

Abstract— Map-Reduce is a programming model and an

associated implementation for processing and generating

large data sets. This model has a single point of failure: the

master, who coordinates the work in a cluster. On the

contrary, wireless sensor networks (WSNs) are distributed

systems that scale and feature large numbers of small,

computationally limited, low-power, unreliable nodes. In

this article, we provide a top-down approach explaining the

architecture, implementation and rationale of a distributed

fault-tolerant IoT middleware. Specifically, this

middleware consists of multiple mini-computing devices

(Raspberry Pi) connected in a WSN which implement the

Map-Reduce algorithm. First, we explain the tools used to

develop this system. Second, we focus on the Map-Reduce

algorithm implemented to overcome common network

connectivity issues, as well as to enhance operation

availability and reliability. Lastly, we provide benchmarks

for our middleware as a crowd tracking application for a

preserved building in Greece (i.e., M. Hatzidakis’

residence). The results of this study show that IoT

middleware with low-power and low-cost components are

viable solutions for medium-sized cloud computing

distributed and parallel computing centres. Potential uses

of this middleware apply for monitoring buildings and

indoor structures, in addition to crowd tracking to prevent

the spread of COVID-19.

Keywords— middleware, covid-19, Internet of things

(IoT), Map-Reduce, wireless sensor networks (WSN),

distributed fault-tolerant sensing system, crowd

monitoring, crowd tracking, crowd evacuation, preserved

building middleware, cultural buildings middleware.

I. INTRODUCTION
CIENTISTS and experts have focused their efforts on
advancing traditional computing infrastructure and

techniques via the use of “Industry 4.0”. More specifically, this
term is used to describe the fourth industrial revolution, which
involved breakthroughs in manufacturing, artificial
intelligence, machine learning, and data science in general. In
between our era and the future is the so-called “Internet of
Things (IoT)”, i.e., the development of interconnected devices
capable of communicating and processing information typically
arising from sensory networks [1].

On the one hand, recent developments in low-cost sensor
technologies enabled the use of crowdsourcing techniques and
IoT for the collection and management of measurements with
wide spatiotemporal coverage. An increasing number of
applications in the fields of embedded computing [2], education
[3], wildlife [4], environment [5], network monitoring [6],
business analytics [7], robotics [8], smart sensing [9], etc. rely
increasingly on sensor networks. Because of the limited
capabilities of sensor devices, computation often needs to be
outsourced to a powerful computing infrastructure. IoT offers a
common infrastructure which sensors can use to forward their
data to more capable computing devices for analysis,
aggregation, and storage, using standardized protocols such as
6LoWPAN [10] over IPv6 [11] or LoRaWAN [12]. These
protocols are important serving as a communication tool for
large data streams that are generated from sensor devices. This
data is often severely limited by the available bandwidth and
latency of communication protocols in low-power and wide-
area networks, such as NB-IOT [13], making in-network
processing necessary.

On the other hand, the large amount of data generated by
sensors requires simple computations to be distributed across

IoT Cloud Computing Middleware for crowd
monitoring and evacuation

Alexandros Gazis1, *, Eleftheria Katsiri1,2

1Democritus University of Thrace, Department of Electrical and Computer Engineering, Xanthi,
67100, Greece

2 Institute for the Management of Information Systems, Athena Research & Innovation Center in
Information Communication & Knowledge Technologies, Marousi, 15125, Greece

*agazis@ee.duth.gr, ekatsiri@ee.duth.gr

 Received: June 8, 2021. Received: November 28, 2021. Accepted: December 9, 2021. Published: December 23, 2021.

S

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1790

mailto:agazis@ee.duth.gr
mailto:ekatsiri@ee.duth.gr

hundreds or thousands of nodes in a reasonable amount of time.
The main issues we faced where how to parallelize the
computation, distribute the data, and handle failures. To deal
with the ever-increasing volume of high-data information,
Map-Reduce was introduced.

Map-Reduce was originally developed by Google, based on
parallel and distributed processing principles via Apache’s
Hadoop open-source project. It soon became the de facto
solution for big data applications. Map-Reduce aims to
facilitate data parallelization, load balancing, and data
distribution through flexible, simple, and scalable processing. It
can process both structured and unstructured data, while its
characterized by its fault tolerance capabilities, because tasks
leading to failed nodes must be restarted [14]. This model
resembles the Message Passing Interface standard, presented in
the early 1990s, which introduced reduce and scatter operations
[15] and it ensures that applications can process large data sets
via the use of distributed capabilities and data processing [16].

Moreover, Map-Reduce is a thoroughly examined research
subject in regard to cloud computing applications. It became
widely available and used by academics and industry, due to
Hadoop [17] and, more recently, Spark [18]. These open-source
projects provide a complete software platform for making
computations in computer clusters. While both platforms have
similar functionality, they greatly vary in performance [19],
[20], [21], depending on the case scenario (e.g., machine
learning [22], cloud computing [23], or networking [24].
Hadoop excels at batch processing tasks [25], whereas Spark
has a higher performance in real-time data streams [26]. In-fault
detection is typically handled via the “Monitor-Analyse-Plan-
Execute” protocol [27].

In our study, we emphasized on developing a distributed and
parallel processing system to address one of the main
weaknesses of the Hadoop architecture, i.e., how the system
operates in the event of the master’s node failure. To deal with
this problem, the Hadoop framework, uses checkpointing
where, in case of failure, the system’s information is stored in
the remote repository. Afterwards, this information is used to
restore the system to its previous operating status.
Unfortunately, even though this method is highly effective, it
cannot be implemented in the case of sensor networks due to
their characteristics. Analytically, the sensor nodes are typically
low-power and low-cost computing devices that have severe
limitations from SD cards failure, due to the re-writes to
computation resources (either CPU/RAM capabilities or the
risk of increasing the devices’ temperature). As a result,
implementing this solution is a task which demands more
resource-intensive machines thus, increasing the overall cost
during both the day-to-day operation of the systems and future
upgrades in case of virtual scaling of the master or horizontal
scaling of the system.

II. AIMS AND OBJECTIVES
The aim of this article is to provide a top-down approach to

a WSN cloud-based system focusing on its architecture and
applications. Moreover, we present a crowd tracking
middleware application that implements a distributed

algorithm. This application can be used as a tool to monitor the
total number of visitors in indoor structures. Analytically, in the
midst of the COVID-19 pandemic and in an effort to monitor a
potential exposure location or follow COVID-19 positive cases,
this method could be used as a tool to study and measure the
crowd’s density, thus reducing the virus’ spread. Specifically,
most of the existing solutions focus on developing such systems
as evacuation tools [28]), while our work focuses on tracking,
locating and monitoring the total visitor count per room.

The objective of this article, similarly to [29], is to use the
suggested middleware as both a COVID-19 tool and a means to
track the rooms which attract the most interest among the
public. The main advantage of our novice middleware
architecture is that it focuses on providing a cloud computing
solution that is less resource intensive than the tasks in recent
bibliography which mainly rely on image/video analysis [30].
Moreover, our middleware uses low-power and low-cost
components which can effectively handle small to medium
sized data and network load tasks thus making it ideal for rapid
prototyping applications.

The outline of this article is as follows: firstly, we provide a
literature review of the most used distributed principles in
WSN, emphasizing on map-reduce algorithms implementations
in middleware applications. Secondly, we explain the Map-
Reduce algorithm which inspired this current work. Thirdly, we
provide details on the building used as a test case scenario for
this application. Fourthly, we suggest each step of our novel
approach in detail, as well as its architecture for a fault-tolerant
algorithm on distributed computer networks. We also present
said system and provide the database properties and Java
classes used for its development. Lastly, we discuss the results
and benchmarks for the proposed system and algorithm on low
power and low-cost computing devices (i.e. Raspberry Pi), as
well as future works of this publication.

III. RELATED WORK
Before designing and applying our system, we examined

related work regarding middleware. Specifically, for hardware
(sensors or WSNs) and software to interact, there must be a
middle layer responsible for coordinating, triggering, and
orchestrating all necessary services and processes to achieve
optimal functionality. In other words, middleware acts as a
bond that unites various domains, services, or applications into
one single entity to handle a specific task [30].

According to recent studies, most middleware applications
are WSN-centric [31]. This is because WSNs offer a simple,
fast, and reliable network of information which combines
different technologies. This is the reason middleware is
responsible for various tasks, including processing information
from multiple sources, monitoring system connectivity, scaling
system resources, and coordinating computer nodes [32].

In a recent bibliography, middleware-based applications
focus on multimedia [33], intelligent service processing [34],
high performance computing [35], mobile edge computing [36],
fog computing [37], data transmission [38], automotive
industry [39], big data [40], web ontology [41], context-
awareness [42], semantics [43] and service-oriented [44],

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1791

microservice-oriented [45] or software-orientated [46]
architectures. Since middleware is case specific, several studies
have been conducted regarding design and implementation
applications in IoT [47], environmental monitoring [48], and
urban activities [49]. Other examples include home automation
[50], healthcare [51], parking systems [52], sensor systems
[53], farming [54], robotics [55], blockchain [56], urban
pollution [57] and sound monitoring [58], autonomous driving
[59], mobile sensing and social networks [60].

Moreover, widely used technologies in middleware solutions
are message brokers such as RabbitMQ [61], ActiveMQ [62],
ZeroMQ [63], and notably Kafka [64]. While these solutions
vary in performance [65], [66], [67], they are extensively used
as a tool to “glue” together different computer components. In
addition, there are several middleware technologies used in
cloud computing [68], most notably open-source solutions,
such as Berkley’s University OpenWSN [69] and OpenIoT
[70].

Furthermore, we studied Google engineers’ article on Map-
Reduce [71] and we focused on developing a variation of the
word count example presented. The algorithm studied provides
a platform for splitting and processing considerable data sets
simultaneously, thereby providing faster service. This results in
data sets breaking into several tasks and processes to capitalise
on distributed computing [72].

Typical examples of applications using Map-Reduce are
social network applications (counting of words, users, posts, or
reactions) [73], [74], web page ranking and indexing,
geolocation applications [75], [76], financial services
(analytics, risk assessment, investment and trading algorithms)
[77], IoT [78], etc. Specifically, implementing the Map-Reduce
concept for a truly distributed architecture such as a WSN is not
straightforward, as several challenges emerge [79] in the areas
of fault tolerance [80], data distribution [81], load balancing
[82], reliability [83] and energy efficiency [84]. Map-Reduce
and WSN have been used in many scientific fields, such as IoT
[85], structures [86], smart grid [87], climate [88], and big data
processing [89].

Finally, there are many interesting projects that implement
the Map-Reduce paradigm. Hadoop is one of the most widely
used projects, which enables programmers to develop and
execute data-intensive applications for processing data.
Similarly to Hadoop, POSUM uses message-based event
handling for real-time decisions. Based on the system’s
feedback, it uses an architecture of three entities: the data
master, the simulator, and the orchestrator [90]. Furthermore,
other notable distributed Map-reducing projects are Hsim [91],
MRPerf [92], MRSG [93], and Yarnsim [94].

IV. BACKGROUND AND METHODS
This section presents the main components of the Map-

Reduce algorithm paradigm and provides a detailed explanation
of the existing algorithm. Moreover, we review a real case study
used to develop our IoT middleware. Lastly, we review the key
contributions of our new algorithm and how it was implemented
to count the visitors in the indoor structures of a preserved
building (M. Hatzidakis’ residence).

A. Map-Reduce

In the mid-1990s, there were many large operations—mainly
data centres—that upgraded their systems (e.g., to more
resilient and more power-intensive solutions), due to the
advances in hardware components. Specifically, businesses
needed to process a large quantity of data, which were either
“noisy” or sent in different formats and from different sources,
or the sampling rates were too high to analyse.

The first steps were to increase the overall computing power
of their overall clusters (i.e., tightly connected computers that
work together and usually simultaneously for a task). However,
after they reached a certain point, it became obvious that it was
inefficient to use raw computing power to achieve a computing
task, since the key to success was optimising the processes.
Subsequently, among the most important solutions introduced
to address this issue was Map-Reduce.

The operating principle behind Map-Reduce is
straightforward as it consists of two functions, i.e., mapping and
reduction. The first allows values to be denoted using a specific
key, while the second analyses and combines these key-value
pairs into different and smaller pairs.

B. Map-Reduce Algorithm

The Map-Reduce model is used to structure (mapping) and
divide (reduction) a computation task on many computers. It
uses multiple data centres, assigning less power-intensive tasks
to weaker benchmarked computers and ultimately modelling
operations to effectively distribute tasks so as not to waste of
CPU time and usage (clock ticks). This is important because
when a Map-reducing “job” is submitted to a cluster, the code
runs simultaneously in multiple computer devices.

Map-Reduce is also known for Hadoop, its most popular
open-source implementation for computations in clusters. The
Map-Reduce paradigm, as presented in Figure 1, is
characterised by the following steps [95]):

1. Map: reception of input data and mapping them to be
processed.

𝐤𝐞𝐲, 𝐯𝐚𝐥𝐮𝐞 𝐩𝐚𝐢𝐫𝐬𝐟(𝐤𝐞𝐲, 𝐯𝐚𝐥𝐮𝐞𝐬)

2. Shuffle: analysis of the map’s stage data and sorting into a
predetermined output(s).

𝐬𝐡𝐮𝐟𝐟𝐥𝐞 𝐨𝐩𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐠[𝐟(𝐤𝐞𝐲, 𝐯𝐚𝐥𝐮𝐞𝐬)]𝐲𝐢𝐞𝐥𝐝𝐬: 𝐤
 𝒌(𝑮𝒌𝒆𝒚_𝒗𝒂𝒍𝒖𝒆_𝒑𝒂𝒊𝒓)

3. Reduce: reception of the output results, aggregation and
incorporation to a task that compounds of several smaller
inputs of data.

A simple mathematical explanation regarding a Map-Reduce
operation is:

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1792

 Step 1: abstract data as key value pairs1 to a map function
as follows:

(𝒌𝒆𝒚, 𝒗𝒂𝒍𝒖𝒆) = (𝒌𝑨, 𝑽𝑨) = (𝒌𝑨𝟏, 𝑽𝑨𝟏)(𝒌𝑨𝟐, 𝑽𝑨𝟐) …

(𝒌𝒆𝒚, 𝒗𝒂𝒍𝒖𝒆) = (𝒌𝑩, 𝑽𝑩) = (𝒌𝑩𝟏, 𝑽𝑩𝟏)(𝒌𝑩𝟐, 𝑽𝑩𝟐) …

.

.

.

(𝒌𝒆𝒚, 𝒗𝒂𝒍𝒖𝒆) = (𝒌𝑵, 𝑽𝑵) = (𝒌𝑵𝟏, 𝑽𝑵𝟏)(𝒌𝑵𝟐, 𝑽𝑵𝟐) …

 Step 2: sort/group the function output as follows:

(𝒌𝑨𝟏, 𝑽𝑨𝟏)(𝒌𝑨𝟐, 𝑽𝑨𝟐) … → 𝒌(𝑽𝑨, 𝑽𝑩) = 𝒌𝑵𝑽𝑵

 Step 3: reduce a set of data points with the same key pairs
into a new single value.

Fig. (1). Map-Reduce execution overview.

Furthermore, regarding steps 2 and 3, i.e., where processes are
grouped and divided into multiple partitions (e.g., nodes, mini-
computers, clusters) [96], the mathematical equations for the
frequencies of the keys are the following:

𝑫𝒂𝒕𝒂𝐋𝐨𝐜𝐚𝐥𝐢𝐭𝐲𝐦𝐢𝐧
=

∑ 𝑴𝒊𝒏𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒌𝑵)
𝛋
𝐧=𝟏

∑ 𝐅𝐊𝐣
𝐧𝛋

𝐧=𝟏

=
∑ 𝐦𝐢𝐧𝟏≤𝐣≤𝐧𝐅𝐊𝒏

𝐣𝛋
𝐧=𝟏

∑ 𝐅𝐊𝐣
𝐧𝛋

𝐧=𝟏

𝑫𝒂𝒕𝒂𝐋𝐨𝐜𝐚𝐥𝐢𝐭𝐲𝐦𝐚𝐱
=

∑ 𝑴𝒂𝒙𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒌𝑵)
𝛋
𝐧=𝟏

∑ 𝐅𝐊𝐣
𝐧𝛋

𝐧=𝟏

=
∑ 𝐦𝐚𝐱𝟏≤𝐣≤𝐧𝐅𝐊𝒏

𝐣𝛋
𝐧=𝟏

∑ 𝐅𝐊𝐣
𝐧𝛋

𝐧=𝟏

Lastly, regarding the complexity of Map-Reduce Algorithm,
this topic is hard to define, as it depends heavily on many
factors, including the hardware, the network, the variation of
the algorithm’s execution, in addition to the total size, time and
memory allocation of the proposed system.

1 The key value pairs are immutable objects, meaning their value cannot

change in any point.

C. Case Study: Hatzidaki’s House

We implemented our application in a preserved building in
the city of Xanthi, Greece, as presented in Figure 2. The
building was constructed in 1829, it has a Baroque-style with
neo-classical elements and it is consisted of three floors,
covering 1.317 sq.m. (see details in Figure 3) [97]. Specifically,
the building was the residence of M. Hatzidakis, one of the most
prominent Greek music composers. Due to the status of M.
Hatzidakis, his residence was converted to a cultural centre
after his death where various exhibitions (music, theatre, etc)
are hosted.

Our tests were applied on the first floor of the building which
hosts the majority of events. Moreover, the design principles of
the IoT middleware suggest a novice, effective and reliable
method to monitor visitors’ number and location. Specifically,
after studying both the floor pans presented in Figure 3 and the
scheduled events (prior to COVID-19 movement restrictions),
we used simulated data to test our application and track its
visitors.

Fig. (2). Outside view of M. Hatzidakis’ residence.

Fig. (3). Floor plan of Hatzidakis’ residence for the 1st floor.

D. Description of Map-Reduce use

The algorithm proposed is a variation of the Map-Reduce
paradigm to provide a solution on connectivity issues between
the master (i.e. server) and the workers (i.e. clients). The IoT
architecture described in the following sections provides not
only safety and continuation of operation, but also high

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1793

availability times for the systems. Our application aims at
visitor monitoring and tracking in indoor structures of the
historical building of our study (Figure 2). Specifically, our
rationale is as follows: when visitors buy a ticket to participate
in an event, they will be provided with a radio frequency
identification (RFID) tag, based on their sex. Subsequently,
each room will have several low cost and power devices that
will gather information from said tags. These devices will both
store data locally and remotely, the as well as perform the Map-
Reduce algorithm and provide useful insights regarding each
room and visitors’ interests.

The Map-Reduce algorithm developed was tested on
different operating systems (Unix/Windows) and in a broad
spectrum of computer capabilities. Focus was placed on the
Raspberry Pi, which was the main component used to process
the available information. Specifically, it is a mini-computer
device used extensively in academia and real-life situations to
teach programming. In recent years, it is also used for robotics
and IoT applications. The algorithm proposed was successfully
implemented on a wireless computer network consisting of
several affordable mini computers, such as Raspberry Pi models
3, 3B, and 4.

The system proposed offered the following operations and
subservices: the workers and the master were message-driven
and were simulated with finite-state machines that moved from
one state to the other (Check Status, Check Node Connectivity,
Check Leader, etc.). The communication between master
workers (server-client) was performed via UDP messages, and
the role exchange part was implemented via a remote database
storing the computer devices’ unique ids and network
properties (e.g., IP addresses). Moreover, to overcome Hadoop
constraint of check pointing in case of failure, we have also
developed a simple algorithm that elected a leader during each
software cycle, based on the connectivity status of the
network’s node. Specifically, each server must be able to
connect with at least 60% of the available systems nodes in
order to retain its status as a server; otherwise, another device
(client) is elected as leader (server). Lastly, we achieved similar
results to other word count applications in recent bibliography
such as [98] by implementing Map-Reduce middleware to low-
power and low-cost computer components. Analytically, the
data complexity for a dataset of S size, for N documents, M
words and f1,…fM word frequencies is measured as:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝐾𝑒𝑦 = O(𝑚𝑎𝑥𝑛𝑓𝑛) , ComplexitySequential = O(S)

V. SYSTEM AND ARCHITECTURE
The first step in building our system was to achieve a stable

and continuous connection of each available computer device
to our network. To achieve this, we focused solely on remote
wireless solutions. Concerning the successful connection of
multiple computer devices to a local network, each device must
identify the IP/Physical (MAC) address of each available
device on the network beforehand. The information required for
remote access can be acquired easily through either terminal
emulators or remote desktop software.

During our first test, we used virtual network computing

(VNC) as it was straightforward and provided a simple and
quick way to connect remotely to each of the available PCs with
a graphical interface. Official documentation of Raspberry Pi
—one of the most known series of small single-board
computers—suggests the use of VNC [99]. Our test cases
consisted of microcomputers, such as Raspberry Pi Model 3b-
4-4a and portable computers running Unix operating systems.
More specifically, Raspberry Pis had either Raspbian (the
official Raspberry Pi OS) or New Out Of The Box (NOOBS)
installed and various hardware portable computers that were
dual booted running Windows 10 / Ubuntu 18.4 LTS.

Subsequently, we wanted to reduce the central processing
unit (CPU), the random-access memory (RAM), and generally
benchmark of our application. For this purpose, we switched
from a GUI based solution to a terminal-based application using
secure shell (SSH). The benefit of this choice was that we could
communicate remotely with each PC by typing its credentials
and IP address, thus providing a system-agnostic solution
regarding the operating system.

Initially, we implemented static IP addresses on the computer
systems so that their addresses do not change each time they
connect to the local network. During the first step, we used the
Address Resolution Protocol (ARP) command of Unix system
command-line tools to find IP / MAC addresses. More
specifically, ARP has a list (cache) which is used to acquire IP-
MAC address as well as the type of connection entries
(dynamic/static). This solution was not ideal because it was not
optimal. For example, if we logged in another network or
provided Internet access via another router, many settings
changed.

In the final stage of our experiments, we decided to shift our
focus to an approach that would ping devices connected to our
network to find the IP addresses of our system’s computers. To
achieve that, we decided to use Java’s Socket API application—
protocol that provides full-duplex, bi-directional, real-time
client/server efficient communication between two peers over a
computer network protocol.

A. Local Test Implementation

We locally developed a multithreaded application to test and
construct all necessary components of our system piece by
piece. Our application aims to connect several devices to the
same wireless network. More specifically, the application
requested the following:

 user’s input regarding the number of clients that would
be connected and

 IP and Port number for the server’s first execution.
 The rationale of this system was to start a server capable

of accepting many client connections simultaneously based on
the user’s input. The user would provide all necessary input via
the terminal, such as socket’s information (IP and Port), the
number of clients to be connected, and general settings (e.g.,
generating a Test Data Set for sampling or using an existing
one). A simple execution of this program is the following:

 Step 1: The user starts the server. Accordingly, we execute
the Client class to create our first connection.

 Step 2: The user types information regarding the system,

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1794

such as IP or Port, using an existing dataset or defining the size
of a random data set file generation.

 Step 3: The terminal waits for the user to type the number of
clients to be created (threads) until the user stops the execution.
The IP and port information are not requested as the
application’s server is hosted locally.

 The main issue with the above-mentioned application was
that most of the server properties, e.g., IP, port numbers, etc.
were “hard-coded.” This term is used when there was no
validation check. We provided fixed (pre-set) parameters to
most of our programs during their execution. Additionally, even
though in principle the sockets were created correctly and the
connection of the server client was stable, we had yet to connect
several clients in real-time conditions.

B. Step 1: Server-Client Properties

Αs presented, step 1 has several “hard-coded” parameters,
thus making it difficult to develop a remote application. To
facilitate the progress regarding the necessary properties
requested in Step 1, we executed remotely (via SSH) one of the
following network commands (ARP, ifconfig, ipconfig) to find
the unique IP address needed for execution.

Our middleware automatically gathers this information. The
users need to connect it to the local Wi-Fi or a cellular network
to communicate with the remote database. After booting, the
Raspberry Pi inserts its network properties and a random node
ID number is assigned. During the first execution, the master
server is selected randomly and other nodes are assigned lower
id numbers. The system selects a node’s id to act as a master
and checks the server’s port availability. The port is constant
and does not change throughout system’s execution. Regarding
this decision, for a client to ping all available devices on our
network, it must check port numbers 0 to 65535, which is a slow
process, i.e., more than 15 minutes which is the average time
for a guided tour in our case study. As a result, this decision was
made to ameliorate the execution time.

Afterwards, during execution, if several nodes have the same
id, the master-server node retains its status. Connectivity is
checked periodically for clients and servers alike. If a node
cannot be connected to at least two-thirds of the other nodes in
our system (the total number derives from DB’s data), then it
cannot be considered as a master node. In case no node meets
the connectivity criterion, the system halts its execution by
design.

C. Step 2: Role Exchanging Parameters

After establishing the unique address of each computer
connected to our network, the next step regarding our
application’s flow was to launch the application and handle the
role exchanging between server-client. Initially, the node ID
number was randomly selected, but later on we correlated it
with a connectivity parameter. Specifically, the master node
checks the connectivity with other devices to address the node
ID number. We decided to correlate each IP address with a
specific node number that would be calculated based on each
node’s id connectivity in accordance with the overall system.
During the first execution of the application, this number would

be randomly assigned or the user could select which computer
device will act as a server.

The main issue we came across was how we would configure
the application to send the paired data (IP-Port). The first idea
was to use a text file (e.g., JSON, XML, and YAML) which
would contain all necessary information that would be parsed
dur-ing each flow. The text files are generally small-sized (less
than 100 KB), thus they require neither high bandwidth nor high
volume storage. Additionally, their size means that we could
store the file on each device as well as iterate during each
application rerun (endless mode) to update the file. This idea
was implemented during our beta prototype, but we decided to
store this information in a database for various reasons [100]
(mainly due to the speed of execution and future scalability).

During each execution, our system has two classes: one for
the server (master) and one for workers (clients). After the
initial connection, which defines a server node, the system
stores all computer device information (IP-node ID) locally and
it checks their connectivity. If the server is not fit for operation
due to the connectivity, it connects to DB and sets its node ID
to zero.

D. Step 3: Process and Functionalities

The proposed system consists of several processes that are
distributed evenly across the wireless network we presented
earlier. First, since the master is the single point of failure in the
Hadoop architecture, we have provided fault tolerance
capabilities to our system, as presented in Figure 4. The
following generic operations can be implemented by any
computer connected to our network:

1. Check Workers: The server pings all clients of our
application to validate whether it communicates with
at least two-thirds of the total nodes.

2. Election: If a client satisfies the Check Worker
condition, the system checks the client node ID.

3. Notify Leadership: If the election status is true, then it
notifies clients regarding the new leader candidate.

4. Check Leadership: If the election status is false, it
checks if the current leader is alive. If not, it notifies
clients regarding the new leader candidate.

5. Check Alone: if a new Server is isolated, it re-executes
the parallel WSN’s steps.

Fig. (4). Fault tolerance capabilities of the application.

E. Step 4: Endless Execution

After Step 3, a number is assigned to each PC and we set up

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1795

a timeframe for each node to elect a leader server. More
specifically, we set a time duration of 1 to 2 minutes following
Step 3’s execution for our system to communicate with the
database and, based on the algorithm output number, check the
status of our system.

VI. DATABASE PROPERTIES & JAVA CLASSES USED
In this subsection, we provide information regarding Step 3

of the previous algorithm, i.e., the processes and functionalities
of the proposed system. First, we present the database used to
store the client-server information and the sensors’
measurements. Second, we provide a diagram flow and explain
the logic behind each of the classes used to develop our system.
Additionally, a sequence diagram, a UML diagram, and a class
diagram are presented.

A. Database Information

The remote database selected was MySQL due to its use in
academia and industry. Moreover, during the early stages of the
system’s design, we used Xampp, i.e., an open-source cross-
platform providing the necessary components to host an online
database. Xampp is a software distribution that takes an “all
battery included” approach, providing the Apache web server,
MySQL database (MariaDB) and Php/Perl/Python (as
command-line executables and Apache modules). However,
this solution became obsolete the moment we tested our system
outside our local area network. Initially, we opted for this
solution to quickly test our progress regarding the middleware
components. Specifically, we used the local area network to
host a local network to test the early stages of our application.
Although this allows users to immediately review the necessary
time for computers to connect to the DB, as well as the query
performance and execution, this solution had its disadvantages.
Analytically, in terms of scaling and evaluating the
performance of our DB, we were restricted due to the hardware
capabilities of the server computer. Moreover, since we were
testing our application to a local area network, we were not able
to monitor potential issues in the actual network’s bandwidth.
Lastly, due to the small size network, we were unable to
accurately measure the execution times from committing an
SQL query until it transferred its output to the actual DB of the
cloud provider that would eventually host our remote DB.

Consequently, to develop a cloud solution that would work
in all networks, we decided to implement our database
remotely. There were several cloud providers available but—
since the aim of this article was not to benchmark the database
responsiveness—we decided to use a free, open-source
database provider. Therefore, we used the latest version of the
MySQL Server. The database properties included a MySQL 8.0
server running on the default port 3306 and we connected to the
DB remotely using JDBC. Additionally, to successfully
compile and execute the Java project developed, we added the
MySQL Connector Jar file as provided in Maven’s repository.

Our DB consists of two databases: one stores computer
device properties (IP address and node IDs) and the other stores
samples (sensors’ data) used to monitor the visitors of the
preserved building. The second table consists of 3 fields:

I. Room indicating where the computer device was
placed. Our tests were based on the 1st floor of
Hatzidakis’ residence; thus, only 5 rooms were
simulated.

II. Visitor, who can be a man, a woman, or other species
generated via an RFID tag provided upon entrance.

III. Timestamp providing the exact date and time for each
measurement.

B. Java Classes and Functionality

In this subsection, we provide a brief description of the Java
classes used in our system which are:

 Database Functionality Server Client Db: it
connects to the computer devices’ property db and it
performs select or insert or update operations.

 Database Functionality Sensor Properties Db: it
connects to the sensor measurements db and it can
perform, select or insert operations.

 Get IP for Remote Connection: it finds the local IP
of each machine, pings the other IP address, and
checks the connectivity, i.e., if they are online (or
not).

 Sensor Data Parser: it can generate random data (in
a specific mode) and parse data from an input
file/data stream.

 Map-Reduce: it was implemented to count the
visitors of the museum. The algorithm was initially
developed using structural programming, i.e., arrays
and logic. Afterwards, we selected to store the
room–visitor count with a hashmap to use built-in
Java functionality.

 Connect With Cloud Database: it uses JDBC to
connect to the remote database’s tables.

 Client: it takes an input data stream (e.g., a text file
or values from the database) generated for each room
and executes the Map-Reduce algorithm (either the
initial version using arrays or HashMap) to count the
number of visitors. Additionally, after map-shuffle-
reduce operation, it opens a socket and sends a
message to the server via a UDP packet.

 Server: it acts as a server, i.e., it receives sockets
from clients while similarly executing the Map-
Reduce algorithm locally for its own input data
stream. We used datagram sockets to send responses
and receive UDP packets from clients.

 System Information: it is a generic implementation
of our overall system. Specifically, it connects to the
database via JDBC, gets the local IP address and
checks the client-server table for the specific local
address. If this address is not present, it is added in
the table. When it exists, it checks the node ID and
if said id is greater than the current value, it updates
it. Afterwards, it checks connectivity of the system
(i.e., it pings other addresses provided by the DB).
Lastly, if it is connected to more than two-thirds of
the system’s nodes (i.e., it pings the IP address from
DB and receives a response), it executes client or

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1796

server class based on the node ID.

VII. RESULTS
Our proposed system inputs the data stream provided from

the RFID tags by implementing the Map-Reduce paradigm.
Specifically, the output results are twofold, as presented in
Figures 5 and 6. On the one hand, it counts all visitors of the
residence by identity (man, woman, and other, e.g., dog). On
the other hand, it counts the total number of visitors in each
room. This means that, depending on the need, this system can
be used as a means to count the total number of visitors in a
COVID-19 case to track the virus spread or else, if an infected
person was located in a specific location -room(s)-, it can be
used to track down his/her whereabouts and the number of
visitors s/he came in contact with.

Fig. (5). Flaw diagram of our proposed middleware’s operating
principles.

Fig. (6). Map-Reduce algorithm for case 2: room monitoring
(room 1 to N).

Additionally, to test this scenario, we have selected to use the
preserved building analyzed in the previous section, i.e., M.
Hatzidakis’ residence. Analytically, we have chosen to use low-
cost and low-power devices, such as Raspberry Pi model 3 and
4 consisting of dual and quad-core CPUs and approximately 1
GB of RAM. Our rationale was to place one device in each
room (excluding the WC) thus measuring the passers’ activities
on the floor. Furthermore, after studying Hatzidakis’ residence
(case study), we proposed a sampling rate of a minimum of 17–
20 minutes since 2–5 minutes were adequate for end-to-end
communication. As such, for this timeframe, if we consider a
guided tour of 4000 persons, the execution time of our system
is presented in Figure 7. The results of our test showcased that
our system is capable of handling up to 1500-2000 visitors
before the execution time begins to rapidly increase. Moreover,
Table 1 shows how an input stream of visitors’ RFID tags will
be processed, and Table 2 and 3 provided information regarding
the power consumption and the general benchmarks of our
proposed middleware on a Raspberry Pi model 3b machine.

Fig. (7) Map-Reduce algorithm for room tracking a set of
visitors.

Table 1. Map-Reduce algorithm for room monitoring and
visitor counting application.

$ Total Count: <Room1:100, Room2:37,
Room3:108, Room4:131, Room5:50 >

1: < Man: 31, Woman: 68, Other: 1 >
2: < Man: 11, Woman: 26, Other: 0 >
3: < Man: 43, Woman: 64, Other: 1 >
4: < Man: 53, Woman: 78, Other: 0 >
5: < Man: 44, Woman: 4, Other: 2 >

Table 2. Server-Client communication benchmarks.

 Server Client
CPU [%] 86 53
Memory [MB] 212,6 198,4
Power
Consumption

[A] 0,51
[V] 5,34

Table 3. Benchmarks for an entire software cycle.

Visitors 10 50 100 250 500
CPU
[%] 40,12 44,6 48,20 57,83

71,3

Memory
[MB] 810 830 850 874 970

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1797

Power
Consumption
[A] 0,80 0,80 0,81 0,81 0,83

Lastly, the execution times of our novice algorithm are
illustrated in Figure 8 where, as evident, the cloud tier of our
application illustrates the time between client-server requests.

Fig. (8). Average time (in μsecs) for server-client response for
10 to 1000 requests.

VIII. CONLUSIONS

In this publication we have presented an IoT cloud
computing middleware application that uses WSN data to
monitor the crowd in indoor structures. The application of our
system can be both for tracking the visitor count and the
crowd’s interest on a specific room/location/exhibition and
most importantly as a tool to track visitors and minimize a
virus’ spread (e.g. COVID-19). As evident from above, the
output results of our system consisting of several low power,
size and cost devices such as Raspberry Pi provide a cloud-
based service system that is reliable, even during large number
of visitors and connectivity loads (e.g. 1500 requests).
Moreover, it is notable that even though most of our
experiments consisted of Raspberry Pi version 4, the same
response rate and availability was achieved with version 3B, i.e.
with less recent hardware devices. This is important as it
reduces the overall cost of the system and provides ample
opportunity of easy scaling if needed in the future.

Initially, we were not certain whether setting up Raspberry
Pis was the optimal choice, since these devices are not
manufactured to be continuously executed [101]. During our
tests, we used these electronic devices as a headless
server/client and we concluded that the endless execution mode
is achieved by default. This is the case due to the lack of power
management settings which prevents the machine from
switching to hault (sleep mode).

Additionally, we selected the Java programming language to
develop our application, as it is the de facto enterprise language
of cross-platform systems. Although we only included
Raspberry Pi using Unix systems in our tests, we believe that
similar behaviour can be achieved in Windows-Unix or
Windows-Windows operating systems. Finally, similarly to
most applications executing Map-Reduce algorithms, our
proposed application had high availability and short downtime
between operations.

In future steps, we will focus on expanding the parameters
and setting the leader election algorithms. Specifically, our

work does not currently consider every parameter to elect a
server leader. During our initial execution, an available
computer is elected and it remains the head computer, based on
the connectivity of other nodes. The role exchanging part
(client-server) must be further developed to take network
speeds, node availability, power consumption of devices,
availability of devices, etc. under consideration. The role
exchanging part should also provide the opportunity for a client
for “bully election”, i.e., to stop our proposed algorithm and
state that they can be “fit for server”. Moreover, an interesting
issue is implementing a variation of the Byzantine fault
tolerance algorithm in machine-to-machine communication.

Lastly, if a leader election algorithm is implemented, we
could use modern AI techniques, like Tiny ML to merge Map-
Reduce operations together with the leader election and create
new suggestions for a leader server, based on other crucial
factors of real case scenarios.

ACKNOWLEDGMENT
This article details our recent work, as part of an MSc course

on distributed systems, at the School of Engineering
Department of Democritus University of Thrace, Greece to
apply the parallel programming to WSNs. Lastly, the authors
are grateful to the civil engineer E. Chamalidou for her
assistance in the analysis and the presentation of the floor plans
of M. Hatzidakis’ residence, as presented in this publication

References

[1] Ghosh, J. (2019) ‘5G Services and IoT Challenges’,
International Journal of Sensors, Wireless
Communications and Control, Vol.9 No.4, pp.417-418.
https://doi.org/10.2174/221032790904190917101935

[2] Mansour, K., Saeed, A. (2019) ‘Implementation of a Low-
power Embedded Processor for IoT Applications and
Wearables’, International Journal of Circuits, Systems and
Signal Processing, Vol.13, pp. 625-636.
https://www.naun.org/main/NAUN/circuitssystemssignal/
2019/b722005-ald.pdf

[3] Quaratulain, Q., Basit, I., Bakhsh, K., Hafeez, M. (2021)
‘Adult Learning Theories and their Role in Instructional
Design, Curriculum Development and Educational
Technology’, Wseas Transactions on Environment and

Development, Vol. 17, p.1149-1159.
www.doi.org/10.37394/232015.2021.17.106

[4] Gazis, A., Katsiri, E. (2020) ‘A wireless sensor network for
underground passages: Remote sensing and wildlife
monitoring’, Engineering Reports, Vol.2, No.6, p.e12170.
https://doi.org/10.1002/eng2.12170

[5] Prauzek, M., Konecny, J., Borova, M., Janosova, K.,
Hlavica, J., Musilek, P. (2018) ‘Energy harvesting sources
storage devices and system topologies for environmental
wireless sensor networks: A review’, Sensors, Vol. 18,
No.8, p.2446. https://doi.org/10.3390/s18082446

[6] Wu, B., Yao B., Yang, Y., Zhou, C., Zhu, N. (2021)
‘Interference Suppression and Resource Allocation
Strategies Based on IoT Monitoring’, International
Journal of Circuits, Systems and Signal Processing,
Vol.15, pp. 1005-1014.
https://doi.org/10.46300/9106.2021.15.108

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1798

https://doi.org/10.2174/221032790904190917101935
https://www.naun.org/main/NAUN/circuitssystemssignal/2019/b722005-ald.pdf
https://www.naun.org/main/NAUN/circuitssystemssignal/2019/b722005-ald.pdf
http://www.doi.org/10.37394/232015.2021.17.106
https://doi.org/10.1002/eng2.12170
https://doi.org/10.3390/s18082446
https://doi.org/10.46300/9106.2021.15.108

[7] Gazis, A., Gazi, T. (2021) ‘Big data applications in
industry fields’, OUP ITNOW, Vol.63, No.2, pp.50-51.
https://doi.org/10.1093/itnow/bwab056

[8] Turcu, C., Turcu, C., Gaitan, V. (2012) ‘Integrating robots
into the Internet of Things’, International Journal of
Circuits, Systems and Signal Processing, Vol.6(6), pp.430-
437.
http://www.naun.org/main/NAUN/circuitssystemssignal/1
6-658.pdf

[9] Gazis, A., Katsiri, E. (2021) ‘Smart Home IoT Sensors:
Principles and Applications - A Review of Low-Cost and
Low-Power Solutions’, International Journal on
Engineering Technologies and Informatics, Vol.2(1),
pp.19-23. https://doi.org/10.51626/ijeti.2021.02.00007

[10] Mulligan, G. (2007) ‘The 6LoWPAN architecture’,
Proceedings of the 4th workshop on Embedded networked
sensors, pp.78-82.
 https://doi.org/10.1145/1278972.1278992

[11] Ordabayeva, G.K., Othman, M., Kirgizbayeva, B., Iztaev,
Z.D., Bayegizova, A. (2020) ‘A Systematic Review of
Transition from IPV4 To IPV6’, Proceedings of the
International Conference on Engineering & MIS, pp.1-15.
https://doi.org/10.1145/3410352.3410735

[12] Haxhibeqiri, J., De Poorter, E., Moerman, I., Hoebeke, J.
(2018) ‘A survey of LoRaWAN for IoT: From technology
to application’, Sensor, Vol.18, No.11, p.3995.
https://doi.org/10.3390/s18113995

[13] Sinha, R.S., Wei, Y., Hwang, SH. (2017) ‘A survey on
LPWA technology: LoRa and NB-IoT’, ICT Express,
Vol.3, No.1, pp.14-21.
https://doi.org/10.1016/j.icte.2017.03.004

[14] Lin, J., Dyer, C. (2010) ‘Data-intensive text processing
with MapReduce’, Synthesis Lectures on Human
Language Technologies, Vol.3, No.1, pp.1-77.
https://doi.org/10.2200/S00274ED1V01Y201006HLT007

[15] Clarke, L., Glendinning, I., Hempel, R. (1994) ‘The MPI
message passing interface standard’, Programming
environments for massively parallel distributed systems,
pp.213-218. https://doi.org/10.1007/978-3-0348-8534-
8_21

[16] Maleki, N., Rahmani, A.M., Conti, M. (2019)
‘MapReduce: an infrastructure review and research
insights’, The Journal of Supercomputing, Vol.75, No.10,
pp.6934-7002. https://doi.org/10.1007/s11227-019-02907-
5

[17] Apache Hadoop | Github. Available online:
https://github.com/apache/hadoop (accessed on
22/12/2021)

[18] Apache Spark | Github. Available online:
https://github.com/apache/spark (accessed on 22/12/2021)

[19] Hazarika, A.V., Ram, G.J., Jain, E. (2017) ‘Performance
comparison of Hadoop and spark engine’, Proceedings of

the International Conference on I-SMAC, pp.671-674.
https://doi.org/10.1109/I-SMAC.2017.8058263

[20] Samadi, Y., Zbakh, M., Tadonki, C. (2018) ‘Performance
comparison between Hadoop and Spark frameworks using
HiBench benchmarks’, Concurrency and Computation:
Practice and Experience, Vol.30, No.12, p.e4367.
https://doi.org/10.1002/cpe.4367

[21] Makrani, H.M., Homayoun, H. (2017) ‘Memory
requirements of hadoop spark and MPI based big data
applications on commodity server class architectures’,

Proceedings of the International Symposium on Workload
Characterization, pp.112-113.
https://doi.org/10.1109/IISWC.2017.8167763

[22] Mostafaeipour, A., Jahangard-Rafsanjani, A., Ahmadi, M.,
Arockia-Dhanraj, J. (2020) ‘Investigating the performance
of Hadoop and Spark platforms on machine learning
algorithms’, The Journal of Supercomputing, Vol.77,
pp.1273–1300. https://doi.org/10.1007/s11227-020-
03328-5

[23] Mavridis, I., Karatza, H. (2017) ‘Performance evaluation
of cloud-based log file analysis with Apache Hadoop and
Apache Spark’, Journal of Systems and Software,
Vol.125, pp.133-151.
https://doi.org/10.1016/j.jss.2016.11.037

[24] Glushkova, D., Jovanovic, P., Abelló, A. (2019)
‘Mapreduce performance model for Hadoop 2.x’,
Information systems, Vol. 79, pp.32-43.
https://doi.org/10.1016/j.is.2017.11.006

[25] Verma, A., Mansuri, A.H., Jain, N. (2016) ‘Big data
management processing with Hadoop MapReduce and
spark technology: A comparison’, Proceedings of the
Symposium on Colossal Data Analysis and Networking
(CDAN), pp.1-4.
https://doi.org/10.1109/CDAN.2016.7570891

[26] Aziz, K., Zaidouni, D., Bellafkih, M. (2018) ‘Real-time
data analysis using Spark and Hadoop’, Proceedings of the
International Conference on Optimization and
Applications (ICOA), pp.1-6.
https://doi.org/10.1109/ICOA.2018.8370593

[27] Memishi, B., Ibrahim, S., Pérez, M.S., Antoniu, G. (2016)
‘Fault tolerance in MAPREDUCE: A survey’ Resource
Management for Big Data Platforms, pp.205-240.
https://doi.org/10.1007/978-3-319-44881-7_11

[28] Zhou, M., Dong, H., Ioannou, P.A., Zhao, Y., Wang, F.Y.
(2019) ‘Guided crowd evacuation: approaches and
challenges’, IEEE/CAA Journal of Automatica Sinica,
Vol.3, No.6(5), pp.1081-1094.
https://doi.org/10.1109/JAS.2019.1911672

[29] Ding, X., He, F., Lin, Z., Wang, Y., Guo, H., Huang, Y.
(2020) ‘Crowd density estimation using fusion of multi-
layer features’, IEEE Transactions on Intelligent
Transportation Systems, pp.66-71.
https://doi.org/10.1109/TITS.2020.2983475

[30] Mishra, L., Varma, S. (2021) ‘Middleware Technologies
for Smart Wireless Sensor Networks towards Internet of
Things: A Comparative Review’, Wireless Personal
Communications, Vol.116, No.3, pp.1539-1574.
https://doi.org/10.1007/s11277-020-07748-7

[31] Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Clarke,
S. (2016) ‘Middleware for internet of things: a survey’,
IEEE Internet Things Journal, Vol.3, pp.70–95.
https://doi.org/10.1109/JIOT.2015.2498900

[32] Pradeep, P., Krishnamoorthy, S., Vasilakos, A.V. (2021)
‘A holistic approach to a context-aware IoT ecosystem
with Adaptive Ubiquitous Middleware’, Pervasive and
Mobile Computing, Vol.72, pp.101342.
https://doi.org/10.1016/j.pmcj.2021.101342

[33] Pereira, D.M., Silva, F.J., Salles, C.S.N., Santos, D.V.,
Coutinho, L.R., Guedes, A.L. (2021) ‘An ontology-based
approach to integrate TV and IoT middlewares’,
Multimedia Tools and Applications, Vol.80, No.2,

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1799

https://doi.org/10.1093/itnow/bwab056
http://www.naun.org/main/NAUN/circuitssystemssignal/16-658.pdf
http://www.naun.org/main/NAUN/circuitssystemssignal/16-658.pdf
https://doi.org/10.51626/ijeti.2021.02.00007
https://doi.org/10.1145/1278972.1278992
https://doi.org/10.1145/3410352.3410735
https://doi.org/10.3390/s18113995
https://doi.org/10.1016/j.icte.2017.03.004
https://doi.org/10.2200/S00274ED1V01Y201006HLT007
https://doi.org/10.1007/978-3-0348-8534-8_21
https://doi.org/10.1007/978-3-0348-8534-8_21
https://doi.org/10.1007/s11227-019-02907-5
https://doi.org/10.1007/s11227-019-02907-5
https://github.com/apache/hadoop
https://github.com/apache/spark
https://doi.org/10.1109/I-SMAC.2017.8058263
https://doi.org/10.1002/cpe.4367
https://doi.org/10.1109/IISWC.2017.8167763
https://doi.org/10.1007/s11227-020-03328-5
https://doi.org/10.1007/s11227-020-03328-5
https://doi.org/10.1016/j.jss.2016.11.037
https://doi.org/10.1016/j.is.2017.11.006
https://doi.org/10.1109/CDAN.2016.7570891
https://doi.org/10.1109/ICOA.2018.8370593
https://doi.org/10.1007/978-3-319-44881-7_11
https://doi.org/10.1109/JAS.2019.1911672
https://doi.org/10.1109/TITS.2020.2983475
https://doi.org/10.1007/s11277-020-07748-7
https://doi.org/10.1109/JIOT.2015.2498900
https://doi.org/10.1016/j.pmcj.2021.101342

pp.1813-1837. https://doi.org/10.1007/s11042-020-09645-
4

[34] Park J.H. (2020) ‘Intelligent Service and Metadata
Management for Smart IoT Middleware’, International
Journal of Sensors, Wireless Communications and
Control, Vol.10, No.5, pp.763-771.
https://doi.org/10.2174/2210327910999200624123333

[35] Gankevich, I., Gaiduchok, V., Korkhov, V., Degtyarev, A.,
Bogdanov, A. (2017) ‘Middleware for big data processing:
test results’, Physics of Particles and Nuclei Letters,
Vol.14, No.7, pp.1001-1007.
https://doi.org/10.1134/S1547477117070068

[36] Carrega, A., Repetto, M., Gouvas, P., Zafeiropoulos, A.
(2017) ‘A middleware for mobile edge computing’, IEEE
Cloud Computing, Vol.4, No.4, pp. 26-37.
https://doi.org/10.1109/MCC.2017.3791021

[37] Aazam, M., Huh, E.N. (2016) ‘Fog computing: The cloud-
iotVioe middleware paradigm’, IEEE Potentials, Vol.35,
No.3, pp.40-44.
https://doi.org/10.1109/MPOT.2015.2456213

[38] Xu, H., Dharmendra, S. (2007) ‘Effective Middleware for
Efficient XML Data Transmissions on Networks’,
International Journal of Circuits, Systems and Signal
Processing, Vol.1, pp. 189-193.
https://www.naun.org/main/NAUN/circuitssystemssignal/
cssp-33.pdf

[39] Kohani, S., Zong, P., Yang, F. (2021) ‘Design Coverage
Optimization Based on Position of Constellations and Cost
of the Launch Vehicle’, Wseas Transactions on
Environment and Development, Vol.17, pp. 1160-1190.
www.doi.org/10.37394/232015.2021.17.107

[40] Yang, X., Hou, Y., He, H. (2019) ‘A processing-in-
memory architecture programming paradigm for wireless
internet-of-things applications’, Sensors, Vol.19, No.1,
p.140. https://doi.org/10.3390/s19010140

[41] Caballero, V., Valbuena, S., Vernet, D., Zaballos, A.
(2019) ‘Ontology-Defined middleware for internet of
things architectures’, Sensors, Vol.19, No.5, p.1163.
https://doi.org/10.3390/s19051163

[42] Temdee, P., Prasad, R. (2018) ‘Context-Aware
Middleware and Applications’, Context-Aware
Communication and Computing, Applications for Smart
Environment, pp.127-148. https://doi.org/10.1007/978-3-
319-59035-6_6

[43] Lanza, J., Sánchez, L., Gómez, D., Santana, J.R., Sotres, P.
(2019) ‘A Semantic-Enabled Platform for Realizing an
Interoperable Web of Things’, Sensors, Vol.19, No.4,
p.869. https://doi.org/10.3390/s19040869

[44] Mesmoudi, Y., Lamnaour, M., El Khamlichi, Y., Tahiri,
A., Touhafi, A., Braeken, A. (2018) ‘A middleware based
on service oriented architecture for heterogeneity issues
within the internet of things (MSOAH-IoT)’, Journal of
King Saud University-Computer and Information Sciences,
Vol.32, No.10, pp.1108-1116.
https://doi.org/10.1016/j.jksuci.2018.11.011

[45] Li, Z., Seco, D., Sánchez Rodríguez, A.E. (2019)
‘Microservice-oriented platform for internet of big data
analytics: A proof of concept’, Sensors, Vol.19, No.5,
p.1134. https://doi.org/10.3390/s19051134

[46] Asif, S., Webb, P. (2015) ‘Software system integration-
Middleware-an overview’, Foundation of Computer
Science, Vol.121, No.5, pp.27-29.
http://dx.doi.org/10.5120/21538-4547

[47] Bansal, S., Kumar, D. (2020) ‘IoT ecosystem: A survey on
devices gateways operating systems middleware and
communication’, International Journal of Wireless
Information Networks, Vol.27, pp.340-364.
https://doi.org/10.1007/s10776-020-00483-7

[48] Kelly, S.D., Suryadevara, N.K., Mukhopadhyay, S.C.
(2013) ‘Towards the implementation of IoT for
environmental condition monitoring in homes’, IEEE
sensors, Vol.13, No.10, pp.3846-3853.
https://doi.org/10.1109/JSEN.2013.2263379

[49] Aguilar, J., Jerez, M., Mendonça, M., Sánchez, M. (2020)
‘Performance analysis of the ubiquitous and emergent
properties of an autonomic reflective middleware for smart
cities’, Computing, Vol.102, No.10, pp.2199-2228.
https://doi.org/10.1007/s00607-020-00799-5

[50] Vujović, V., Maksimović, M. (2015) ‘Raspberry Pi as a
Sensor Web node for home automation’, Computers &
Electrical Engineering, Vol.44, pp.153-171.
https://doi.org/10.1016/j.compeleceng.2015.01.019

[51] Zahra, S.R., Chishti, M.A. (2020) ‘A collaborative edge-
cloud internet of things based framework for securing the
indian healthcare system’, International Journal of
Sensors, Wireless Communications and Control, Vol.10,
No.4, pp.440-457.
https://doi.org/10.2174/2210327910666191218144157

[52] Ji, Z., Ganchev, I., O'Droma, M., Zhao, L., Zhang, X.
(2014) ‘A cloud-based car parking middleware for IoT-
based smart cities: Design and implementation’, Sensors,
Vol.14, No.12, pp.22372-22393.
https://doi.org/10.3390/s141222372

[53] Babu, K.R., Remesh, Prathap Vishnu, M., Samuel, P.
(2019) ‘Context aware reliable sensor selection in IoT’,
International Journal of Intelligent Systems Technologies
and Applications, Vol.18, No.1-2, pp.34-51.
https://dx.doi.org/10.1504/IJISTA.2019.097746

[54] Symeonaki, E., Arvanitis, K., Piromalis, D. (2020) ‘A
context-aware middleware cloud approach for integrating
precision farming facilities into the IoT toward agriculture
4.0’, Applied Sciences, Vol.10, No.3, p.813.
https://doi.org/10.3390/app10030813

[55] Yin, Y., Zou, C., Sun, J. (2020) ‘Robot communication
system based on OIO middleware’, Proceedings of the
International Conference on Systems Man and
Cybernetics, pp.1937-1942.
https://doi.org/10.1109/SMC42975.2020.9283445

[56] Alam, T. (2020) ‘Design a blockchain-based middleware
layer in the Internet of Things Architecture’, JOIV:
International Journal on Informatics Visualization, Vol.4,
No.1, pp.28-31. http://dx.doi.org/10.30630/joiv.4.1.334

[57] Longo, A. Zappatore, M., De Matteis, A. (2020) ‘An
osmotic computing infrastructure for urban pollution
monitoring’, Software: Practice and Experience, Vol.50,
No.5, pp.533-557. https://doi.org/10.1002/spe.2721

[58] Vidaña-Vila, E., Navarro, J., Borda-Fortuny, C., Stowell,
D., Alsina-Pagès, R.M. (2020) ‘Low-Cost Distributed
Acoustic Sensor Network for Real-Time Urban Sound
Monitoring’, Electronics, Vol.9, No.12, p.2119.
https://doi.org/10.3390/electronics9122119

[59] Jiang, K., Wang, Y., Kou, S., Yang, D. (2020) ‘A
Lightweight and Multi-OS Compatible Middleware
Designed for Autonomous Driving’, Proceedings of the
International Conference of Transportation, pp.544-555.
https://doi.org/10.1061/9780784483053.047

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1800

https://doi.org/10.1007/s11042-020-09645-4
https://doi.org/10.1007/s11042-020-09645-4
https://doi.org/10.2174/2210327910999200624123333
https://doi.org/10.1134/S1547477117070068
https://doi.org/10.1109/MCC.2017.3791021
https://doi.org/10.1109/MPOT.2015.2456213
https://www.naun.org/main/NAUN/circuitssystemssignal/cssp-33.pdf
https://www.naun.org/main/NAUN/circuitssystemssignal/cssp-33.pdf
http://www.doi.org/10.37394/232015.2021.17.107
https://doi.org/10.3390/s19010140
https://doi.org/10.3390/s19051163
https://doi.org/10.1007/978-3-319-59035-6_6
https://doi.org/10.1007/978-3-319-59035-6_6
https://doi.org/10.3390/s19040869
https://doi.org/10.1016/j.jksuci.2018.11.011
https://doi.org/10.3390/s19051134
http://dx.doi.org/10.5120/21538-4547
https://doi.org/10.1007/s10776-020-00483-7
https://doi.org/10.1109/JSEN.2013.2263379
https://doi.org/10.1007/s00607-020-00799-5
https://doi.org/10.1016/j.compeleceng.2015.01.019
https://doi.org/10.2174/2210327910666191218144157
https://doi.org/10.3390/s141222372
https://dx.doi.org/10.1504/IJISTA.2019.097746
https://doi.org/10.3390/app10030813
https://doi.org/10.1109/SMC42975.2020.9283445
http://dx.doi.org/10.30630/joiv.4.1.334
https://doi.org/10.1002/spe.2721
https://doi.org/10.3390/electronics9122119
https://doi.org/10.1061/9780784483053.047

[60] Mehrotra, A., Pejovic, V., Musolesi, M. (2014) ‘SenSocial:
a middleware for integrating online social networks and
mobile sensing data streams’, Proceedings of the
International Middleware Conference, pp.205-216.
https://doi.org/10.1145/2663165.2663331

[61] RabbitMQ | Github. Available online:
https://github.com/rabbitmq (accessed on 22/12/2021)

[62] ActiveMQ | Github. Available online:
https://github.com/apache/activemq (accessed on
22/12/2021)

[63] ZeroMQ | Github. Available online:
https://github.com/zeromq (accessed on 22/12/2021)

[64] Kafka | Github. Available online:
https://github.com/apache/kafka (accessed on 22/12/2021)

[65] Ionescu, V.M.. (2015) ‘The analysis of the performance of
RabbitMQ and ActiveMQ’, RoEduNet Proceedings of the
International Conference-Networking in Education and
Research, pp.132-137.
https://doi.org/10.1109/RoEduNet.2015.7311982

[66] Dobbelaere, P., Esmaili, K.S. (2017) ‘Kafka versus
RabbitMQ: A comparative study of two industry reference
publish/subscribe implementations: Industry Paper’,
Proceedings of the ACM International Conference on
Distributed And Event-Based Systems, pp.227-238.
https://doi.org/10.1145/3093742.3093908

[67] Estrada, N., Astudillo, H. (2015) ‘Comparing scalability of
message queue system: ZeroMQ vs RabbitMQ’,
Proceedings of the Latin American Computing
Conference, pp.1-6.
https://doi.org/10.1109/CLEI.2015.7360036

[68] Farahzadi, A., Shams, P., Rezazadeh, J., Farahbakhsh, R.
(2018) ‘Middleware technologies for cloud of things: a
survey’, Digital Communications and Networks, Vol.4,
No.3, pp.176-188.
https://doi.org/10.1016/j.dcan.2017.04.005

[69] Watteyne, T., Vilajosana, X., Kerkez, B., Chraim, F.,
Weekly, K., Wang, Q., Glaser, S., Pister, K. (2012)
‘OpenWSN: a standards‐ based low‐ power wireless
development environment’, Transactions on Emerging
Telecommunications Technologies, Vol.23, No.5, pp.480-
493. https://doi.org/10.1002/ett.2558

[70] Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M.,
Calbimonte, J.P., Riahi, M., Aberer, K., Jayaraman, P.P.,
Zaslavsky, A., Žarko, I.P., Skorin-Kapov, L. (2015)
‘Openiot: Open source internet-of-things in the cloud’,
Interoperability and open-source solutions for the internet
of things, pp.13-25. https://doi.org/10.1007/978-3-319-
16546-2_3

[71] Dean, J., Ghemawat, S. ‘MapReduce: Simplified data
processing on large clusters’, Google.
https://static.usenix.org/publications/library/proceedings/o
sdi04/tech/full_papers/dean/dean.pdf

[72] Karun, A.K., Chitharanjan, K. (2013) ‘A review on
hadoop—HDFS infrastructure extensions’, Proceedings of
the Conference on Information & Communication
Technologies, pp.132-137.
https://doi.org/10.1109/CICT.2013.6558077

[73] Dean, J., Ghemawat, S. (2008) ‘MapReduce: simplified
data processing on large clusters’, Communications of the
ACM, Vol.51, No.1, pp.107-113.
https://doi.org/10.1145/1327452.1327492

[74] Liu, G., Zhang, M., Yan, F. (2010) ‘Large-scale social
network analysis based on mapreduce’, IEEE Proceedings

of the International Conference on Computational Aspects
of Social Networks, pp.487-490.
https://doi.org/10.1109/CASoN.2010.115

[75] Braun, P., Cuzzocrea, A., Jiang, F., Leung, C.K., Pazdor,
A.G. (2017) ‘MapReduce-based complex big data
analytics over uncertain and imprecise social networks’,
Proceedings of the International Conference on Big Data
Analytics and Knowledge Discover, pp.130-145.
https://doi.org/10.1007/978-3-319-64283-3_10

[76] Aghbari, A.Z., Bahutair, M., Kamel, I. (2019) ‘Geosimmr:
A mapreduce algorithm for detecting communities based
on distance and interest in social networks’, Data Science
Journal, Vol.18, No.1, p.13. http://doi.org/10.5334/dsj-
2019-013

[77] Uygun, Y., Erboy, M.O., Aktas, M.S., Kalipsiz, O.,
Aykurt, I. (2018) ‘Technical Analysis on Financial Time
Series Data Based on Map-Reduce Programming Model:
A Case Study’, International Congress on Big Data Deep
Learning and Fighting Cyber Terrorism (IBIGDELFT),
pp.92-97.
https://doi.org/10.1109/IBIGDELFT.2018.8625357

[78] Bostani, H., Sheikhan, M. (2017) ‘Hybrid of anomaly-
based and specification-based IDS for Internet of Things
using unsupervised OPF based on MapReduce approach’,
Computer Communication, Vol.98: pp.52-71.
https://doi.org/10.1016/j.comcom.2016.12.001

[79] Kobo, H.I., Abu-Mahfouz, A.M., Hancke, G.P. (2015) ‘A
survey on software-defined wireless sensor networks:
Challenges and design requirements’, IEEE access, Vol.5:
pp.1872-1899.
https://doi.org/10.1109/ACCESS.2017.2666200

[80] Mohapatra, H., Rath, A.K. (2020) ‘Fault Tolerance in
WSN Through Uniform Load Distribution Function’,
International Journal of Sensors, Wireless
Communications and Control, Vol.10, No.1, pp.385-394.
https://doi.org/10.2174/2210327910999200525164954

[81] Vazquez-Olguın, M., Shmaliy, Y.S., Ibarra-Manzano, O.,
Marquez-Figueroa, S. (2021) ‘Distributed UFIR Filtering
with Applications to Environmental Monitoring’,
International Journal of Circuits, Systems and Signal
Processing, Vol.5, pp. 349-355.
http://doi.org/10.46300/9106.2021.15.38

[82] Neghabi, A.A., Navimipour, N.J., Hosseinzadeh, M.,
Rezaee, A. (2018) ‘Load balancing mechanisms in the
software defined networks: a systematic and
comprehensive review of the literature’, IEEE Access,
Vol.6, pp.14159-14178.
https://doi.org/10.1109/ACCESS.2018.2805842

[83] Yue, Y.G., He, P. (2018) ‘A comprehensive survey on the
reliability of mobile wireless sensor networks: Taxonomy
challenges and future directions’, Information Fusion,
Vol.44, pp.188-204.
https://doi.org/10.1016/j.inffus.2018.03.005

[84] Guleria, K., Verma, A.K. (2019) ‘Comprehensive review
for energy efficient hierarchical routing protocols on
wireless sensor networks’, Wireless Networks, Vol.25,
No.3, pp.1159-1183. https://doi.org/10.1007/s11276-018-
1696-1

[85] Sasirekha, S.P., Priya, A, Anita, T., Sherubha, P. (2020)
‘Data Processing and Management in IoT and Wireless
Sensor Network’, IOP Journal of Physics: Conference
Series, Vol.1712, No.1, p.012002.
https://doi.org/10.1088/1742-6596/1712/1/012002

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1801

https://doi.org/10.1145/2663165.2663331
https://github.com/rabbitmq
https://github.com/apache/activemq
https://github.com/zeromq
https://github.com/apache/kafka
https://doi.org/10.1109/RoEduNet.2015.7311982
https://doi.org/10.1145/3093742.3093908
https://doi.org/10.1109/CLEI.2015.7360036
https://doi.org/10.1016/j.dcan.2017.04.005
https://doi.org/10.1002/ett.2558
https://doi.org/10.1007/978-3-319-16546-2_3
https://doi.org/10.1007/978-3-319-16546-2_3
https://static.usenix.org/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf
https://static.usenix.org/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf
https://doi.org/10.1109/CICT.2013.6558077
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/CASoN.2010.115
https://doi.org/10.1007/978-3-319-64283-3_10
http://doi.org/10.5334/dsj-2019-013
http://doi.org/10.5334/dsj-2019-013
https://doi.org/10.1109/IBIGDELFT.2018.8625357
https://doi.org/10.1016/j.comcom.2016.12.001
https://doi.org/10.1109/ACCESS.2017.2666200
https://doi.org/10.2174/2210327910999200525164954
http://doi.org/10.46300/9106.2021.15.38
https://doi.org/10.1109/ACCESS.2018.2805842
https://doi.org/10.1016/j.inffus.2018.03.005
https://doi.org/10.1007/s11276-018-1696-1
https://doi.org/10.1007/s11276-018-1696-1
https://doi.org/10.1088/1742-6596/1712/1/012002

[86] Abdulkarem, M., Samsudin, K., Rokhani, F.Z., A., Rasid,
M.F. (2020) ‘Wireless sensor network for structural health
monitoring: A contemporary review of technologies,
challenges, and future direction’, Structural Health
Monitoring, Vol.19, No.3, pp.693-735.
https://doi.org/10.1177%2F1475921719854528

[87] Qureshi, N.M., Siddiqui, I.F., Unar, M.A., Uqaili, M.A.,
Nam, C.S., Shin, D.R., Kim, J., Bashir, A.K., Abbas, A.
(2019) ‘An aggregate mapreduce data block placement
strategy for wireless IoT edge nodes in smart grid’,
Wireless personal communications, Vol.106, No.4,
pp.2225-2236. https://doi.org/10.1007/s11277-018-5936-6

[88] Manogaran, G., Lopez, D., Chilamkurti, N. (2018) ‘In-
Mapper combiner based MapReduce algorithm for
processing of big climate data’, Future Generation
Computer Systems, Vol.86, pp.433-445.
https://doi.org/10.1016/j.future.2018.02.048

[89] Rios, L.G. (2014) ‘Big data infrastructure for analyzing
data generated by wireless sensor networks’, International
Congress on Big Data, pp.816-823.
https://doi.org/10.1109/BigData.Congress.2014.142

[90] Voinea, M.A., Uta, A., Iosup, A. (2018) ‘POSUM: A
Portfolio Scheduler for MapReduce Workloads’,
Proceedings of the International Conference on Big Data,
pp.351-357.
https://doi.org/10.1109/BigData.2018.8622215

[91] Liu, Y., Li, M., Alham, N.K., Hammoud, S. (2013) ‘HSim:
a MapReduce simulator in enabling cloud computing’,
Future Generation Computer Systems,Vol.29, No.1,
pp.300-308. https://doi.org/10.1016/j.future.2011.05.007

[92] Wang, G., Butt, A.R., Pandey, P., Gupta, K. (2009) ‘Using
realistic simulation for performance analysis of mapreduce
setups’, Proceedings of ACM workshop on Large-Scale
system and application performance, pp.19-26.
https://doi.org/10.1145/1552272.1552278

[93] Kolberg, W., Marcos, P.D., Anjos, J.C., Miyazaki, A.K.,
Geyer, C.R., Arantes, L.B. (2013) ‘Mrsg–a mapreduce
simulator over simgrid’, Parallel Computing, Vol.39.
No.4-5, pp.233-244.
https://doi.org/10.1016/j.parco.2013.02.001

[94] Liu, N., Yang, X., Sun, X.H., Jenkins, J., Ross, R. (2015)
‘Yarnsim: Simulating hadoop yarn’, Proceedings of the
IEEE/ACM International Symposium on Cluster Cloud
and Grid Computing, pp.637-646.
https://doi.org/10.1109/CCGrid.2015.61

[95] Talattinis, K., Sidiropoulou, A., Chalkias, K., Stephanides,
G. (2010) ‘Parallel collection of live data using Hadoop’,
Proceedings of the Panhellenic Conference on Informatics,
pp.66-71. https://doi.org/10.1109/PCI.2010.47

[96] Yufei, G., Yanjie, Z., Bing, Z., Lei S., Jiacai Z. (2017)
‘Handling Data Skew in MapReduce Cluster by Using
Partition Tuning’, Journal of Healthcare Engineering,
Article No.1425102, pp.1-12.
https://dx.doi.org/10.1155%2F2017%2F1425102

[97] Gazis, A., Stamatis, K., Katsiri, E. (2018) ‘A Method for
Counting Tracking and Monitoring of Visitors with RFID
sensors’, Proceedings of the Panhellenic Electrical and
Computer Engineering Students Conference (ECESCON),
Vol.10, pp.199-204
http://www.doi.org/10.5281/zenodo.3549417

[98] Goel, A., Munagala, K. (2012) ‘Complexity measures for
map-reduce, and comparison to parallel computing’, arXiv
preprint, pp1-5. https://arxiv.org/abs/1211.6526

[99] Remote access software for desktop and mobile |
RealVNC. Available online: https://www.realvnc.com/en/
(accessed on 22/12/2021)

[100] Gazis, A., Katsiri, E. (2019) ‘Web Frameworks Metrics
and Benchmarks for Data Handling and Visualization’,
Theoretical Computer Science and General Issues Book
Chapter: Algorithmic Aspects of Cloud Computing Lecture
Notes in Computer Science, Vol.1140, pp.137-151
https://doi.org/10.1007/978-3-030-19759-9_9

[101] Vujović, V., Maksimović, M. (2014) ‘Raspberry Pi as a
Wireless Sensor node: Performances and constraints’,
Proceedings of the International Convention on
Information and Communication Technology Electronics
and Microelectronics (MIPRO), pp.1013-1018.
https://doi.org/10.1109/MIPRO.2014.6859717

Creative Commons Attribution License 4.0

(Attribution 4.0 International , CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2021.15.193 Volume 15, 2021

E-ISSN: 1998-4464 1802

https://doi.org/10.1177%2F1475921719854528
https://doi.org/10.1007/s11277-018-5936-6
https://doi.org/10.1016/j.future.2018.02.048
https://doi.org/10.1109/BigData.Congress.2014.142
https://doi.org/10.1109/BigData.2018.8622215
https://doi.org/10.1016/j.future.2011.05.007
https://doi.org/10.1145/1552272.1552278
https://doi.org/10.1016/j.parco.2013.02.001
https://doi.org/10.1109/CCGrid.2015.61
https://doi.org/10.1109/PCI.2010.47
https://dx.doi.org/10.1155%2F2017%2F1425102
http://www.doi.org/10.5281/zenodo.3549417
https://arxiv.org/abs/1211.6526
https://www.realvnc.com/en/
https://doi.org/10.1007/978-3-030-19759-9_9
https://doi.org/10.1109/MIPRO.2014.6859717
https://creativecommons.org/licenses/by/4.0/deed.en_US

