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Possible Approach to Control of Multi-variable
Control Loop by Using Tools for Determining
Optimal Control Pairs

Pavel Navratil and Libor Pekar

Abstract—The paper describes one of possible approaches to
control of multi-variable control loops. In the proposed approach to
control is used the so called RGA (Relative Gain Array) tool and also
RNGA (Relative Normalized Gain Array) tool, further the correction
members, the auxiliary controllers and simple approach to a design of
the primary controllers. The RGA tool and also the RNGA tool serve
to determine the optimal input-output variable pairings in a multi-
variable controlled plant. Correction members are generally
considered for ensuring invariance of control loop. Auxiliary
controllers are considered to ensure at least partial decoupling control
loop. Further, it is considered that the primary controllers are
determined by arbitrary single-variable synthesis method for optimal
input-output variable pairings. Simulation verifications of the
mentioned way of control are carried out for three-variable controlled
plant of a steam turbine.

Keywords—Decoupling control loop, Invariance of control
loop, MIMO control loop, RGA, RNGA, Simulation.

|. INTRODUCTION

ONTROLLED plants with only one output variable

(controlled variable) which are controlled by a one input

variable (manipulated variable, disturbance variable) are
called as SISO (Single-Input Single-Output or single-variable)
controlled plants. But, there are not a little cases where it is
more than one output variable controlled simultaneously by
means of more than one input variable, e.g. aircraft autopilots,
air condition plants, chemical reactors, helicopter, tank
processes, steam boilers, etc. [1], [2]. In these cases, it means
that there is larger numbers of dependent SISO control loops.
These control loops are complex and have multiple
dependencies and multiple interactions between different input
variables (manipulated variables and disturbance variables)
and output variables (controlled variables). These control
loops are known as MIMO (Multi-Input Multi-Output or
multi-variable) control loop and represent a complex of
mutually influencing single-variable control loops [1]. Special
case of the MIMO control loop is SISO control loop [3].
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Multi-variable control methods have received increased
industrial interest [4]. It is often no easy to tell when these
control methods are necessary for improved performance in
practice and when usage of simpler control structures are
sufficient. Therefore, it is useful to know functional limits and
structure of the whole control loop, i.e. a controlled plant, a
controller and separate signals in the control [oop. [2]

Control methods of MIMO controlled plants can be verified
not only by using simulation tools, but also on the laboratory
models. Some MIMO laboratory models have been described
in the literature, e.g. heating plant [5], helicopter model [6],
[7], tank modél [2], [8], etc.

One of possible examples of a MIMO controlled plant is also
steam turbine [9] - [12]. In one of the other part of the paper is
considered three-variable controlled plant of steam turbine [9].
The proposed approach to control of the MIMO controlled plant
uses the RGA tool and aso the RNGA tool to determination
optimal pairsin the MIMO controlled plant. Further this method
of control used the primary controllers, the correction members
and the auxiliary controllers. Parameters of the primary
controllers can be determined via arbitrary SISO synthesis
methods, e.g. [1], [3], [13] - [16]. Correction members ensure an
elimination of influence of disturbance variables on a MIMO
control loop and they are determined from parameters of a
MIMO controlled plant. Auxiliary controllers ensure decoupling
control loop. Mentioned method of control of a MIMO control
loop is considered for a MIMO controlled plant with same
number input signals and output signals.

Simulation experiments were performed, for the chosen
MIMO controlled plant, in MATLAB/ SIMULINK software
[17], [18]. The MATLAB software serves for programming
and technical computing in many areas. The SIMULINK
software is part of the MATLAB environment and serves to
analyzing, modelling and simulation of dynamics systems. It is
possible to use the MATLAB/SIMULINK software for
education and also for research [5], [19], [20].

I1.ANALYSISAND CONTROL DESIGN OF MULTI-VARIABLE
CONTROL Loor

A MIMO controlled plant generaly consists of m input
variables and n output variables. It is generaly a non-square
controlled plant type nxm. It means, there are three possible
cases, i.e. m=n, m>n, m<n. Inthe next part of the paper, it is
mostly considered that controlled plant have a same number of
input variables and output variables, i.e. m= n (square controlled
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plant type nxn). There are severa possible configurations of a
MIMO control loop. The number of possible configurations of a
MIMO control loop for nxn controlled plant isn! (n factoridl).

One of possible approach to analysis and control design of a
MIMO control loop, for a controlled plant in steady state, is
using the so called RGA (Relative Gain Array) tool [21], [22].
The RGA is useful for MIMO controlled plants that can be
decoupled. The other approaches to analysis and control design
of MIMO control loop can be found e.g. in[23] - [25].

A. Description of the Multi-variable Control Loop

It will be generally considered a multi-variable control loop
with measurement of the disturbance variables. The modified
scheme of the control loop is shown in the Fig. 1.
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Fig. 1 Modified scheme of multi-variable control loop with
measurement of disturbance variables

The description of the parameters in the figure is following,
i.e. matrices Gs(S), Gsy(S), Gr(S), Grr(S) and Gyc (S) denote
the transfer function matrices of the controlled plant, the
measurable disturbance variables, the primary controllers, the
auxiliary controllers and the correction members. Signal
Y(s) [nx1] denotes the Laplace transform of the vector of
controlled variables, U(s) [nx1] is the Laplace transform of the
vector of manipulated variables, V(s) [mx1] is the Laplace
transform of the vector of measurable disturbance variables,
W(s) [nx1] is the Laplace transform of the vector of setpoints
and E(s) [nx1] is the Laplace transform of the vector of control
error, where E(s) = W(S) - Y(9).

It is considered that the transfer function matrices of the
controlled plant Gs(s) and the measurable disturbance
variables Ggy (s) are in the following forms, i.e.

Su Se
SZl SZZ

Gs(9) 2)

Snl Sn2
wherei, j =<1, ..., n>and

S\/11 S\/12
S\{Zl S\/.ZZ

SV].r’n

Svom Ysvi (9)

2
vy @

Gy (9)=

N Sij =
S\/n1 S\/n2 S\/nm

wherei =<1, ..,n>j=<1,..,m> m<n.
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Transfer function matrices of the primary controllers Gg (9),
the auxiliary controllers Ggp (S) and the correction members
Gkc (s) are considered in the following forms

R: Ry R,
Ry Ry Ron Ug,(s)
Gr(s)=| . . b Ry=— 3
r(S) C : R E, (9 ©)
Ru Ru Ran
wherei, j =<1, ..., n>and
'RP; RP, RPy,
RRP,, RP. RP, Ugpi(s
GRP (S) — .21 .22 2n , PII — RP,i ( ) (4)
: : Up,;(s)
|RPy RR,; RP,,
wherei, j =<1, ..., n>and
[KC,, KC,, KCim
KC,, KC KC Uyci(s
GKC (S) — : 21 : 22 :2m ' KC” _ \};C,I ( ) (5)
: : : i (s)
| KC,; KC,, KCim

wherei =<1, ..,n>j=<1,..,m> m<n.

Therelations (1) - (5) can be used to build other the transfer
function matrices that occur in the MIMO control loop with
measurement of the disturbance variables (see Fig. 1), i.e. a
closed loop transfer function matrix Gy (S) and a disturbance
transfer function matrix Gyy (S).

Gu® =11 +Go(9(1 +Gr9)Gr(9)] " Gy(9(1 +GlS)'GH(9 (6)
(9 =]l +Gy(8)(1 +Grpl9)"Gr(9)] (G (9-Cs(9G (8] ()

These transfer function matrices can be use at control design
and also for ensuring invariance of the MIMO control loop
and for ensuring decoupling MIMO control loop.

B. Optimal Input-Output Variable Pairings

Transfer function matrix of the controlled plant can be
written in the following form
Y(8)=Gs(9U(9) v U(9) =G5 (9)Y(9) (8)
where U(s) = [U4(S), ..., Un(9)]" and Y(S) = [Yi(9), ..., Ya(9)]
are considered as Laplace transform of n-dimensional vectors
(nx1) of inputs and outputs variables and Gg(s) is considered
as nxn transfer function matrix of the controlled plant.

One of possible tools to the analysis of the interactions
between input variables u; and output variables y; of a MIMO
controlled plant is the so called RGA (Relative Gain Array)
tool. The relative gain technique has not only become a
valuable tool for the selection of input-output pairings, it has
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aso been used to predict the behaviour of controlled
responses [26]. The RGA is a standardized form of the gain
matrix that describes the influence of each input variable on
each output variable.

Each element in the RGA matrix A (9), (10) is defined as
the open control loop gain divided by the gain between the
same two variables when al other loops are under so called
“perfect* control [27]. Element 4; in the RGA matrix A are
depended on frequency. They are usually determined for
frequency equal to zero, i.e. for steady state. From the point of
view of control, for a controlled plant with same number input
and output variables, it is ideal state when values of diagonal
elements of the RGA matrix are approaching to the value of
one and aside-from-diagonal elements of RGA matrix
approaching to the value of zero.

A Aun
A=| i E ®)
I Ann
where
@Y. /aU ;) h1=%n
”:W U =0,k=L..n k%]
(@Y;/oU ), Y =01=L.n A l#i
1
(9Yi/0U )y, =[Gs(9;, (@Y/aU;), _m

Aj is the relative gain for the corresponding variable
pairings, i.e. element of RGA, (dYi/dU)),, is the open
control loop gain with all control loop open, (0Y;i/dU)y, is
the corresponding open control loop gain with all other
control loop closed.

From relations (8) and (9), it follows that the RGA for the
controlled plant G¢(s) can be determined as

A(Gs(9)) =Gs(5)® (Gs ()"

10
A(Gs(0) = G5(0)® (Gs ()T =K &K wo

where
Ay =[Gs(O)]; -[G5* (O] =[K]; -[K™];

s=jo— w=0 — deady date (t — ), ® operator implies an
edement by dement multiplication, i.e. Hadamard or Schur
product, K is the gain matrix of the controlled plant Gs(9), i.e.
Kz[kij]nxn-

In the literature [28] is presented the procedure to calculate
RGA for non-square transfer function matrix by using the
pseudoinverse.

Utilisation of the above mentioned approach serving to the
analysis of interactions between input variables and output
variables of a MIMO controlled plant can be illustrated on an
example of two-variables controlled plant (see Fig. 2a). It is
considered linearized steady state model of the controlled
plant in the following form
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Y1(9) =S1(9U1(S) + S (YU () =-..= Ky U4 (8) + KU 5 (S)

1
Y2(8) =S (U1 (S) + S (U5 (8) =-..= kU4 () + kU o (9) (

1)
where k;; is again of separate elements of the transfer function
matrix of the controlled plant (11), i.e. k; =[Gs(0)]; =S;(0),
U; is Laplace transform of input variable and Y; is Laplace
transform of output variable.

In this case, elements 4; in the RGA matrix A are
determined by the following way, i.e. element A;;

_ (9Y1/9U1)y, - _ ki1 _
b0V KuuKe —Kiky
Kz

k11k22
k11k22 - k12k21

(12)

where numerator and denominator of A;; are determined from
the following relations

U(8) =0:Yy(s) =kyUy(s) = (9Y1/9U1)y,-0

Y,(9=0:U,(9 =~ 2 U9
22
SYy(9) =Ktk mkaka (g - v, u,),
22
hence
(aY1/aU1)U2:0 =kyy
_ kllk22 - kleZl

(aYl/aul)YZ:O = K
22

Other elements A, Ay and Ay are determined via the
following relations

_ (9Y,/0U 2)u,=0 _ kiokoq

? (9Y,/oU 2)v,c0 KioKoy —KigKo
_ (9Y;/0U1)y,-o _ KoKy

“ (9Y,/0 Udyoo  Kioka —Kpgky,

_ (9Y2/0U )y, _ Ky Ko,
22 (aYz /BU 2)Y1:O k11k22 - k12 I(21

(13)

Elements 4; in the RGA matrix A can be determined dso
experimentally, e.g. eement Ay, is possible determined in thisway:
e all control loops, i.e. y;- Uy, Yo - U, are opened and u, =0

(seeFig. 2a)

e only one control loop, i.e. y; - u; is opened, other control
loop(s), i.e. in this case only y, - U, is closed and y, = 0 (see
Fig. 2b - controller R, ensures “perfect: control)

then

/111 _ (ayl/aul)dl—control—loop&open,uzzo (14)

(ayl/ aul)only—one—control—Ioop—open (u—y1), =0

Other elements A;,, 4,1 and Ay, can be determined by using
the following relation
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_ (ay| /auj )dl—control—loop&open, u=0(k#j)

T @y /au;)

(15)

only—one-control—loop-open (u;—y;), ;=0 (I#i)

Fig. 2 Block schemes for a case of the experimental determination of
the parameter 13, for 2x2 controlled plant (11)
a) all control loops are opened, b) only one control loop is opened

There are some important properties and rules to
understanding and analyzing the RGA. Determined values of
the RGA mean following:

o Separate elements 4; are dimensionless and so independent
of units.

e The sum of al the elements 4; of the RGA matrix (9) across
any row, or any column will be equal to one

(16)

This relation can be verified e.g. for 2x2 controlled plant
(11). It means, that it is possible to calculate for 2x2
controlled plant only one element A, eg. only Ay is
calculated and then Ayp=1-A11, Ap1=1-A11, Aos=A11.

So, the relation (16) simplifies calculation of elements 4,
eg. in 2x2 case, only 1 element must be calculate to
determine all elements, in 3x3 case, only 4 elements must
be calculate to determine all elements, etc. The number of
elements (num) necessary to calculate al elements of the
RGA matrix in case nxm can be determined from the
following relations

m,n>1:num=(m-1)(n-1) 17

m=1. num=m-1 n=1:num=m-1 (n

Each row in the RGA represents one output variable y; and

each column in the RGA represents one input variable u.

The interpretation of the determined elements 4; in the

RGA can be classified as follows

> A = 1. This implies that u; influences y; without any
interaction from the other control loop. In this case, the
control pair y;-u; can be idea (however, this may not
always be true - see sensitivity of a triangular matrix of
the controlled plant in [29]).

> i = 0: This means u; has no effect on y;. In this case, the
control pair y; - u; is not recommended.
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> 0 < 4 < 1. This indicates that control pair u;-y; is
influenced by the other control loops.
If 4; < 0.5: Influence of the other control loops is a
greater than influence of the control pair y; - u;.
If A4; > 0.5: Influence of the control pair yi-u; is a
greater than influence of the other control loops.
In this case, it is recommended avoid pairing y; with u;
whenever 4; < 0.5.
> J;j > 1: The positive value of the RGA indicates that the
control pair y;-u; represents dominant control loop.
Others control 1oops have an influence on the control pair
in the opposite direction. The higher the value of 4
means that the more correctional effects of the other
control loops affect the control pair. In this case, it is
recommended avoid pairing y; with u; whenever 4; has
very high value, e.g. 4; > 10.
> i < 0: This means that the control pair y;-u; causes
instability of the control loop. In this case, it is
recommended avoid pairing y; with u;.

Control pairs y;-u; whose input and output variables have
positive RGA elements (4;) and their values are close to one
are considered as the optimal control pairs [23]. If the value of
A fulfils above mentioned general rule the control of control
loop for the control pair y; - u; is possible. For other values, the
control can become difficult because the interaction rate is too
high. According to above mentioned approach, it is possible to
determine the optimal control pairs y;-u; by using RGA tool.
Then it is possible to determine, for the optimal control pairs,
the parameters of the so called primary controllers via classical
SISO synthesis methods [30].

It is considered the RGA matrix for the case 3x3 controlled
plant, i.e.

036 076 —-0.12
A=[-111 022 1.89 (18)
175 002 -0.77

the optimal control pairs are following: y;-Up, Yo-Us, Ya-Us.

The RGA pairing method has also some shortcoming, i.e.
the RGA tool ignores process dynamics. If the transfer
function has very large time delay or time constant relative to
the others (see (22)), steady state the RGA analysis can
provide an incorrect recommendation. In this case, it is then
preferable to use eg. the so caled the RNGA (Relative
Normalized Gain Array) pairing method (see (22)) for
interaction measurement [31].

The RNGA matrix Ay is generally considered in the
following form

(19)
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The RNGA for the controlled plant G4(s) can be determined as
Ay (Gs(9) = (Gs(9) OT, ) ®(Gs(5)OT,) ™
Ay (Gs(0) = (Gs(0OT, ) ®(Gs(0OT,,) ™

=(KOT,)®(KOT,) " =K, ®K'

(20)

where

_ K
Tar jj \Tu“—u‘

;LN,ij :[KN]ij '[Kﬁl]ji ) kN,ij =

whereas, separate elements of the transfer function matrix of
the controlled plant G4s), i.e. Sj(s) are considered in the form

Ky
T;s+1

i S

Si(s)=

s=jw— w=0 — Seady state (t — «), ® indicates element by
element multiplication, © indicates element by element division,
Ky is the normalized gain matrix of the controlled plant, i.e.
Kn=[Knjjlnn K is the gain of separate elements of the transfer
function matrix of the controlled plant G5 (s), Tq isthe matrix of
the average residence time, i.e. Ta =[tarjjln, Tjj is the time
constant of separate elements of the transfer function matrix of
the controlled plant, L;; is the time delay of separate elements of
the transfer function matrix of the controlled plant.

Control pairs y;-u; whose input and output variables have
positive RNGA elements (Ay;;) and their values are close to
one are considered as the optimal control pairs. Large values
RNGA elements (4y;;) are avoided. [31], [32]

The average residence time ., j; can be determined, e.g. for
chosen types of individual elements Sy(s) of the transfer
function matrix of the controlled plant Gs (s), by the following
way, i.e.

Y(9)=Gs(sU(s),  §;(9=[Gs(9)];

1 _ 5 2 (@) — 3(6s+1) _4s
S0 osrnEsr) O Gs+nEsrl)

1 ~ B kij s 5 _7 (21)
Sj (S) - 1Sj,mod(s) - Tijs"'le - (7S+:D - Z-ar,ij -

2 2 _ kii Lis _ 3 —4s _
Sj (S) - Sj,mod(s) - Tijs"'le - (8S+:D Tar,ij =12

The average residence time 7, can be aso determined for
other types of transfer functions Sy(s) (see[1], [16], [31], [33]).

Further, it is considered 2x2 controlled plant with transport
delay, i.e.

Y(s)=Gs(9)U(s)

—3s

e e
i _| 20s+1 s+1 U, (22)
Y2 2 —2s -4 e—4s U2
s+1 20s+1
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The RGA matrixA isin the form

3} {0.7692 0.2308}
4 > A=

0.2308 0.7692
then, the optima control pairs according to RGA tool are
following: yi-u;, Y.-U, However, the aside from diagonal
elements of the controlled plant indicates that y; responds about
twenty times faster to u, than u; because of itstime constant.

The RNGA matrixAy isin the form

K =Gg(0) =E

02174 05 0.0980 0.9020
Ky=KOT, = > A =
0.6667 —0.1667 0.9020 0.0980
where
K_G(O)_5 3 T_23 6
CSY 2 - a3 24

then, the optimal control pairs according to RNGA tool are
following: y;-Us, Yo-U;.

To determination of the stability of the resulting control
structure, i.e. control loop that uses the optimal control pairs,
can be used the Niederlinski index (NI). It is considered nxn
controlled plant, according to (1), (8). Then, the NI value can
be calculated by using following relation (it is considered the
steady state (t — «, s=0)), i.e.

_ det(Gs(0) _ det(K)
s, (0)

NI

- (23)
.H kii
i=1

A negative the NI value indicates instability in the proposed
control loop, i.e. in the resulting control structure.

It is considered 3x3 controlled plant Gs(s) whose a gain
matrix K isfollowing

18 1 1
K=|1 025 1 (24)
1 1 02

The RGA matrixA is determined in the form
9 -4 -4

A=|-4 073 4.27
-4 427 073

the optimal control pairs according to the RGA tool are y;-uy, Yo-Us
and ya-Us. According to the Niederlinsky rule

_ det(K) —0.1875
4.84

NI 0.0387<0

. =
i=1
i.e., chosen control pairs lead to unstable configuration.
In this case, it is possible to change the control pairs, i.e. y;-
Uy, Yo-Us and ys-U,, then
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9 -4 -4
A=|-4 427 073
-4 073 427

which corresponds to

18 1 1
K=l1 1 025
1 025 1

and then value of the NI isfollowing
_ det(K) 0.1875

NI 8 1.80
.l_Ilkii .
i=

=0.1042>0

which indicates that control pairs y;-u;, Y»-Us and ys-U, should
ensure the stability of the control loop.

It is a suitable to consider al the mentioned tools for the
analysis of the optimal control pairs, i.e. the RGA tool, the
RNGA tool and eventually also NI, when final decision is to
be made. Further possible tool, which can be used not only for
the analysis of the interactions in a MIMO controlled plant, is
e.g. SVD (Singular Value Decomposition) tool [34].

C. Invariance of Multi-variable Control Loop and Decoupling
Multi-variable Control Loop

It is often required at synthesis of a SISO or aso a MIMO
control loop, beside stability and quality of control, that
influence of the measurable disturbance variables on
controlled variables was eliminated. Such a MIMO control
loop is called invariant. Control loop at which the influence of
disturbance variables is eliminated only partially, e.g. only in
steady state is called approximately invariant. Control loop at
which the influence of disturbance variables on controlled
variables is completely eliminated is called absolutely
invariant. Other requirement at synthesis of a MIMO control
loop can aso be an elimination of effects of interactions of
control variables in a MIMO control loop, i.e. one desired
variable (setpoint) causes a change of only one corresponding
controlled variable in a MIMO control loop. Such a MIMO
control loop is called decoupled. [1]

In order to ensure invariance of a MIMO control loop
decoupling MIMO control loop a disturbance transfer function
matrix Gy (S) (7) and a closed loop transfer function matrix
Gwy (S) (6) are used.

Absolute invariance of aMIMO control loop can be ensured
if the transfer function matrix Gy (s) (7) is zero. It can be
possibleif the following relation isvalid
Gyc(9) =Gs (9 Gg (9) (25)

Separate elements of the transfer function matrix of correction
members Gyc (9), i.e. KC can be determined as follows

1 n
KCy =———> 'S¢ Sy
L det(Gs) i3 % S/’kj

det(Gg) #0,i=<1...,n>, j=<1...m>ms<n

(26)
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where det(Gg) is a determinant of the transfer function matrix
of the controlled plant Gs(s), Sy are separate members of the
transfer function matrix of disturbance variables Gg, (s) and s
are algebraic supplements of separate elements of the transfer
function matrix of the controlled plant Gs(s).

In case that diagonal members of the transfer function matrix
Gsv(9) and Gs(s) are considered as a dominant, the relation (26)
can be smplified. In this case an influence of the other el ements
of the transfer function matrix Gy, (S) and Gs(s) is omitted at
design of the correction members KC. So that invariance of the
control loop is ensured only for diagonal elements. It is
considered that corresponding number of SISO branched control
loops with measurement of the disturbance variable is used to
determine the correction members KC. Connection of al SISO
branched control loops is the similar and they differ in separate
transfer functions and variables (see Fig. 3). The influence of
separate elements of the transfer function matrix Gg, (s) and
Gs(s) can be verified by using one of possible tools to the
analysis of the interactions between input and output variablesin
a MIMO controlled plant (see paragraph 11.B, i.e. “Optimal
Input-Output Variable Pairings’). Described approach ensures
the so called approximate invariance of control loop. It means
that influence of disturbance variables is generaly eiminated
only partialy. [1]

‘L S/
KC
w e u y

—»(?—»R—P s )

Fig. 3 Single-variable branched control loop with measurement of
disturbance variable

\

A 4

The transfer functions of the correction members KC are
determined by using the following relation

KC, = Svii i=<1,...,n>, S, 20
S, @7
KC; =0 ij=<1,....n>i#]j

where S,;; are separate elements of transfer matrix Ggy (9), S;
are separate elements of transfer function matrix Gs ().

In case that diagonal elements of transfer function matrix
Gsv(s) or Gs(s) have not dominant influence then
corresponding the correction members KC may not ensure the
desired behaviour of a control loop.

A more general relation that ensures approximate invariance
of control loop via dominant diagonal elements transfer
function matrix Ggy (s) or Gs(s) and aso via dominant aside
from diagonal elements transfer function matrix Gsy (S) or
Gs (s) can be written in the following form

_Svi
ij ==
i

KC; =0 for other correction membersKC

KC i,k=<1,..,n> j=<1,...m> m<n

(28)
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where §V,le are separate dominant elements of the transfer

matrix Gsy () in the k-th row, éd are separate dominant
elements of the transfer function matrix Gs () in the k-th row.

One of the above mentioned two approaches, which ensure
invariance of a MIMO control loop, uses to determine the
correction members KC analogy of SISO branched control
loop with measurement of the disturbance variable(s). This
approach can also be used for a reduction of interactions of
separate non-dominant control loops, i.e. a reduction of
influence of non-dominant elements of the transfer function
matrix of controlled plant Gs(s) in the MIMO control loop.
Such the control loop is then called decoupling control loop.
In this case, it is considered that separate non-dominant
elements of the transfer function matrix of the controlled plant
Gs(s) represent measurabl e disturbance variables.

For ensuring decoupling control loop the transfer function
matrix Gwy (S) (6) must be a diagonal. Because the sum and
product of three diagonal matrices are diagona matrices, and the
inverse of diagonal matrix is aso diagona matrix, then the
requirement can be ensured if transfer fiction matrix
Gs(9)-(1+Grp(9) Gr(s) is diagona. Further they are
considered, for separate elements of the transfer function matrix
of the primary controllers Gg(s) (3) and the auxiliary controllers
Gre (9) (4), following conditions:

Diagonal elements of the transfer function matrix of
auxiliary controllers Ggp (9), i.€. RP;;, are equal to 0, thus

RP; =0, i=<1,...,n>

Parameters of separate elements of the transfer function
matrix of the primary controllers Gg(s), i.e. R; are determined
for corresponding dominant elements of the transfer function
meatrix of the controlled plant Gs(s), i.e. S;, thus

Rj#=0  only for dominant elements §;

R;j=0  for other (non-dominant) elements §;

Then, it is possible to determine elements of the transfer
function matrix of the auxiliary controllers Gge (8), i.€. RP;j, in
the following form

S

RP,

ihj.k=<1,...,n> i#]j (29)

where S,; are separate non-dominant elements of the transfer

matrix Gs(s) in the k-th row, §d are separate dominant
elements of the transfer function matrix Gs () in the k-th row.

D.Control Design of Multi-variable Control Loop

One of the possible approaches to control of MIMO control
loops is described in the following part. This approach uses
analysis of the interactions between input variables and output
variables in a MIMO controlled plant (see paragraph 11.B, i.e.
“Optimal  Input-Output Variable Pairings’). The chosen
approach can be generally divided into severa parts, i.e.
determination of parameters of the primary controllers then
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ensuring invariance of control loop and also ensuring at least
partial decoupling control loop, i.e. partial reduction of the
influence of non-dominant elements (the non-optimal control
pairs) of the transfer function matrix of controlled plant Gs (9)
in the MIMO control loop (see paragraph 11.C, i.e. “Invariance
of Multi-variable Control loop and Decoupling Multi-variable
Control Loop”).

The so called primary controllers are designed by any
synthesis methods of the SISO control loop. Parameters of the
primary controllers are determined for the optimal control
pairs in the MIMO controlled plant Gs(s). Optimal control
pairs can be gained by using approaches described in the
paragraph I1.B, i.e. via the RGA toal (9), (10), the RNGA tool
(19), (20), possible also viaNI (23).

Invariance of the MIMO control loop is ensured by means
of elements of the transfer function matrix of the correction
members Gyc(9), i.e. KC (26) or (28) (see paragraph 11.C).
Relation (26) ensures absolute invariance. Relation (28) is
simpler, but it can ensure only approximate invariance.

Decoupling MIMO control loop is ensured by means of the
elements of the transfer function matrix of the auxiliary
controllers Gge (), i.€. RP (29) (see paragraph 11.C).

It is considered the transfer function matrix of the controlled
plant Gs(s) and the transfer function matrix of the measurable
disturbance variables Gg, (s) are in the following form

Gs(s){s‘ll %2}1{4 7'5} (30)

S S,| s*+6s+5[63 22

GSV(S):{SVM 3/12}=1|:2 0.8} (31)
Sz S| s*+6s+5[15 3

and
Y(5)=Gg(8)U(S) + Gy (IV(9)

where Y(9) is the Laplace transform of the vector of controlled
variables, U(s)is the Laplace transform of the vector of
manipulated variables and V(s) [mx1] is the Laplace transform
of the vector of measurable disturbance variables.

The RGA matrix A for transfer function matrix (30) and
(31) isin the following form

-0223 122

3
A(GS(O)){ 1.223 —0.223}

thus the optimal pairs according to the RGA tool are following:
Yi-Up, Yo-Uy, i.e. Sppand S,; (dominant elements). Further

125 - 0.25}

4G/ (O) = [— 025 125

thus the optimal pairs according to the RGA tool are
following: ys-Vi, Yo-Vo, i.€. Sy11 and Syp, (dominant elements).
Primary controllers R; are determined for corresponding
dominant elements of the Gs(9) , i.e. S;; and S;;. It means that
parameters of the primary controllers R;, and R,; are designed
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by arbitrary SISO synthesis method for dominant elements of

the Gs(s) S and Sz (1 — Rz and S — Ry).
The correction members KC are determined via (28), i.e.

KCy = S.Y H KCy, = S! 2 _ Sz

2 2 1 1
KC,; =0, KC,, =0

_Sm =0.5, =1.367

Auxiliary controllers RP are determined by using relation
(29), i.e

RP S22 S22

=2 ~0.349, RP, = 21 = 1 _

1 1 Slz 2
RP, =0, RP, =0

=0.533

I1l. SIMULATION VERIFICATION OF DESCRIBED APPROACH TO
CONTROL OF MULTI-VARIABLE CONTROL LOOP

A. Description of the Three-variable Controlled Plant of the
Condensing Seam Turbine

One of typical examples of MIMO controlled plant ise.g. a
condensing steam turbine [11], [12]. In this case it is
considered the condensing steam turbine with two controlled
withdrawals which drives electric generator supplying
determined part of electric network, which means the turbine
operates without phasing into power network [1], [9]. The
scheme of three-variable controlled plant of the condensing
steam turbine is shown in the Fig. 4 [9].

Ayyr
<

r AMg
VT ST NT |
A
Yot Aynr
Amiy,, Ap, | (g
014& Amlgy, AP,

4_
Fig. 4 Three-variable control plant of condensing steam turbine

Description of separate parameters in the Fig.4 is
following, i.e. Ayyr, Aysr, Aynr are changes of opening
position of control valves of high-pressure (VT), medium-
pressure (ST) and low-pressure part of turbine (NT), AMg is
a change of electric load of turbo-generator and Am’ g3, AmM' ¢,
are changes of mass flows of withdrawn steam, Aw is a
change of angular speed of turbo-generator, Apg;, Apo, are
changes of steam pressures in corresponding withdrawals.

Described parameters represent separate variables in the
modified three-variable control loop with measurement of
disturbance variables (see Fig.1), i.e. manipulated
variables (u;) are parameters Ayyr, Aysr, Aynr and disturbance
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variables (v;)) are parameters AMg, Am'q;, AnT,, controlled
variables (y;) are parameters Aw, Apo;, APgy.

B. Mathematical Model of the Three-variable Controlled
Plant of the Condensing Steam Turbine

Mathematical model of the controlled plant of the condensing
steam turbine is given by three differential equations (32) - (34).
These differential equations were gained already after deriving
and using linearization from project OTROKOVICE, which was
elaborated by the firm ALSTOM Power [9].

The first differential equation represents moment balance
whichisin the following form

518.4Aw = —63.3Aw+ 656.9A py, +4611.7A py, 32)
+1007.3A Y, +200.6AYyg +121.5AY, ¢ —AMg

second and third differential equations represent flow through
flow spaces and they are in the forms

1.865A Py, = —1.610A Py, +0.167A pyy +1.523A Yy 7

(33)
—0.361Ayg —AMy,

13.45A py, = 1.563A py; —10.517A py, +0.361A yg;

(34)
—0.222A Y, —AMg,.

The above mentioned equations (32) - (34) can be rewritten into
better form (35) - (37) by introducing relative values, i.e. with
regard to starting stable state-operational (the calculated point), at
which relation of values can be generdly written in the form

AX
(X)o

Px = — AX =@y - (X) (39)

where separate operational parameters of controlled plant of
the condensing steam turbine in the calculated point are
following

(Wr)o =19.15[mm], (Ygr)o =59.9[mm],
(Ynr)o =69.8[mm], (Mg), =39789[Nm],
(Mo1)o =6.94[kgls], (Mo, ), =6.94[kg/s],
(@), =628.3[rad/s], (Po;)o =14[bar], (Pg)o =1.55[bar]

(36)

hence

325710.72¢,, =-39771.39p,, + 9196.6p, +7148.14¢,

+19289.80¢, +1201594¢, +8480.70p, _ (37)
397899y,
26.110p, =-22.540p, +0.259¢, +29.165p,
1 1 2 38
~21.624¢,_~6.940p,, (39
20.848¢, =21.882¢p, —16.301p, +21624p, )
02 1 2 ST 39

—-15.496¢, —6.940¢,
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The mathematical model of the linearized and modified
controlled plant of the condensing steam turbine (see
equations (37) - (39)) can also be represented in state-space
form, i.e.

o, -01221 0.0282 0.0219 || ¢,
I 0 -08633 00099 || ¢,
@0, 0 104% -07819 || ¢,
[ 0.0592 0.0369 0.0260 Py,
+| 11170 -0.8282 O Py
e 10372 -07433 || ¢,
- 40
-0.1222 0 0 P, (40)
+ 0 -02658 0| @
0 0 -03329 || g,
P 1001} ¢
¢7p01 =010 ¢po1
¢)p02 001 ¢poz

where ¢, ¢, ¢, ae dae vaiables and in this case aso
output variables, ¢, , ¢, , ¢,  ae manipulated variables and
P+ Pty P, A€ MeasUrable disturbance variables.

It is possible to determine, from two above mentioned
equations, i.e. relation (40), the corresponding transfer
function matrix of the controlled plant Gs(s) (43) and transfer
function matrix of measurable disturbance variables
Gsv (9) (44). Further, it is considered, the Laplace transform of
the vector of controlled variablesis generaly given by (41).

Y (9)=Gg(s)U(8) +Gsg, (SV (9) (41)
where Y(9) is the Laplace transform of the vector of controlled
variables, i.e. Y(s)=[®,.®, @, 1", U(9 is the Laplace
transform of the vector of manipulated variables, i.e.
U =[e, .o, @, 1" and V(9 is the Laplace transform

of the vector of measurable disturbance variables, i.e.
_ T
\4 (S) - [®MG ’Qm'm 1¢m'02 ]
thus
?, D, Dy
D, |=Gs(9)| Dy, |+Cs/ ()| Py, (42)
@ Poz QDyNT (pm'oz
where
0.73¢° +1.59s+1.11 0.458° + 0.74s+ 0.087 0.325% + 0.33s+ 0.037
12.38° +21.85° +10.7s+1 12.35° +21.85° +10.7s+1 12.35> + 2185 +10.7s+1
Gu(s)= 1.68s+1.31 -1.255-0.96 -0.011 43
s 151s% +2.48s+1 1.51s% +2.48s+1 151s% +2.48s+1 ( )
1.76 1.56s +0.039 -1.125-0.97
151s% +2.48s+1 1.51s% + 2.48s+1 151s% +2.48s+1
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-151s® -2.48s-1 -0.092s-0.15 —0.090s - 0.079
12.35° +21.85* +10.7s+1 12.35° +21.85* +10.7s+1 12.38° +21.85° +10.7s+1
—0.40s-0.31 -
Gy, (s)= 0 _— [t
/(5 1.51s? + 2.48s+1 151s% +2.48s5+1 (44)
o - 0420 - 0.501s-0.432
1.51s? + 2.48s+1 151s% +2.48s5+1

Step response of transfer function matrix of the controlled
plant Gs(s) (43) and transfer function matrix of the
measurable disturbance variables Ggy (S) (44) are shown in the
following figures (see Fig. 5, Fig. 6).

Step Response
From: In(2)

From: In(1)

From: In(3)
15

To: Out(1)

g a
2 g
s o
Ly
O
5
o
e
Fig. 5 Step response of transfer function matrix of the controlled
plant Gs(s) (43)
Step Response
From: In(1) From: In(2) From: In(3)
0
| [ T T
=) I I I I I I
E I I I I I I
805 \-—-———-- [ N [ [t N [ -
8 I I I I I I
| I I I I I
1 . 1 1 I |
1
I I I I I I
S | | | | | |
2 ¥ 0 | | | | | |
3 O T T I [ T T
g <] | | & T T | |
< = I I I I I I
-1 1 1 1 1 1 1
1
I I I I I I
@ I I I I I I
=1 | | I I I I
30 T T (”’\ ””” [ [”’\ ””” -
'é | | L . . \ . !
I I I I | |
1 L L L L | |
0 20 40 0 20 40 0 20 40
Time

Fig. 6 Step response of transfer function matrix of the measurable
disturbance variables Ggy (S) (44)

C.Control Design of Three-variable Control Loop of the of
the Condensing Steam Turbine

The procedure of control described in the paragraph I1.D,
i.e. “Control Design of Multi-variable Control Loop” is used at
control of the three-variable control loop of the condensing
steam turbine. First the transfer functions of primary
controllers are determined for optimal control pairs via (9),
(10) or (19), (20). After that parameters of the correction
members KC, which ensured invariance of control loop, are
calculated by using of (26) (absolute invariance) or (28)
(approximate invariance). Finaly decoupling control loop is
solved by using auxiliary controllers RP (29).
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To determination of optimal control pairs (dominant
elements) for the transfer function matrix of the controlled
plant Gs(s) (43) were used the RGA tool (10) and also the
RNGA tool (20), i.e.

¢ the RGA tool

0.8548
0.0942
0.0510

0.0912  0.0540
0.9068 -0.0010
0.0020  0.9470

A(G5(0) = (45)

where

1.1060
1.3142
1.7641

0.0875
—0.9589
0.0393

0.0372
-0.0111
0.9654

Gs(o) =

o the RNGA tool

0.6225
0.2782
0.0993

0.2769  0.1006
0.7229 -0.0011
0.0002  0.9005

AN (Gs Q)= (46)

where

02280 2.2008 1.8680
11965 11759 2.4754
24754 372371 1.3170

ar

T

The optimal control pairs according to the RGA tool and
also the RNGA tool are following, i.e. yi-us (¢, =@y ), YUz

(@p, — Py ) ad ysUz (¢, —¢, ). These control pairs
corresponding transfer functions S;, S, and Sz;, which are
dominant elements, i.e. S;=S5,,,S,, =S,,,S;3 =S5, of the

transfer function matrix of Gg(s) (43).

Stability of the resulting control structure, i.e. control loop
that uses determined optimal control pairs, can be verified by
using Niederlinski index (NI value) (23), i.e.

_ def(Gg(0)) _ det (Gs(0)) _1.1984

NI 3 1.0239
11S; (0) '

=1.1704>0

: (47)
s, (0

which indicates that determined control pairs y;-Ui, Y»>-U,
and ys-uz should ensure the stability of the control loop.

Further they are determined, for above mentioned the
optimal control pairs (dominant elements) of the transfer
function matrix of Gg(s), corresponding elements of the
transfer function matrix of the primary controllers Ggr(s), i.e.
in this case transfer functions Ry;, Ry and Rss. Parameters
these controllers (Pl controllers) were determined by means
of the method of balance tuning [35] and also the method of
desired model [16]. To use these methods it was necessary to
modify transfer functions, i.e. Sy, S, and Sz into the
following form [1], [16]
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1106 -0.959 -0.965

1x Zme&m S x = 1162511 Siz ¢ = 1357511 (48)
then Sy x >Ry Spx 2 Rp Sy = R
a) method of balance tuning
'0.7975: 00948 0 0 ]
Gu(9= 0 -1043-0897 0 (49)
0 (S) —10365—0.764
L S a
b) method of desired model
'24565:0.294 : : i
Gu9=| o  To8EIOME o g
0 ; —0864s—0.636
s

Beside above mentioned methods to determine of
parameters of the primary controllers can be possible to use
also other SISO synthesis methods, e.g. Ziegler Nichols
methods, Cohen-Coon method, Naslin method, Whiteley
method, the SIMC method, the method of optimal module, the
pole placement method, etc. [1], [13], [16].

Correction members KC, which ensure invariance of control
loop, were determined via (26) and also (28). Relation (26)
ensures absolute invariance of control loop. Thus, transfer
function matrix of the correction members Gyc(S) was
determined in the following form

-0.773 -0.149 -0.074
Gyc(9)=| -1.043 0120 0.100 (51)
-1455 0168 0.309

where separate elements of the transfer function matrix of
correction members Gyc(S), i.e. KCyy, KCyp, ... can aso be
determined directly by using (25).

Relation (28) ensures that control loop is approximately
invariant. In this case, it was first necessary to determine
optima control pairs (dominant elements) for the transfer
function matrix of the measurable disturbance variables
Gsv(9) (44) and optimal control pairs (dominant elements) for
the transfer function matrix of the controlled plant G«(s) (43).
It was used RGA toal, i.e.

1 0 0
A(Gg, (0) = 0 1.0157 -0.0157 (52)
0 -00157 1.0157
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where The scheme of modified three-variable control loop is
10004 —01478 —0.0789 generally considered according to Fig. 7.

Gy (0) = 0 -0.3127 -0.0050

0 —04198 —-0.4324 ho

The optimal control pairs according to the RGA tool are
following, i.e. y1-vi (@, —@u, ), Y2Vo (@, — @y, ) @ Y5V3

(@5, —Pm,, ). These control pairs corresponding transfer Wi

functions Sy11, Sy and S 33, which are dominant elements, i.e.

Sva1 = Sva SV 22 = Svar Sy 33 = Sy, Of the transfer function
matrix of Gg/(S) (44).

Correction members KC, which ensure approximately
invariance of control loop, were determined via (28) in thisform

KC, 0 0 v,
Gyc(9)=| 0 KCyp 0
0 0 KCy ",

Sya Syu - 2.063s? —3.394s-1.371

KCy =—= = 2
S, Su s° +2.178s+1.516 (53)
Sy Sy, 0321s+0251
KCZZ = —= = =
S,, S, s+0.770
KCy = Svs _Sim g
3 S33

Auxiliary controllers RP, which ensure decoupling control loop, — w,
were determined via (29). To determine the auxiliary controllers
RP was used dominant and non-dominant elements of the transfer
function matrix Gs(s) (43). Dominant elements of G4s) were

determined above, i.e. S;,=95,S,,=S,,,5;3=S;;. Other

eements of Gs(s) were conddered as non-dominant elements. , - ] .
Thus, transfer function matrix of the auxiliary controllers Gge (9) Fig. 7 Modified threevar]:aé?le bLa“Ched 09:;[‘3' loop with
was determined in the following form measurement of disturbance variables

0 RP, RP, D.Smulation verification of control loop
Gre(s)=|RPy 0 RPy The MATLAB/SIMULINK software [17], [18] is used to
RP;, RP;, O simulation verification for proposed approach to control of the

5 three-variable control loop (see Fig. 8).
RP. — S, S, 0.623s°+1.014s+0.120
2~ = T o

S, Su s% +2.178s+1.516

RP. = % _ % _ 0.44052 + 0.448s + 0.0509 Transfer matix of correction members Disturbance variables
sy sy s® +2.178s+1.516 Y " L J—?@
Transfer matrix of disturbance variables . Disturbance variables - v
R, = ?21 _ S, _ —1.349s-1.055 (54) 3 : N

Contolled variable - y

S, Sz $+0.770 ol s B -

© o

W 3
RP.. — 823 _ 823 _ 0.00890 Manipulated variables - u
2BZ - X T e T 4.ATn
S, S» S+0.770 SE]
RP — i — i — - 1577 Setpoints

®s, Sy s+0863

Transfer matrix of auxiliary controller
Sy Sy  —1.395s5-0.0351

RP,, = =24 = =% = : ’ . . .

32 ; S, s+0.863 Fig. 8 Simulation scheme of the three-variable control loop in the

MATLAB/SIMULINK software
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Simulation courses of three-variable control loop of the
condensing steam turbine, with utilization of chosen SISO
synthesis methods, which are used at design of parameters of
the primary controllers, are presented in the following figures
(see Fig.9-Fig.12). Fig.9 and Fig.11 show simulation
courses of threevariable control loop where auxiliary
controllers RP are not used and it is ensured only approximate
invariance of control loop (53). Fig. 10 and Fig. 12 show
simulation courses of three-variable control loop where
auxiliary controllers RP (54) are used and absolute invariance
of control loop (51) is ensured.

The following parameters were chosen and used at all
simulation experiments (see Fig. 9 - Fig. 12)

o setpoints time vector (ty;, twe, twe): [40, 160, 180]

o setpoints vector (W, W, Ws): [0.7,0.7,0.7]
o disturbances time vector (t, 2, ty3):  [100, 220, 340]
o disturbances vector (vi, Vy, V3): [0.4,0.4,0.4]
o time step (K): 0.05
o total simulation time (t): 400
T ‘—yl - controlled variable —u, - manipulated variable — —Ww, -setpoint —v, - disturbance variable
s> 1.5+
5o
Zost Y e . - - 0
o L 1 I I I I L I
0 50 100 150 200 250 300 350 400
time
i ;: ‘_Vz - controlled variable —u, - manipulated variable — —Ww, - setpoint —v, - disturbance vanahle‘
2
B ’—rEﬁTf
2 g A -
>0F0 5‘0 l(‘)l) 11‘)0 260 2\‘50 3(‘)0 31‘)0 460
time
Zi: ‘—y3 - controlled variable — Uy - manipulated variable — —Wwy - setpoint —Vy - disturbance variable[
= sk
S
S 05- ] [
L A\ !
,O‘E I I il | I I | |
0 50 100 150 200 250 300 350 400

time

Fig. 9 Simulation courses of control loop with utilization the method
of balance tuning (49) without the use of auxiliary controllers RP and
with the use of correction members KC which ensure approximate
invariance of control loop (53)

2c
=150 ‘—yl - controlled variable —u, - manipulated variable — —Ww, - setpoint —v, - disturbance varlable‘
1 f\ I
S —
= 05F VLLii*i*i*i*i*i*
0 T _ 1 | I I I | |
0 50 100 150 200 250 300 350 400
time
2r - - - - - -
[—y2 - controlled variable — u, - manipulated variable — —W, - setpoint —v, - disturbance variable
o~ L5F
S osf r Y N
3 o T
-0.5 I I Il I I I Il I
0 50 100 150 200 250 300 350 400
time
Zg: ‘—ys - controlled variable —— ug - manipulated variable — —Ww, - setpoint —v, - disturbance varlable‘
o
%, 150 s
= ar
5 r
= 05f JE—
0 |
0 -
05, I I | I I I | |
o 50 100 150 200 250 300 350 400

time

Fig. 10 Simulation courses of control loop with utilization the
method of balance tuning (49) with the use of auxiliary controllers
RP (54) and with the use of correction members KC which ensure

absolute invariance of control loop (51)
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2- ‘_yl - controlled variable —— u - manipulated variable — — w, - setpoint —— v, - disturbance variable
S™ 1.5
—
1 L
&
2050 o
0 L 1 | | | 1 | ]
0 50 100 150 200 250 300 350 400
time
2r ‘—yz - controlled variable —— u, - manipulated variable — — w, - setpoint — v, - disturbance variable
~ L5
&b
& 05+ -
: A [
S0 \~ _ -
05 I | | | | | I ]
0 50 100 150 200 250 300 350 400
time
2 5: ‘—ya - controlled variable —— uy - manipulated variable — -, - setpomtfv3 - disturbance vanable‘
g
£ 1.5+
N
S A R -
-0.5 \/\ I Il v Il Il I I I}
0 50 100 150 200 250 300 350 400

time
Fig. 11 Simulation courses of control loop with utilization the
method of desired model (50) without the use of auxiliary controllers
RP and with the use of correction members KC which ensure
approximate invariance of control loop (53)

15 ‘—y1 - controlled variable — u, - manipulated variable — —w, - setpoint — v, - disturbance variable
= 15F
ENR N
& ,—“
= 0.5 -
0 L 1 I I I I L |
0 50 100 150 200 250 300 350 400
time
2r ‘—yQ - controlled variable —u, - manipulated variable — —Ww, - setpoint —v, - disturbance variable
o~ 150
Soan
N o5k S ——
S o b
05 I | I I I | | |
] 50 100 150 200 250 300 350 400
time
3r - - - - " n
25 ‘—y3 - controlled variable —uy - manipulated variable — —W, - setpoint —v, - disturbance varlable[
7 b
37 150 v
:Eﬁ -
@ 05 7 — _
i
> 0 I
05 Il I I I I Il Il I
o 50 100 150 200 250 300 350 400
time

Fig. 12 Simulation courses of control loop with utilization the
method of desired model (50) with the use of auxiliary controllers RP
(54) and with the use of correction members KC which ensure
absolute invariance of control loop (51)

Variablesin the smulation courses of control loop (seeFig. 9 -
Fig. 12) correspond to variables described in the three-variable
control loop of the condensing steam turbine (see Fig. 4), i.e.
o controlled variable: y, > ¢, ¥, 5> @, , ¥s = @,

* manipulated variable: u, —> ¢, U, >, L9,
* SEtpoints: w, — @, W, = @, , Wy = @,

o disturbance variable: v, — Pugr Vo = Prror Vs = Do)

E. Evaluation of simulation courses and used approach to
control of multi-variable control loop

The simulation courses (see Fig. 9 - Fig. 12) were compared
by using the ISE criterion (55) and the ITAE criterion (56)
(see Tablel).

J =ISE= T e?(t)dt :T [w(t) - y(t)] it :T e?(t)dt (55)
0 0 0
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Je =ITAE= jt~\e(t)\ dt:jt-\(w(t)—y(t))\ dt = ft-\e(t)\dt (56)
0 0 0

where t; is the control time, t is the simulation time, w(t) isthe
setpoint, y(t) is the controlled variable, e(t) is the control error
(see Fig. 13).

y() 4
Yo(t) }(t) = y(=) 2:3-y(e0)
(6=1-5%)
Y(eo) = iIiIZI_'IiIiI'Q """ e
Y, (1)
t, t=
tS

Fig. 13 Possible courses of control loop

Table | Quality of control for smulation courses of three-variable
control loop

Fig. No. Fig. 9 Fig. 10 Fig. 11 Fig. 12
Jk1 - ISE 2.095 2.553 0.760 0.985
Jii-ITAE 746.056 326.157 226.924 94.818
t1(8=2%) 32550 34.800 11.500 8.050
Urnax 1 1.362 1.186 1.719 1.131
Yinax.1 0.750 0.700 0.735 0.708
Jkz - ISE 0.534 0.293 1.666 0.3508
Jo- ITAE 258218 132908 385.663 159.336
tr 2 (8 = 2%) 3.600 4.600 6.400 5.500
Urnax.2 1.263 1.147 1.529 1411
Yimex.2 0.709 0.700 0.829 0.700
Jks - ISE 1.047 0.334 3.608 0.400
Jz-ITAE 611530 270.275 792435 324.041
tr 3 (0 = 2%) 4.750 5.550 7.2 6.600
Urnax.3 1.788 1.665 2.202 1.969
Yimex 3 0.706 0.700 1.139 0.7

"1, - control time at change of setpoint w; (i = 1, 2, 3)

In this case, gained simulation courses of control loop are
compared from the point of view of minima size of ISE
criterion or ITAE criterion, further the time of control t,
maximum values of manipulated variable y,. and controlled
variable un. (see Table 1). They can be considered quite
different points of view for optimal adjustment. Namely
requirements for the smallest overshooting and for the shortest
time of control are generaly valid for optimal adjustment.
However these requirements are antagonistic and therefore the
optimal adjustment of controller is always a compromise
between them.
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The RGA tool (9), (10) or RNGA tool (19), (20) can be
used to compare properties of the original MIMO controlled
plant Gs(s) (43) and the MIMO control loop from the point of
view degree internal coupling. It is considered the MIMO
control loop with the use the auxiliary controllers Ggp (S) (54)
and without the use the auxiliary controllers Ggp(S). In this
case, the disturbance variables are not considered.

The RNGA matrix of three-variable controlled plant (43)
was determined by and (46). The RNGA matrix of closed loop
transfer function matrix Gy (s) (6) of three-variable control
loop was calculated in the following form, i.e. e.g.

e the RNGA matrix of Gyy(s) (6), where the MIMO
primary controllers Gg(s) (49) were used and the auxiliary
controllers Ggp (S) was not used

0.8687 0.0794 0.0519
Ay (Gy,y(0))=| 0.0803 0.9207 -0.0001 (57)
0.0510 —-0.0001 0.9492
where
8.1548 19.5229 20.0834
T,=| 41758 1.0538 7.7476
5.0657 44.8447 1.2845
and
1.0000 -0.7562 -0.3052
K(Gy,y(0)=| 11616 1.0000 0.0568
1.9049 0.1211  1.0000

o the RNGA matrix of Gyy (S) (6), where the MIMO primary
controllers Ggr(s) (49) were used and the auxiliary
controllers Ggp (S) (54) was used

100
Ay(Gyy(0))=|0 1 0 (58)
0 01
where
95402 & &
T, = ¢ 11621 €
& ¢ 13564

whereas £> 0, ¢ —» 0[31], and
100

K(Gwr (0)=[0 1 0
0 01

It is obvious from the simulation courses of the control loop
shown in the Fig.9-Fig.12 and from other simulation
experiments that the proposed approach to control can be used
for control of acontrol loop.
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From the simulation courses of the control loop is obvious
that the control loop is absolute invariant (see Fig. 10 and
Fig. 12) and also approximate invariant (see Fig.9 and
Fig. 11). In this first case influence of disturbance variables is
completely eliminated via separate elements of the transfer
function matrix of the correction members Gyc (S) (51), i.e. via
the correction members KC;. In this second case influence of
disturbance variablesis eliminated only at steady state only via
three elements of the transfer function matrix of the correction
members Gyc () (53), i.e. via the correction members KCyy,
KC,,, KCs3. Correction members were determined from the
transfer function matrix of the controlled plant Gs(s) and from
transfer function matrix of the measurable disturbance
variables Ggy (s) by using RGA tool.

From the simulation courses of the control loop (see Fig. 10
and Fig. 12 compare to Fig. 9 and Fig. 11) is aso obvious
that the control loop is decoupled. It means that the condition
of decoupling control loop was fulfilled. Fulfilment this
condition was ensured via separate elements of the transfer
function matrix of the auxiliary controllers Gpr (S) (54), i.e. via
the auxiliary controllers RP;. The auxiliary controllers RP;
were determined from the transfer function matrix of the
controlled plant Gs(s) by using RGA tool and also RNGA
tool.

Parameters of the transfer function matrix of the primary
controller Ggr(s) were determined by two SISO synthesis
methods (49), (50) only for dominant elements of the transfer
function matrix of the controlled plant Gs(s). These dominant
elements of the transfer function matrix of the controlled plant
Gs(s) were determined by using RGA tool and also RNGA tool.

Thus, to determination of separate elements of the transfer
function matrix of the auxiliary controllers Ggp(s) and the
correction members Gyc(S) is not necessary to know
parameters of separate elements of the transfer function matrix
primary controllers Gg(9), i.e. a change of parameters of the
primary controllers does not affect correction members and
auxiliary controllers.

IV. CONCLUSION

The goal of this paper was to describe and show one of the
possible approaches to control of a MIMO control loop, which
used the RGA tool, the RNGA tool and eventually also NI tool
to determine optimal input-output variable pairings in the
MIMO controlled plant, i.e. dominant elements of the transfer
function matrix of the controlled plant Gs(s) and also transfer
function matrix of the measurable disturbance variables
Gsv(9). Advantage of described and used the approach to
control isthat the change of parameters of separate elements of
the transfer function matrix of the primary controllers Gg(s)
(e.g. a change SISO synthesis method) does not affect
parameters of separate elements of the transfer function matrix
of correction members Gyc(s) and auxiliary controllers
Grr (9). This control method enables to use any known SISO
synthesis method to determination of parameters of separate
elements of the transfer function matrix primary controllers
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Gg(s) for corresponding dominant elements of the transfer
function matrix of the controlled plant Gs(s). The control
method combines ensuring decoupling control loop via
auxiliary controllers, which are elements of transfer function
matrix of the auxiliary controllers Ggq (), and the use of the
separate elements of the transfer function matrix of the
correction members Gyc (s) for ensuring absolute invariance or
approximate invariance of MIMO control loop. Simulation
verification of proposed control method was presented on
three-variable control loop of the condensing steam turbine.

Determined parameters of the matrix controllers Gg(s) and
Ggrr(s) and aso the correction members Gyc(s) have good
results of the control and fulfilled basic control requirements
such as the stability, the reference signa tracking and
disturbance attenuation.

The described and used control method is valid under the
following condition, i.e. this control method is considered for
MIMO controlled plants with same number of input and output
signals. MIMO controlled plants containing non-minimal
phase, transport delay, or having high order dynamics may, in
some cases, be also cause of certain limitations of the control
method, e.g. from the point of view of ensuring absolute
decoupling control loop and also absolute invariance of
control loop.

The future work will be focused on the reduction of some
limitations of proposed control method, verification of other
approach to control of a MIMO control loop and aso
simulation verification of proposed, let us say, modified
version of control method for other MIMO controlled plants,
e.g. model of balance platform system [36], the quadruple-tank
process[2].

REFERENCES

[1] J. Balate, Automatic Control, 2nd edition, Praha: BEN, 2004 (in
Czech)

[2] K. H. Johansson, “The Quadruple-Tank Process. A Multivariable
Laboratory Process with an Adjustable Zero,” IEEE Transactions on
Control Systems technology, vol. 8, no. 3, 2000, pp. 456-465.

[3] K. Dutton, S. Thompson and B. Barraclough, The art of control
engineering. Essex: Addision Wesley Longman, Pearson Education,
1997.

[4] F. G. Shinskey, Controlling Multivariable Processes, Instrument
Society of America, Research Triangle Park, NC, 1981.

[5] L. Pekar, R. Prokop and P. Dostalek, ,,Circuit heating plant model with
internal delays,* WSEAS Transactions on Systems, vol. 8, no. 9, 2009,
pp. 1093-1104.

[6] C.M.Vedezand S. A. Aguddo, “Control and parameter estimation of a
mini-helicopter robot using rapid prototyping tools,” WSEAS
Transactions on Systems, Vol. 5, No. 9, pp. 2250-2256.

[71 M. Mansour and W. Schaufelberger, “Software and Laboratory
Experiment Using Computers in Control Education,” IEEE Control
System Magazine, vol. 9, no. 3, 1989, pp. 19-24.

[8] M. Kubalcik and V. Bobal, “Adaptive Control of Three-Tank-System
Using Polynomial Methods,” in International Federation of Automatic
Control, Proceedings of the 17th IFAC World Congress, Soul, 2008,
pp. 5762-5767.

[9] ALSTOM Power, Ltd. Materials of the company from the project
OTROKOVICE, 1998. (in Czech)

[10] Z. Ibler et al., Technical Guide for the field of Energy, 1 part, Praha:
BEN, 2002. (in Czech)

[11] J. Kadrnozka and L. Ochrana, Heating industry, Brno: CERM, 2001. (in
Czech)



[12]

[13]

[14]
[15])
[16]
[17)
(18]

[19)

[20]

[21]

[22)
(23]

[24]

[25]

[26]

[27)

[28]

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

J. Kadrnozka and L. Ochrana, Combined heat and power production.
Brno: CERM, 2001. (in Czech)

K. Astrém and T. Hégglund, PID Controllers: Theory, Design and
Tuning, 2nd edition, North Carolina: Instrument Society of America,
Research Triangle Park, 1995.

A. Datta, M.T. Ho and S. P. Bhattacharyya, Sructure and synthesis of
PID controllers, London: Springer-Verlag, 2000.

K. K. Kiong, W. Q. Guo, H. C. Chien and T. H&gglund, Advances in
PID control. London: Springer-Verlag, 1999.

M. Viteckova and A. Vitecek, Bases of automatic control, 2nd edition,
Ostrava: VSB-Technical University Ostrava, 2008. (in Czech)

K. Perutka, MATLAB for Engineers - Applications in Control,
Electrical Engineering, IT and Robotics, Rijeka: InTech, 2011.

O. Beucher and M. Weeks, Introduction to MATLAB and SIMULINK,
3rd edition, Infinity Science Press LLC, Hingham, MA, 2008.

M. Popescu, A. Bitoleanu and M. Dobriceanu, ,Matlab GUI application
in energetic performances analysis of induction motor driving systems,”
WSEAS Trans. on Advances in Engineering Education, vol. 3, no.
52006, pp. 304-311.

V. Bobal, P. Chalupa, M. Kubacik and P. Dostal, “Self-tuning
Predictive Control of Nonlinear Servo-motor,” Journal of Electrical
Engineering, vol. 61, no. 6, 2010, pp. 365-372.

E. Bristol, “On a new measure of interaction for multivariable process
control,” IEEE Transactions on Automatic Control, vol. 11, no. 1,
1966, pp. 133-134.

S. Skogestad and M. Morari, “Implications of large RGA e ements on
control elements,” Ind Eng ChemFundam, 1987, pp. 2323-2330.

M. T. Tham, An Introduction to Decoupling Control, University
Newcastle upon Tyne, 1999.

F. Dusek and D. Honc, “Transform of system with different number of
input and output signals for decentralized contral,“ Automatization, vol.
51, no. 7-8, 2008, pp. 458-462. (in Czech)

P. Skupin, W. Klopot and T. Klopot, “Dynamic Matrix Control with
partial decoupling,” in Proceedings of the 11th WSEAS Int. Conf.
Automation & Information, 2010, pp. 61-66.

F. G. Shinskey, “Predict distillation column response using relative
gains,” Hydrocarbon Processing, May 1981, pp.196-200.

E. Bristol, "On a new measure of interaction for multivariable process
control, " IEEE Transactions on Automatic Control, vol. 11, no. 1,
1966, pp. 133-134.

T. Glad and L. Ljung, Control Theory: Multivariable and Nonlinear
Methods. NY': Taylor and Francis, 2000.

Issue 6, Volume 7, 2013

349

[29] K. E. Haggblom, “Limitations and Use of the RGA as a
Controllability Measure,” in Prepr. Automation Days, Helsinki, 1995,
pp. 178-183.

J. Zakucia, "Control of the Quadruple-Tank Process, ” diploma work,
Dept. Cont. Eng.,CTU in Prague, 2009 (in Czech).

W. Hu, W. J. Cai and G. Xiao, "Decentralized Control System Design
for MIMO Processes with Integratorg/Differentiators,” Industrial &
Engineering Chemistry Research, vol. 49, no. 24, pp.12521-12528,
2010.

M. J. He, W. J. Cai, W. Ni and L. H. Xie, “RNGA based control system
configuration for multivariable processes, “. J. Process Control, vol.19,
no. 6, 2009.

K. Astrém and T. H&gglund, PID Controllers: Theory, Design and
Tuning, 2nd edition, North Carolina: Instrument Society of America,
Research Triangle Park, 1995.

S. Skogestad and |. Postlethwaite, Multivariable Feedback Control:
Analysis and Design. 2nd edition, Chichester: Wiley, 2005.

P. Klan and R. Gorez, Balanced Tuning of PI Controllers. European
Journal of Control, Val. 6, No. 6, 2000, pp. 541-550.

A. Kot and A. Nawrocka, "Balace Platform System Modeing and
Simulation,” in Proceedings of the 12 International Carpathian
Control Conference, 2011, pp. 224-227.

[30]

[31]

[32)

[33]

[34]
[35])

[36]

Pavel Navratil was born in Uherske Hradiste in 1976, Czech Republic. He
studied Automatization and control technique at Faculty of technology in Zlin
of Brno University of Technology where he got his master degree in 2000. In
2004 he has finished his Ph.D. at Faculty of Applied Informatics of Tomas
Bata Univerzity in Zlin. He is now working as an assistant at the Faculty of
Applied Informatics of Tomas Bata University in Zlin. He is interested in
control methods of SISO and MIMO systems, control algorithms for district
heating system, simulation of systems, e-learning in the area of automatic
control.

Libor Pekar was born in 1979 in Zlin, Czech Republic. He obtained his
MSc. degree in Automation and Computers in Consumption Industry at the
Faculty of Applied Informatics, Tomas Bata University in Zlin in 2005. In
2013 he has finished his Ph.D. at Faculty of Applied Informatics of Tomas
Bata Univerzity in Zlin. He works as a senior lecturer at the Faculty of
Applied Informatics, Tomas Bata University in Zlin, Czech Republic. He is
interested in time delay systems, algebraic controller design, autotuning,
optimization, modelling and simulations.





