2) 

 

   

IV.  STEADY STATE EQUATIONS GOVERNING 

THE SYSTEM 

Then following usual probability reasoning based on the 

underlying assumptions of the model, the system has the 

following set of integro-differential-difference forward 

equations: 

  𝑑

𝑑𝑥
𝑊𝑛

(1,1)(𝑥) + (𝜆 + 𝜇11(𝑥))𝑊𝑛
(1,1)(𝑥) =

                             𝜆 ∑ 𝑐𝑖
𝑛
1 𝑊𝑛−𝑖

(1,1)
(𝑥), n1      (4.1) 

  𝑑

𝑑𝑥
𝑊0

(1,1)
(𝑥) + (𝜆 + 𝜇11(𝑥))𝑊0

(1,1)
(𝑥, 𝑡) = 0,                                       

                        (4.2) 
 

𝑑

𝑑𝑥
𝑊𝑛

(1,2)(𝑥) + (𝜆 + 𝜇12(𝑥))𝑊𝑛
(1,2)(𝑥) =

                          𝜆 ∑ 𝑐𝑖
𝑛
1 𝑊𝑛−𝑖

(1,2)
(𝑥), n1       (4.3) 

𝑑

𝑑𝑥
𝑊0

(1,2)
(𝑥) + (𝜆 + 𝜇12(𝑥))𝑊0

(1,2)
(𝑥, 𝑡) = 0 ,                                      

                                       (4.4) 
𝑑

𝑑𝑥
𝑊𝑛

(2,1)(𝑥) + (𝜆 + 𝜇21(𝑥))𝑊𝑛
(2,1)(𝑥) =

                            𝜆 ∑ 𝑐𝑖
𝑛
1 𝑊𝑛−𝑖

(2,1)
(𝑥), n1     (4.5) 

 
  𝑑

𝑑𝑥
𝑊0

(2,1)
(𝑥) + (𝜆 + 𝜇21(𝑥))𝑊0

(2,1)
(𝑥, 𝑡) = 0,                                     

                        (4.6) 
 

𝑑

𝑑𝑥
𝑊𝑛

(2,2)(𝑥) + (𝜆 + 𝜇22(𝑥))𝑊𝑛
(2,2)(𝑥) =

                            𝜆 ∑ 𝑐𝑖
𝑛
1 𝑊𝑛−𝑖

(2,2)
(𝑥), n1      (4.7) 

 
𝑑

𝑑𝑥
𝑊0

(2,2)
(𝑥) + (𝜆 + 𝜇22(𝑥))𝑊0

(2,2)
(𝑥, 𝑡) = 0  (4.8) 

𝑉𝑛 = 𝑝(1 − 𝛼) ∫ 𝑊𝑛
(1,2)(𝑥)𝜇12(𝑥)𝑑𝑥

∞

0
+p 

∫ 𝑊𝑛
(2,1)(𝑥)𝜇21(𝑥)𝑑𝑥

∞

0
                                                     

       +p∫ 𝑊𝑛
(2,2)(𝑥)𝜇22(𝑥)𝑑𝑥

∞

0
,   n0      (4.9) 

 

𝜆𝑄 = 𝑉0𝑘0 + (1 − 𝑝)(1 − 𝛼) ∫ 𝑊0
(1,2)(𝑥)𝜇12(𝑥)𝑑𝑥

∞

0

 

              +(1 − 𝑝) ∫ 𝑊0
(2,1)

(𝑥)
∞

0
𝜇21(𝑥)𝑑𝑥  

             +(1 − 𝑝) ∫ 𝑊0
(2,2)

(𝑥)
∞

0
𝜇22(𝑥)𝑑𝑥         (4.10)         

 

Equations (4.1) through (4.10) are to be solved 
subject to the following boundary conditions: 

 
𝑊𝑛

(1,1)(0)=(1 − 𝑝)(1 − 𝛼) ∫ 𝑊𝑛+1
(1,2)(𝑥)𝜇12(𝑥)𝑑𝑥

∞

0
 

+(1 − 𝑝) ∫ 𝑊𝑛+1
(2,1)

∞

0

(𝑥)𝜇21(𝑥)𝑑𝑥 
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                    +(1 − 𝑝) ∫ 𝑊𝑛+1
(2,2)∞

0
(𝑥)𝜇2,2(𝑥)𝑑𝑥 

                      +(𝑅0𝑘𝑛+1 + 𝑅1𝐾𝑛 + 𝑅2𝐾𝑛−1+   .  .  . 𝐾0) +

                               +𝜆𝑐𝑛+1𝑄,           n 0 ,       (4.11) 





0

11
)1,1()2,1( )(),()0( dxxtxWW nn  , n 0 ,                       

                  (4.12) 
𝑊𝑛

(2,1)(0) = 𝛼𝛽1 ∫ 𝑊𝑛
(1,2)

(𝑥)𝜇12(𝑥)𝑑𝑥
∞

0
, n 0 ,   

                     
(4.13) 
 
𝑊𝑛

(2,2)
(0) = 𝛼𝛽2 ∫ 𝑊𝑛

(1,2)
(𝑥, 𝑡)𝜇12(𝑥)𝑑𝑥

∞

0
, n 0 ,                       

                    (4.14) 
 
 

V. STEADY STATE SOLUTION 
 

We define the following probability generating functions 
(PGFs): 
 
𝑊(𝑘,𝑗)(𝑥, 𝑧) = ∑ 𝑧𝑛𝑊𝑛

𝑘,𝑗∞
𝑛=0 (𝑥),  

𝑊(𝑘,𝑗)(𝑧) = ∑ 𝑧𝑛𝑊𝑛
(𝑘,𝑗)∞

𝑛=0 , k=1,2,   j=1,2,   

𝑉(𝑧) = ∑ 𝑧𝑛𝑉𝑛
∞
𝑛=0  , 

𝑃(𝑧) = ∑ 𝑧𝑛𝑃𝑛
∞
𝑛=0 = ∑ 𝑧𝑛(∑ 𝑊𝑛

(1,𝑗)2
𝑗=1 + ∑ 𝑊𝑛

(2,𝑗)2
𝑗=1 +∞

𝑛=0

𝑉𝑛),   

𝐶(𝑧) = ∑ 𝑧𝑖∞
𝑖=1 𝑐𝑖   , 𝐾(𝑧) = ∑ 𝑧𝑟∞

𝑖=1 𝑘𝑟 , | z | 1 .          

                    (5.1)  

 

Multiplying equation (4.1) by nz , summing over n and 

adding the result to (4.2) and using (5.1) we get    
𝑑

𝑑𝑥
𝑊(1,1)(𝑥, 𝑧) + (𝜆 + 𝜇11(𝑥) − 𝜆𝐶(𝑧))𝑊(1,1)(𝑥, 𝑧) = 0      

                    (5.2) 

Similar operations on (4.3), (4.4); (4.5), (4.6); (4.7), (4.8); 

(4.9), and using (5.1), we get 
𝑑

𝑑𝑥
𝑊(1,2)(𝑥, 𝑧) + (𝜆 + 𝜇12(𝑥) − 𝜆𝐶(𝑧))𝑊(1,2)(𝑥, 𝑧) = 0     

                    (5.3) 
𝑑

𝑑𝑥
𝑊(2,1)(𝑥, 𝑧) + (𝜆 + 𝜇21(𝑥) − 𝜆𝐶(𝑧))𝑊(2,1)(𝑥, 𝑧) = 0    

                    (5.4) 
𝑑

𝑑𝑥
𝑊(2,2)(𝑥, 𝑧) + (𝜆 + 𝜇22(𝑥) − 𝜆𝐶(𝑧))𝑊(2,2)(𝑥, 𝑧) = 0      

                    (5.5) 

V(z)= 𝑝(1 − 𝛼) ∫ 𝑊(1,2)(𝑥, 𝑧)𝜇12(𝑥)𝑑𝑥
∞

0
                                                    

                  +p∫ 𝑊(2,1)(𝑥, 𝑧)𝜇21(𝑥)𝑑𝑥
∞

0
 

     +p∫ 𝑊(2,2)(𝑥, 𝑧)𝜇22(𝑥)𝑑𝑥
∞

0
,    n0   (5.6) 

Next, we perform the similar operations on the boundary 

conditions (4.11), (4.12),  (4.13), and (4.14) and make use of 

equation (4.10). Thus, we get  

𝑧𝑊(1,1)(0, 𝑧) = (1 − 𝑝)(1 − 𝛼) ∫ 𝑊(1,2))(𝑥, 𝑧)𝜇12(𝑥)𝑑𝑥
∞

0

+ (1 − 𝑝) ∫ 𝑊(2,1)
∞

0

(𝑥)𝜇21(𝑥)𝑑𝑥 + (1

− 𝑝) ∫ 𝑊(2,2)
∞

0

(𝑥)𝜇2,2(𝑥)𝑑𝑥 

                               +𝑉(𝑧)𝐾(𝑧) + 𝜆(𝐶(𝑧) − 1)𝑄        
                 (5.7)                                                                         

 
𝑊(1,2)(0, 𝑧) = ∫ 𝑊(1,1)(𝑥, 𝑧)𝜇11(𝑥)𝑑𝑥

∞

0
,          (5.8)  

𝑊(2,1)(0, 𝑧) = 𝛼𝛽1 ∫ 𝑊(1,2)(𝑥, 𝑧)𝜇12(𝑥)𝑑𝑥
∞

0
,   (5.9) 

 
𝑊(2,2)(0, 𝑧) = 𝛼𝛽2 ∫ 𝑊(1,2)(𝑥, 𝑧)𝜇12(𝑥)𝑑𝑥

∞

0
, 

              n 0 ,        (5.10) 
 

Now we integrate equations (5.2) to (5.5) between the limits 
0 and x and obtain 
 

𝑊(1,1)(𝑥, 𝑧) = 𝑊(1,1)(0, 𝑧) 𝑒𝑥𝑝[−(𝜆 − 𝜆𝐶(𝑧))𝑥 −

                                               ∫ 𝜇11(𝑡)𝑑𝑡
𝑥

0
]         (5.11) 

𝑊𝑛
(1,2)(𝑥, 𝑧) = 𝑊(1,2)(0, 𝑧) 𝑒𝑥𝑝[−(𝜆 − 𝜆𝐶(𝑧))𝑥 −

                                               ∫ 𝜇12(𝑡)𝑑𝑡
𝑥

0
]         (5.12) 

𝑊𝑛
(2,1)

(𝑥, 𝑧) = 𝑊(2,1)(0, 𝑧) 𝑒𝑥𝑝[−(𝜆 − 𝜆𝐶(𝑧))𝑥 −

                                                ∫ 𝜇21(𝑡)𝑑𝑡
𝑥

0
]        (5.13) 

𝑊(2,2)(𝑥, 𝑧) = 𝑊(2,2)(0, 𝑧) 𝑒𝑥𝑝[−(𝜆 − 𝜆𝐶(𝑧))𝑥 −

                                                 ∫ 𝜇22(𝑡)𝑑𝑡
𝑥

0
]        (5.14) 

 

Where 𝑊(1,1)(0, 𝑧),𝑊(1,2)(0, 𝑧),𝑊(2,1)(0, 𝑧) and 

𝑊(2,2)(0, 𝑧) are given above in equations (5.7), (5.8) (5.9) 

and (5.10) respectively.  

 

Next, we again integrate equations (5.11) to (5.14) w. r. t. x 
by parts and obtain 
 

𝑊(1,1)(𝑧) = 𝑊(1,1)(0, 𝑧) (
1−�̄�(11)[𝜆−𝜆𝐶(𝑧)]

𝜆−𝜆𝐶(𝑧)
)     (5.15) 

𝑊(1,2)(𝑧) = 𝑊(1,2)(0, 𝑧) (
1−�̄�(12)[𝜆−𝜆𝐶(𝑧)]

𝜆−𝜆𝐶(𝑧)
)     (5.16)  

𝑊(2,1)(𝑧) = 𝑊(2,1)(0, 𝑧) (
1−�̄�(21)[𝜆−𝜆𝐶(𝑧)]

𝜆−𝜆𝐶(𝑧)
)     (5.17) 

𝑊(2,2)(𝑧) = 𝑊(2,2)(0, 𝑧) (
1−�̄�(22)[𝜆−𝜆𝐶(𝑧)]

𝜆−𝜆𝐶(𝑧)
)      (5.18)  
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Where �̄�(1𝑗)[𝜆 − 𝜆𝐶(𝑧)] = ∫ 𝑒−[𝜆−𝜆𝐶(𝑧)]𝑥𝑑𝐴(1𝑗)(𝑥)
∞

0
, 

2,1j  is the Laplace-Stieltjes transform of the jth stage of 

the first essential service time and  �̄�(2𝑗)[𝜆 − 𝜆𝐶(𝑧)] =

∫ 𝑒−[𝜆−𝜆𝐶(𝑧)]𝑥𝑑𝐴(2𝑗)(𝑥)
∞

0
, 2,1j  is the Laplace-Steiltjes 

transform of the jth type of the additional optional service 

time. 

 

Now we shall determine the integrals 

∫ 𝑊(1,1)(𝑥, 𝑧)𝜇11(𝑥)𝑑𝑥
∞

0
, ∫ 𝑊(1,2)(𝑥, 𝑧)𝜇12(𝑥)𝑑𝑥

∞

0
, 

∫ 𝑊(2,1)(𝑥, 𝑧)𝜇21(𝑥)𝑑𝑥
∞

0
 and ∫ 𝑊(2,2)(𝑥, 𝑧)𝜇22(𝑥)𝑑𝑥

∞

0
  

apperaing in the right sides of equations (5.7) to (5.10). For 

this purpose, we multiply equations (5.11) to (5.14) by 

𝜇11(𝑥), )(12 x , 𝜇21(𝑥) and )(22 x respectively and 

integrate each w. r. t. x. Thus, we obtain 

 

∫ 𝑊(1,1)(𝑥, 𝑧)𝜇1(𝑥)𝑑𝑥
∞

0
= 𝑊(1,1)(0, 𝑧)�̄�(11)[𝜆 − 𝜆𝐶(𝑧)]   

                    (5.19) 

∫ 𝑊(1,2)(𝑥, 𝑧)𝜇12(𝑥)𝑑𝑥
∞

0
= 𝑊(1,2)(0, 𝑧)�̄�(12)[𝜆 − 𝜆𝐶(𝑧)]   

                    (5.20) 

∫ 𝑊(2,1)(𝑥, 𝑧)𝜇21(𝑥)𝑑𝑥
∞

0
= 𝑊(2,1)(0, 𝑧)�̄�(21)[𝜆 − 𝜆𝐶(𝑧)]   

                    (5.21) 

∫ 𝑊(2,2)(𝑥, 𝑧)𝜇22(𝑥)𝑑𝑥
∞

0
= 𝑊(2,2)(0, 𝑧)�̄�(22)[𝜆 − 𝜆𝐶(𝑧)]   

                    (5.22) 

 
Utilizing the results from (5.19) to (5.22) into equation (5.6) 
and simplifying, we obtain 
 

𝑉(𝑧) = (

 𝑝(1 − 𝛼 )�̄�(11)[𝑏]�̄�(12)[𝑏]

+𝑝𝛼𝛽1�̄�(11)[𝑏]�̄�(12)[𝑏]�̄�(21)[𝑏]

+𝑝𝛼𝛽2�̄�(11)[𝑏]�̄�(12)[𝑏]�̄�(22)[𝑏] 

) 𝑊(11)(0, 𝑧)  

                    (5.23) 
 
Again using (5.19) to (5.23) into equation (5.7) to (5.10), we 
get 
 
𝑊(1,1)(0, 𝑧) =

𝜆(𝐶(𝑧)−1)𝑄

𝐷,𝑧)
               (5.24) 

 

𝑊(1,2)(0, 𝑧) =
𝜆�̄�(11)(𝑏)(𝐶(𝑧)−1)𝑄

𝐷,𝑧)
          (5.25) 

 

𝑊(2,1)(0, 𝑧) =
𝜆𝛼𝛽1�̄�(11)(𝑏)(𝐶(𝑧)−1)𝑄𝑄

𝐷(𝑧)
           (5.26) 

 

𝑊(2,2)(0, 𝑧) =
𝜆𝛼𝛽2�̄�(11)(𝑏)(𝐶(𝑧)−1)𝑄

𝐷(𝑧)
        (5.27) 

 
 

Where  
 

D(z)= 

𝑧 − (1 − 𝑝)(1 − 𝛼)�̄�(11)[𝑏]�̄�(12)[𝑏]

−(1 − 𝑝)𝛼𝛽1�̄�(11)[𝑏]�̄�(12)[𝑏]𝐴̄ (21)[𝑏]

−(1 − 𝑝)𝛼𝛽2𝐴̄ (11)[𝑏]�̄�(12)[𝑏]𝐴̄ (22)[𝑏]

−(

+ 𝑝(1 − 𝛼 )�̄�(11)[𝑏]�̄�(12)[𝑏]

𝑝𝛼𝛽1�̄�(11)[𝑏]�̄�(12)[𝑏]�̄�(21)[𝑏]

+𝑝𝛼𝛽2�̄�(11)[𝑏]�̄�(12)[𝑏]�̄�(22)[𝑏] )𝐾(𝑧)

          

                   (5.28) 
And 𝑏 = 𝜆 − 𝜆𝐶(𝑧). 
. 
Next, we use the results in (5.24) to (5.28) into equations 
(5.15) to (5.18) and in (5.23) and simplify to get 
 
𝑊(1,1)(𝑧) =

(�̄�(11)[𝑏]−1) 𝑄

𝐷(𝑧)
            (5.29)  

𝑊(1,2)(𝑧) =
�̄�(11)(𝑏)(�̄�(12)[𝑏]−1)𝑄(�̄�(11)[𝑏]−1) 𝑄

𝐷(𝑧)
      

                   (5.30) 

𝑊(2,1)(𝑧) =
𝛼𝛽1�̄�(11)(𝑏)(�̄�(21)[𝑏]−1)𝑄

𝐷(𝑧)
     (5.31) 

𝑊(2,2)(𝑧) =
𝛼𝛽2�̄�(11)(𝑏)(�̄�(22)[𝑏]−1)𝑄

𝐷(𝑧)
     (5.32) 

𝑉(𝑧) =

(

 𝑝(1−𝛼 )�̄�(11)[𝑏]�̄�(12)[𝑏]

+𝑝𝛼𝛽1�̄�(11)[𝑏]�̄�(12)[𝑏]�̄�(21)[𝑏]

+𝑝𝛼𝛽2�̄�(11)[𝑏]�̄�(12)[𝑏]�̄�(22)[𝑏] 

)𝜆(𝐶(𝑧)−1)𝑄

𝐷(𝑧)
     

                   (5.33) 
Where D(z) is given by (5.28) 
 
Now, we find below the steady state probabilities for various 
states of the system at a random epoch.  
  

We find the limiting probabilities at z=1 as follows: 

 

𝑊(1,1)(1) = lim
𝑧→1

𝑊(1,1)(𝑧)==𝜆 𝐸(𝐼)𝐸(𝑆11) 𝑄

𝐷(1)
        

                   (5.34) 

Where 

D(1)= 

1 − (1 − 𝑝)(1 − 𝛼)𝜆 𝐸(𝐼)(𝐸(𝑆11) + 𝐸(𝑆12)))

−(1 − 𝑝)𝛼𝛽1𝜆 𝐸(𝐼)(𝐸(𝑆11) + 𝐸(𝑆12)) + 𝐸(𝑆21))

−(1 − 𝑝)𝛼𝛽2𝜆 𝐸(𝐼)(𝐸(𝑆11 + 𝐸(𝑆12)) + 𝐸(𝑆22))

−   (

+ 𝑝(1 − 𝛼 )𝜆 𝐸(𝐼)(𝐸(𝑆11 + 𝐸(𝑆12)))

𝑝𝛼𝛽1 𝜆 𝐸(𝐼)(𝐸(𝑆11 + 𝐸(𝑆12)) + 𝐸(𝑆21))

+𝑝𝛼𝛽2𝜆 𝐸(𝐼)(𝐸(𝑆11) + 𝐸(𝑆12)) + 𝐸(𝑆22) − 𝑑)

 

 
Note that E(I) is the average batch size of arrivals, 𝐸(𝑆1𝑗) 

j=1,2 is the mean time of jth stage of the first essential service 

and, 𝐸(𝑆2𝑗) j=1,2 is the mean time of the jth type of additional 

optional service.  
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Also note that (5.34) gives the steady state probability that the 

server is providing the first stage of the first essential service 

at a random epoch. 

Next,  

𝑊(1,2)(1) = lim
𝑧→1

𝑊(1,2)(𝑧)==𝜆 𝐸(𝐼)𝐸(𝑆12) 𝑄

𝐷(1)
          

                  (5.35) 

This is the steady state probability that the server is 

providing the second stage of the first essential service at a 

random epoch. 

𝑊(2,1)(1) = lim
𝑧→1

𝑊(2,1)(𝑧)==𝛼𝛽1𝜆 𝐸(𝐼)𝐸(𝑆21) 𝑄

𝐷(1)
       

                    (5.36) 

This gives the steady state probability that the 

server is providing the first stage of the additional 

optional service at a random epoch. 
 

𝑊(2,2)(1) = lim
𝑧→1

𝑊(2,2)(𝑧)==𝛼𝛽2𝜆 𝐸(𝐼)𝐸(𝑆22) 𝑄

𝐷(1)
       

                    (5.37) 

This is the steady state probability that the server 

is providing the second type of of the additional 

optional service at a random epoch. 
 

𝑉(1) = lim
𝑧→1

 𝑉(𝑧)==( 𝑝(1−𝛼 )+𝑝𝛼𝛽1+𝑝𝛼𝛽2 )𝜆 𝐸(𝐼)𝑄

𝐷(1)
     

                    (5.38) 

This is the steady state probability that the server 

is on vacation at a random epoch. 

 
Using the results (5.34) to (5.38) into the normalizing equation 

𝑃(1) = 𝑊(1,𝑖)(1) + 𝑊(1,2) + 𝑊(2,1) + 𝑊(2,2) + 𝑉(1) = 1   

                            (5.39) 

 we can find the unknown probability Q and hence all PGFs 

found above in (5.28) to (5.32) can be explicitly determined. 

 

VI. CONCLUSIONS 
In this paper, we study a new model of a queueing system 

which provides two stage first essential service followed by 

one of the two types of additional optional service. Further, 

the server has the option to take a vacation of constant length.  

as it happens in some organizations who offer a fixed length 

break, i. e. a lunch break to its employees. We obtain 

theoretical solution in terms of steady state probability 

generating functions as well as probabilities of all possible 

states of the system. The results are new, meaningful and 

significant and they add a new value to the literature of the 

theory of queues. 
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