
 

 

  
Abstract—The paper describes one of possible approaches to 

control of multi-variable control loops. In the proposed approach to 
control is used the so called RGA (Relative Gain Array) tool and also 
RNGA (Relative Normalized Gain Array) tool, further the correction 
members, the auxiliary controllers and simple approach to a design of 
the primary controllers. The RGA tool and also the RNGA tool serve 
to determine the optimal input-output variable pairings in a multi-
variable controlled plant. Correction members are generally 
considered for ensuring invariance of control loop. Auxiliary 
controllers are considered to ensure at least partial decoupling control 
loop. Further, it is considered that the primary controllers are 
determined by arbitrary single-variable synthesis method for optimal 
input-output variable pairings. Simulation verifications of the 
mentioned way of control are carried out for three-variable controlled 
plant of a steam turbine. 
 

Keywords—Decoupling control loop, Invariance of control 
loop, MIMO control loop, RGA, RNGA, Simulation. 

I. INTRODUCTION 

ONTROLLED plants with only one output variable 
(controlled variable) which are controlled by a one input 
variable (manipulated variable, disturbance variable) are 

called as SISO (Single-Input Single-Output or single-variable) 
controlled plants. But, there are not a little cases where it is 
more than one output variable controlled simultaneously by 
means of more than one input variable, e.g. aircraft autopilots, 
air condition plants, chemical reactors, helicopter, tank 
processes, steam boilers, etc. [1], [2]. In these cases, it means 
that there is larger numbers of dependent SISO control loops. 
These control loops are complex and have multiple 
dependencies and multiple interactions between different input 
variables (manipulated variables and disturbance variables) 
and output variables (controlled variables). These control 
loops are known as MIMO (Multi-Input Multi-Output or 
multi-variable) control loop and represent a complex of 
mutually influencing single-variable control loops [1]. Special 
case of the MIMO control loop is SISO control loop [3]. 
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Multi-variable control methods have received increased 
industrial interest [4]. It is often no easy to tell when these 
control methods are necessary for improved performance in 
practice and when usage of simpler control structures are 
sufficient. Therefore, it is useful to know functional limits and 
structure of the whole control loop, i.e. a controlled plant, a 
controller and separate signals in the control loop. [2] 

Control methods of MIMO controlled plants can be verified 
not only by using simulation tools, but also on the laboratory 
models. Some MIMO laboratory models have been described 
in the literature, e.g. heating plant [5], helicopter model [6], 
[7], tank model [2], [8], etc. 

One of possible examples of a MIMO controlled plant is also 
steam turbine [9] - [12]. In one of the other part of the paper is 
considered three-variable controlled plant of steam turbine [9]. 
The proposed approach to control of the MIMO controlled plant 
uses the RGA tool and also the RNGA tool to determination 
optimal pairs in the MIMO controlled plant. Further this method 
of control used the primary controllers, the correction members 
and the auxiliary controllers. Parameters of the primary 
controllers can be determined via arbitrary SISO synthesis 
methods, e.g. [1], [3], [13] - [16]. Correction members ensure an 
elimination of influence of disturbance variables on a MIMO 
control loop and they are determined from parameters of a 
MIMO controlled plant. Auxiliary controllers ensure decoupling 
control loop. Mentioned method of control of a MIMO control 
loop is considered for a MIMO controlled plant with same 
number input signals and output signals. 

Simulation experiments were performed, for the chosen 
MIMO controlled plant, in MATLAB/ SIMULINK software 
[17], [18]. The MATLAB software serves for programming 
and technical computing in many areas. The SIMULINK 
software is part of the MATLAB environment and serves to 
analyzing, modelling and simulation of dynamics systems. It is 
possible to use the MATLAB/SIMULINK software for 
education and also for research [5], [19], [20]. 

II. ANALYSIS AND CONTROL DESIGN OF MULTI-VARIABLE 

CONTROL LOOP 

A MIMO controlled plant generally consists of m input 
variables and n output variables. It is generally a non-square 
controlled plant type n×m. It means, there are three possible 
cases, i.e. m = n, m > n, m < n. In the next part of the paper, it is 
mostly considered that controlled plant have a same number of 
input variables and output variables, i.e. m = n (square controlled 
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plant type n×n). There are several possible configurations of a 
MIMO control loop. The number of possible configurations of a 
MIMO control loop for n×n controlled plant is n! (n factorial). 

One of possible approach to analysis and control design of a 
MIMO control loop, for a controlled plant in steady state, is 
using the so called RGA (Relative Gain Array) tool [21], [22]. 
The RGA is useful for MIMO controlled plants that can be 
decoupled. The other approaches to analysis and control design 
of MIMO control loop can be found e.g. in [23] - [25]. 

A.  Description of the Multi-variable Control Loop 

It will be generally considered a multi-variable control loop 
with measurement of the disturbance variables. The modified 
scheme of the control loop is shown in the Fig. 1. 
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Fig. 1 Modified scheme of multi-variable control loop with 

measurement of disturbance variables 
 

The description of the parameters in the figure is following, 
i.e. matrices GS (s), GSV (s), GR (s), GRP (s) and GKC (s) denote 
the transfer function matrices of the controlled plant, the 
measurable disturbance variables, the primary controllers, the 
auxiliary controllers and the correction members. Signal 
Y(s) [n×1] denotes the Laplace transform of the vector of 
controlled variables, U(s) [n×1] is the Laplace transform of the 
vector of manipulated variables, V(s) [m×1] is the Laplace 
transform of the vector of measurable disturbance variables, 
W(s) [n×1] is the Laplace transform of the vector of setpoints 
and E(s) [n×1] is the Laplace transform of the vector of control 
error, where E(s) = W(s) - Y(s). 

It is considered that the transfer function matrices of the 
controlled plant GS (s) and the measurable disturbance 
variables GSV (s) are in the following forms, i.e.  
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where i = <1, ..., n>, j = <1, ..., m>, m ≤ n. 

Transfer function matrices of the primary controllers GR (s), 
the auxiliary controllers GRP (s) and the correction members 
GKC (s) are considered in the following forms 
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where i, j = <1, ..., n> and 
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where i, j = <1, ..., n> and 
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where i = <1, ..., n>, j = <1, ..., m>, m ≤ n. 
 

The relations (1) - (5) can be used to build other the transfer 
function matrices that occur in the MIMO control loop with 
measurement of the disturbance variables (see Fig. 1), i.e. a 
closed loop transfer function matrix GW/Y (s) and a disturbance 
transfer function matrix GV/Y (s). 

[ ] )())(()()())()(()( 111 sssssss RRPSRRPSW/Y GGIGGGIGIG −−− +++=  (6) 

[ ] [ ])()()()())(()( )(
11 sssssss KCSSVRRPSV/Y GGGGGIGIG −++=

−−  (7) 

These transfer function matrices can be use at control design 
and also for ensuring invariance of the MIMO control loop 
and for ensuring decoupling MIMO control loop. 

B. Optimal Input-Output Variable Pairings 

Transfer function matrix of the controlled plant can be 
written in the following form 

)()()()()()( 1 ssssss SS YGUUGY −=∨=  (8) 

where U(s) = [U1(s), …, Un(s)]T and Y(s) = [Y1(s), …, Yn(s)] T 
are considered as Laplace transform of n-dimensional vectors 
(n×1) of inputs and outputs variables and GS(s) is considered 
as n×n transfer function matrix of the controlled plant. 

One of possible tools to the analysis of the interactions 
between input variables uj and output variables yi of a MIMO 
controlled plant is the so called RGA (Relative Gain Array) 
tool. The relative gain technique has not only become a 
valuable tool for the selection of input-output pairings, it has 
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also been used to predict the behaviour of controlled 
responses [26]. The RGA is a standardized form of the gain 
matrix that describes the influence of each input variable on 
each output variable. 

Each element in the RGA matrix Λ (9), (10) is defined as 
the open control loop gain divided by the gain between the 
same two variables when all other loops are under so called 
“perfect“ control [27]. Element λij in the RGA matrix Λ are 
depended on frequency. They are usually determined for 
frequency equal to zero, i.e. for steady state. From the point of 
view of control, for a controlled plant with same number input 
and output variables, it is ideal state when values of diagonal 
elements of the RGA matrix are approaching to the value of 
one and aside-from-diagonal elements of RGA matrix 
approaching to the value of zero. 
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λij is the relative gain for the corresponding variable 
pairings, i.e. element of RGA, (∂Yi / ∂Uj)Uk

 is the open 
control loop gain with all control loop open, (∂Yi / ∂Uj)Yl

 is 
the corresponding open control loop gain with all other 
control loop closed. 

From relations (8) and (9), it follows that the RGA for the 
controlled plant GS(s) can be determined as 
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where 

jiijjiSijSij ][][)]0([)]0([ 11 −− ⋅=⋅= KKGGλ  

s = jω → ω = 0 → steady state (t → ∞),  ⊗ operator implies an 
element by element multiplication, i.e. Hadamard or Schur 
product, K is the gain matrix of the controlled plant GS (s), i.e. 
K = [kij]n×n. 

In the literature [28] is presented the procedure to calculate 
RGA for non-square transfer function matrix by using the 
pseudoinverse. 

Utilisation of the above mentioned approach serving to the 
analysis of interactions between input variables and output 
variables of a MIMO controlled plant can be illustrated on an 
example of two-variables controlled plant (see Fig. 2a). It is 
considered linearized steady state model of the controlled 
plant in the following form 
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where kij is a gain of separate elements of the transfer function 
matrix of the controlled plant (11), i.e. )0()]0([ ijijSij Sk == G , 

Uj is Laplace transform of input variable and Yi is Laplace 
transform of output variable. 

In this case, elements λij in the RGA matrix Λ are 
determined by the following way, i.e. element λ11 
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where numerator and denominator of λ11 are determined from 
the following relations 
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Other elements λ12, λ21 and λ22 are determined via the 
following relations 

21122211

2211

022

022
22

22112112

2112

012

012
21

22112112

2112

021

021
12

1

1

1

2

2

1

)(

)(

)(

)(

)(

)(

kkkk

kk

UY

UY

kkkk

kk

UY

UY

kkkk

kk

UY

UY

Y

U

Y

U

Y

U

−
=

∂∂
∂∂

=

−
=

∂∂
∂∂

=

−
=

∂∂
∂∂

=

=

=

=

=

=

=

λ

λ

λ

 (13) 

Elements λij in the RGA matrix Λ can be determined also 
experimentally, e.g. element λ11 is possible determined in this way:   
• all control loops, i.e. y1 - u1, y2 - u2 are opened and u2 = 0 

(see Fig. 2a) 
• only one control loop, i.e. y1 - u1 is opened, other control 

loop(s), i.e. in this case only y2 - u2 is closed and y2 = 0 (see 
Fig. 2b - controller R22 ensures “perfect“ control) 

then 
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Other elements λ12, λ21 and λ22 can be determined by using 
the following relation 
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Fig. 2 Block schemes for a case of the experimental determination of 

the parameter λ11 for 2×2 controlled plant (11) 
a) all control loops are opened, b) only one control loop is opened 

 
There are some important properties and rules to 

understanding and analyzing the RGA. Determined values of 
the RGA mean following: 
• Separate elements λij are dimensionless and so independent 

of units. 
• The sum of all the elements λij of the RGA matrix (9) across 

any row, or any column will be equal to one 
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This relation can be verified e.g. for 2×2 controlled plant 
(11). It means, that it is possible to calculate for 2×2 
controlled plant only one element λij, e.g. only λ11 is 
calculated and then λ12=1-λ11, λ21=1-λ11, λ22=λ11. 
So, the relation (16) simplifies calculation of elements λij, 
e.g. in 2×2 case, only 1 element must be calculate to 
determine all elements, in 3×3 case, only 4 elements must 
be calculate to determine all elements, etc. The number of 
elements (num) necessary to calculate all elements of the 
RGA matrix in case n×m can be determined from the 
following relations 
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• Each row in the RGA represents one output variable yi and 
each column in the RGA represents one input variable uj. 
The interpretation of the determined elements λij in the 
RGA can be classified as follows 
 λij = 1: This implies that uj influences yi without any 

interaction from the other control loop. In this case, the 
control pair yi - uj can be ideal (however, this may not 
always be true - see sensitivity of a triangular matrix of 
the controlled plant in [29]). 

 λij = 0: This means uj has no effect on yi. In this case, the 
control pair yi - uj is not recommended. 

 0 < λij < 1: This indicates that control pair uj - yi is 
influenced by the other control loops. 

If λij < 0.5: Influence of the other control loops is a 
greater than influence of the control pair yi - uj. 
If λij > 0.5: Influence of the control pair yi - uj is a 
greater than influence of the other control loops. 
In this case, it is recommended avoid pairing yi with uj 
whenever λij ≤ 0.5. 

 λij > 1: The positive value of the RGA indicates that the 
control pair yi - uj represents dominant control loop. 
Others control loops have an influence on the control pair 
in the opposite direction. The higher the value of λij 
means that the more correctional effects of the other 
control loops affect the control pair. In this case, it is 
recommended avoid pairing yi with uj whenever λij has 
very high value, e.g. λij > 10.  

 λij < 0: This means that the control pair yi - uj causes 
instability of the control loop. In this case, it is 
recommended avoid pairing yi with uj. 

Control pairs yi - uj whose input and output variables have 
positive RGA elements (λij) and their values are close to one 
are considered as the optimal control pairs [23]. If the value of 
λij fulfils above mentioned general rule the control of control 
loop for the control pair yi - uj is possible. For other values, the 
control can become difficult because the interaction rate is too 
high. According to above mentioned approach, it is possible to 
determine the optimal control pairs yi - uj by using RGA tool. 
Then it is possible to determine, for the optimal control pairs, 
the parameters of the so called primary controllers via classical 
SISO synthesis methods [30]. 

It is considered the RGA matrix for the case 3×3 controlled 
plant, i.e.  
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the optimal control pairs are following: y1-u2, y2-u3, y3-u1.   
 
The RGA pairing method has also some shortcoming, i.e. 

the RGA tool ignores process dynamics. If the transfer 
function has very large time delay or time constant relative to 
the others (see (22)), steady state the RGA analysis can 
provide an incorrect recommendation. In this case, it is then 
preferable to use e.g. the so called the RNGA (Relative 
Normalized Gain Array) pairing method (see (22)) for 
interaction measurement [31]. 

The RNGA matrix ΛN is generally considered in the 
following form 
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The RNGA for the controlled plant GS(s) can be determined as 
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whereas, separate elements of the transfer function matrix of 
the controlled plant GS(s), i.e. Sij(s) are considered in the form 
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s = jω → ω = 0 → steady state (t → ∞),  ⊗ indicates element by 
element multiplication,  indicates element by element division, 
KN is the normalized gain matrix of the controlled plant, i.e. 
KN = [kN,ij]n×n, kij is the gain of separate elements of the transfer 
function matrix of the controlled plant GS (s), Tar is the matrix of 
the average residence time, i.e. Tar = [τar,ij]n×n, Tij is the time 
constant of separate elements of the transfer function matrix of 
the controlled plant, Lij is the time delay of separate elements of 
the transfer function matrix of the controlled plant. 

Control pairs yi - uj whose input and output variables have 
positive RNGA elements (λN,ij) and their values are close to 
one are considered as the optimal control pairs. Large values 
RNGA elements (λN,ij) are avoided. [31], [32] 

The average residence time τar,ij can be determined, e.g. for 
chosen types of individual elements Sij(s) of the transfer 
function matrix of the controlled plant GS (s), by the following 
way, i.e.  
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The average residence time τar,ij can be also determined for 
other types of transfer functions Sij(s) (see [1], [16], [31], [33]). 

Further, it is considered 2×2 controlled plant with transport 
delay, i.e. 
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The RGA matrixΛ is in the form 
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then, the optimal control pairs according to RGA tool are 
following: y1-u1, y2-u2. However, the aside from diagonal 
elements of the controlled plant indicates that y1 responds about 
twenty times faster to u2 than u1 because of its time constant. 

The RNGA matrixΛN is in the form 
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then, the optimal control pairs according to RNGA tool are 
following: y1-u2, y2-u1. 
 

To determination of the stability of the resulting control 
structure, i.e. control loop that uses the optimal control pairs, 
can be used the Niederlinski index (NI). It is considered n×n 
controlled plant, according to (1), (8). Then, the NI value can 
be calculated by using following relation (it is considered the 
steady state (t → ∞, s = 0)), i.e. 

ii

n

i
ii
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i

S

kS
NI

11
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)0(

))0((det

==
Π

=
Π

= KG
 (23) 

A negative the NI value indicates instability in the proposed 
control loop, i.e. in the resulting control structure. 

It is considered 3×3 controlled plant GS (s) whose a gain 
matrix K is following 


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The RGA matrixΛ is determined in the form 



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
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the optimal control pairs according to the RGA tool are y1-u1, y2-u2 
and y3-u3. According to the Niederlinsky rule 

00387.0
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1875.0)(det
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1
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=

= ii
i

k
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i.e., chosen control pairs lead to unstable configuration. 
In this case, it is possible to change the control pairs, i.e. y1-

u1, y2-u3 and y3-u2, then 
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which corresponds to 
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and then value of the NI is following 
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which indicates that control pairs y1-u1, y2-u3 and y3-u2 should 
ensure the stability of the control loop. 
 

It is a suitable to consider all the mentioned tools for the 
analysis of the optimal control pairs, i.e. the RGA tool, the 
RNGA tool and eventually also NI, when final decision is to 
be made. Further possible tool, which can be used not only for 
the analysis of the interactions in a MIMO controlled plant, is 
e.g. SVD (Singular Value Decomposition) tool [34]. 

C. Invariance of Multi-variable Control Loop and Decoupling 
Multi-variable Control Loop 

It is often required at synthesis of a SISO or also a MIMO 
control loop, beside stability and quality of control, that 
influence of the measurable disturbance variables on 
controlled variables was eliminated. Such a MIMO control 
loop is called invariant. Control loop at which the influence of 
disturbance variables is eliminated only partially, e.g. only in 
steady state is called approximately invariant. Control loop at 
which the influence of disturbance variables on controlled 
variables is completely eliminated is called absolutely 
invariant. Other requirement at synthesis of a MIMO control 
loop can also be an elimination of effects of interactions of 
control variables in a MIMO control loop, i.e. one desired 
variable (setpoint) causes a change of only one corresponding 
controlled variable in a MIMO control loop. Such a MIMO 
control loop is called decoupled. [1] 

In order to ensure invariance of a MIMO control loop 
decoupling MIMO control loop a disturbance transfer function 
matrix GV/Y (s) (7) and a closed loop transfer function matrix 
GW/Y (s) (6) are used. 

Absolute invariance of a MIMO control loop can be ensured 
if the transfer function matrix GV/Y (s) (7) is zero. It can be 
possible if the following relation is valid 

)()()( 1 sss SVSKC GGG −=  (25) 

Separate elements of the transfer function matrix of correction 
members GKC (s), i.e. KC can be determined as follows 
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where det(GS) is a determinant of the transfer function matrix 
of the controlled plant GS (s), SV,kj are separate members of the 
transfer function matrix of disturbance variables GSV (s) and ski 
are algebraic supplements of separate elements of the transfer 
function matrix of the controlled plant GS (s). 
 

In case that diagonal members of the transfer function matrix 
GSV (s) and GS (s) are considered as a dominant, the relation (26) 
can be simplified. In this case an influence of the other elements 
of the transfer function matrix GSV (s) and GS (s) is omitted at 
design of the correction members KC. So that invariance of the 
control loop is ensured only for diagonal elements. It is 
considered that corresponding number of SISO branched control 
loops with measurement of the disturbance variable is used to 
determine the correction members KC. Connection of all SISO 
branched control loops is the similar and they differ in separate 
transfer functions and variables (see Fig. 3). The influence of 
separate elements of the transfer function matrix GSV (s) and 
GS (s) can be verified by using one of possible tools to the 
analysis of the interactions between input and output variables in 
a MIMO controlled plant (see paragraph II.B, i.e. “Optimal 
Input-Output Variable Pairings”). Described approach ensures 
the so called approximate invariance of control loop. It means 
that influence of disturbance variables is generally eliminated 
only partially. [1]       
 

w y

v

R S
ue

SV

KC

 
Fig. 3 Single-variable branched control loop with measurement of 

disturbance variable 
 

The transfer functions of the correction members KC are 
determined by using the following relation 
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 (27) 

where SV,ii are separate elements of transfer matrix GSV (s), Sii 
are separate elements of transfer function matrix GS (s). 

In case that diagonal elements of transfer function matrix 
GSV (s) or GS (s) have not dominant influence then 
corresponding the correction members KC may not ensure the 
desired behaviour of a control loop. 

A more general relation that ensures approximate invariance 
of control loop via dominant diagonal elements transfer 
function matrix GSV (s) or GS (s) and also via dominant aside 
from diagonal elements transfer function matrix GSV (s) or 
GS (s) can be written in the following form 
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 members correctionother for 0
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~
,
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where kjVS ,
~

 are separate dominant elements of the transfer 

matrix GSV (s) in the k-th row, kiS
~

 are separate dominant 

elements of the transfer function matrix GS (s) in the k-th row. 
 

One of the above mentioned two approaches, which ensure 
invariance of a MIMO control loop, uses to determine the 
correction members KC analogy of SISO branched control 
loop with measurement of the disturbance variable(s). This 
approach can also be used for a reduction of interactions of 
separate non-dominant control loops, i.e. a reduction of 
influence of non-dominant elements of the transfer function 
matrix of controlled plant GS (s) in the MIMO control loop. 
Such the control loop is then called decoupling control loop. 
In this case, it is considered that separate non-dominant 
elements of the transfer function matrix of the controlled plant 
GS (s) represent measurable disturbance variables. 

For ensuring decoupling control loop the transfer function 
matrix GW/Y (s) (6) must be a diagonal. Because the sum and 
product of three diagonal matrices are diagonal matrices, and the 
inverse of diagonal matrix is also diagonal matrix, then the 
requirement can be ensured if transfer fiction matrix 
GS (s)·(I+GRP (s)) -1·GR (s) is diagonal. Further they are 
considered, for separate elements of the transfer function matrix 
of the primary controllers GR (s) (3) and the auxiliary controllers 
GRP (s) (4), following conditions: 
• Diagonal elements of the transfer function matrix of 

auxiliary controllers GRP (s), i.e. RPii, are equal to 0, thus 

RPii  = 0,  i=<1, …, n>   

• Parameters of separate elements of the transfer function 
matrix of the primary controllers GR (s), i.e. Rij are determined 
for corresponding dominant elements of the transfer function 
matrix of the controlled plant GS (s), i.e. Sji, thus 

Rij ≠ 0 only for dominant elements Sji 

Rij = 0 for other (non-dominant) elements Sji 

Then, it is possible to determine elements of the transfer 
function matrix of the auxiliary controllers GRP (s), i.e. RPij, in 
the following form 

jin, kj,i,
S

S
RP

ki

kj
ij ≠>…<== ,1, ~  (29) 

where kjS  are separate non-dominant elements of the transfer 

matrix GS (s) in the k-th row, kiS
~

 are separate dominant 

elements of the transfer function matrix GS (s) in the k-th row. 

D. Control Design of Multi-variable Control Loop 

One of the possible approaches to control of MIMO control 
loops is described in the following part. This approach uses 
analysis of the interactions between input variables and output 
variables in a MIMO controlled plant (see paragraph II.B, i.e. 
“Optimal Input-Output Variable Pairings”). The chosen 
approach can be generally divided into several parts, i.e. 
determination of parameters of the primary controllers then 

ensuring invariance of control loop and also ensuring at least 
partial decoupling control loop, i.e. partial reduction of the 
influence of non-dominant elements (the non-optimal control 
pairs) of the transfer function matrix of controlled plant GS (s) 
in the MIMO control loop (see paragraph II.C, i.e. “Invariance 
of Multi-variable Control loop and Decoupling Multi-variable 
Control Loop”). 

The so called primary controllers are designed by any 
synthesis methods of the SISO control loop. Parameters of the 
primary controllers are determined for the optimal control 
pairs in the MIMO controlled plant GS (s). Optimal control 
pairs can be gained by using approaches described in the 
paragraph II.B, i.e. via the RGA tool (9), (10), the RNGA tool 
(19), (20), possible also via NI (23). 

Invariance of the MIMO control loop is ensured by means 
of elements of the transfer function matrix of the correction 
members GKC (s), i.e. KC (26) or (28) (see paragraph II.C). 
Relation (26) ensures absolute invariance. Relation (28) is 
simpler, but it can ensure only approximate invariance. 

Decoupling MIMO control loop is ensured by means of the 
elements of the transfer function matrix of the auxiliary 
controllers GRP (s), i.e. RP (29) (see paragraph II.C). 
 

It is considered the transfer function matrix of the controlled 
plant GS (s) and the transfer function matrix of the measurable 
disturbance variables GSV (s) are in the following form 
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and 

)()()()()( sssss SVS VGUGY +=  

where Y(s) is the Laplace transform of the vector of controlled 
variables, U(s) is the Laplace transform of the vector of 
manipulated variables and V(s) [m×1] is the Laplace transform 
of the vector of measurable disturbance variables. 

The RGA matrix Λ for transfer function matrix (30) and 
(31) is in the following form 


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

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
−

−
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223.0223.1

223.1223.0
))0(( SGΛ  

thus the optimal pairs according to the RGA tool are following: 
y1-u2, y2-u1, i.e. S12 and S21 (dominant elements). Further 


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

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251250

250251
))0((

..

..
SVGΛ  

thus the optimal pairs according to the RGA tool are 
following: y1-v1, y2-v2, i.e. SV11 and SV22 (dominant elements). 

Primary controllers Rij are determined for corresponding 
dominant elements of the GS (s) , i.e. S12 and S21. It means that 
parameters of the primary controllers R12 and R21 are designed 
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by arbitrary SISO synthesis method for dominant elements of 
the GS (s) S21 and S12 (S21 → R12 and  S12 → R21). 

The correction members KC are determined via (28), i.e. 
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Auxiliary controllers RP are determined by using relation 
(29), i.e. 
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III. SIMULATION VERIFICATION OF DESCRIBED APPROACH TO 

CONTROL OF MULTI-VARIABLE CONTROL LOOP 

A. Description of the Three-variable Controlled Plant of the 
Condensing Steam Turbine 

One of typical examples of MIMO controlled plant is e.g. a 
condensing steam turbine [11], [12]. In this case it is 
considered the condensing steam turbine with two controlled 
withdrawals which drives electric generator supplying 
determined part of electric network, which means the turbine 
operates without phasing into power network [1], [9]. The 
scheme of three-variable controlled plant of the condensing 
steam turbine is shown in the Fig. 4 [9]. 
 

NTST

ΔyST ΔyNT

~

ΔyVT

ΔMG

Δm’02, Δp02

Δm’01, Δp01

Δω

VT

 
Fig. 4 Three-variable control plant of condensing steam turbine 

 
Description of separate parameters in the Fig. 4 is 

following, i.e. ΔyVT, ΔyST, ΔyNT are changes of opening 
position of control valves of high-pressure (VT), medium-
pressure (ST) and low-pressure part of turbine (NT), ΔMG is 
a change of electric load of turbo-generator and Δm’01, Δm’02 
are changes of mass flows of withdrawn steam,  Δω is a 
change of angular speed of turbo-generator, Δp01, Δp02 are 
changes of steam pressures in corresponding withdrawals. 

Described parameters represent separate variables in the 
modified three-variable control loop with measurement of 
disturbance variables (see Fig. 1), i.e. manipulated 
variables (ui) are parameters ΔyVT, ΔyST, ΔyNT and disturbance 

variables (vi) are parameters ΔMG, Δm’01, Δm’02, controlled 
variables (yi) are parameters Δω, Δp01, Δp02. 
 

B. Mathematical Model of the Three-variable Controlled 
Plant of the Condensing Steam Turbine 

Mathematical model of the controlled plant of the condensing 
steam turbine is given by three differential equations (32) - (34). 
These differential equations were gained already after deriving 
and using linearization from project OTROKOVICE, which was 
elaborated by the firm ALSTOM Power [9]. 

The first differential equation represents moment balance 
which is in the following form 
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pp
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second and third differential equations represent flow through 
flow spaces and they are in the forms 
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The above mentioned equations (32) - (34) can be rewritten into 
better form (35) - (37) by introducing relative values, i.e. with 
regard to starting stable state-operational (the calculated point), at 
which relation of values can be generally written in the form 

0
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where separate operational parameters of controlled plant of 
the condensing steam turbine in the calculated point are 
following 
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The mathematical model of the linearized and modified 
controlled plant of the condensing steam turbine (see 
equations (37) - (39)) can also be represented in state-space 
form, i.e. 
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where 
0201

,, ppω ϕϕϕ are state variables and in this case also 

output variables, 
NTSTVT yyy ϕϕϕ ,,  are manipulated variables and 

0201 '' ,, mmMG
ϕϕϕ  are measurable disturbance variables. 

It is possible to determine, from two above mentioned 
equations, i.e. relation (40), the corresponding transfer 
function matrix of the controlled plant GS (s) (43) and transfer 
function matrix of measurable disturbance variables 
GSV (s) (44). Further, it is considered, the Laplace transform of 
the vector of controlled variables is generally given by (41). 
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(43)
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(44)

Step response of transfer function matrix of the controlled 
plant GS (s) (43) and transfer function matrix of the 
measurable disturbance variables GSV (s) (44) are shown in the 
following figures (see Fig. 5, Fig. 6). 
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Fig. 5 Step response of transfer function matrix of the controlled 

plant GS (s) (43) 
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Fig. 6 Step response of transfer function matrix of the measurable 

disturbance variables GSV (s) (44) 

C. Control Design of Three-variable Control Loop of the of 
the Condensing Steam Turbine 

The procedure of control described in the paragraph II.D, 
i.e. “Control Design of Multi-variable Control Loop” is used at 
control of the three-variable control loop of the condensing 
steam turbine. First the transfer functions of primary 
controllers are determined for optimal control pairs via (9), 
(10) or (19), (20). After that parameters of the correction 
members KC, which ensured invariance of control loop, are 
calculated by using of (26) (absolute invariance) or (28) 
(approximate invariance). Finally decoupling control loop is 
solved by using auxiliary controllers RP (29). 
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To determination of optimal control pairs (dominant 
elements) for the transfer function matrix of the controlled 
plant GS (s) (43) were used the RGA tool (10) and also the 
RNGA tool (20), i.e. 

• the RGA tool 
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The optimal control pairs according to the RGA tool and 
also the RNGA tool are following, i.e. y1-u1 (

VTyω ϕϕ − ), y2-u2 

(
STyp ϕϕ −

01
) and y3-u3 (

NTyp ϕϕ −
02

). These control pairs 

corresponding transfer functions S11, S22 and S33, which are 

dominant elements, i.e. 333322221111

~
,

~
,

~
SSSSSS === , of the 

transfer function matrix of GS(s) (43).  
Stability of the resulting control structure, i.e. control loop 

that uses determined optimal control pairs, can be verified by 
using Niederlinski index (NI value) (23), i.e. 
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which indicates that determined control pairs y1-u1, y2-u2 
and y3-u3 should ensure the stability of the control loop. 

Further they are determined, for above mentioned the 
optimal control pairs (dominant elements) of the transfer 
function matrix of GS (s), corresponding elements of the 
transfer function matrix of the primary controllers GR (s), i.e. 
in this case transfer functions R11, R22 and R33. Parameters 
these controllers (PI controllers) were determined by means 
of the method of balance tuning [35] and also the method of 
desired model [16]. To use these methods it was necessary to 
modify transfer functions, i.e. S11, S22 and S33 into the 
following form [1], [16] 
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then 33,3322,2211,11 RSRSRS xxx →→→ . 

a) method of balance tuning 
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b) method of desired model 
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Beside above mentioned methods to determine of 
parameters of the primary controllers can be possible to use 
also other SISO synthesis methods, e.g. Ziegler Nichols 
methods, Cohen-Coon method, Naslin method, Whiteley 
method, the SIMC method, the method of optimal module, the 
pole placement method, etc. [1], [13], [16]. 

Correction members KC, which ensure invariance of control 
loop, were determined via (26) and also (28). Relation (26) 
ensures absolute invariance of control loop. Thus, transfer 
function matrix of the correction members GKC (s) was 
determined in the following form 
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where separate elements of the transfer function matrix of 
correction members GKC (s), i.e. KC11, KC12, … can also be 
determined directly by using (25). 

Relation (28) ensures that control loop is approximately 
invariant. In this case, it was first necessary to determine 
optimal control pairs (dominant elements) for the transfer 
function matrix of the measurable disturbance variables 
GSV(s) (44) and optimal control pairs (dominant elements) for 
the transfer function matrix of the controlled plant GS(s) (43). 
It was used RGA tool, i.e. 
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where 
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The optimal control pairs according to the RGA tool are 
following, i.e. y1-v1 (

GMω ϕϕ − ), y2-v2 (
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(
0202 'mp ϕϕ − ). These control pairs corresponding transfer 

functions SV11, SV22 and SV 33, which are dominant elements, i.e. 
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VVVVVV SSSSSS === , of the transfer function 

matrix of GSV(s) (44). 
Correction members KC, which ensure approximately 

invariance of control loop, were determined via (28) in this form 
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Auxiliary controllers RP, which ensure decoupling control loop, 
were determined via (29). To determine the auxiliary controllers 
RP was used dominant and non-dominant elements of the transfer 
function matrix GS (s) (43). Dominant elements of GS(s) were 

determined above, i.e. 333322221111

~
,

~
,

~
SSSSSS === . Other 

elements of GS (s) were considered as non-dominant elements. 
Thus, transfer function matrix of the auxiliary controllers GRP (s) 
was determined in the following form 
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 (54) 

The scheme of modified three-variable control loop is 
generally considered according to Fig. 7. 
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Fig. 7 Modified three-variable branched control loop with 

measurement of disturbance variables 

D. Simulation verification of control loop 

The MATLAB/SIMULINK software [17], [18] is used to 
simulation verification for proposed approach to control of the 
three-variable control loop (see Fig. 8). 
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Fig. 8 Simulation scheme of the three-variable control loop in the 

MATLAB/SIMULINK software 
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Simulation courses of three-variable control loop of the 
condensing steam turbine, with utilization of chosen SISO 
synthesis methods, which are used at design of parameters of 
the primary controllers, are presented in the following figures 
(see Fig. 9 - Fig. 12). Fig. 9 and Fig. 11 show simulation 
courses of three-variable control loop where auxiliary 
controllers RP are not used and it is ensured only approximate 
invariance of control loop (53). Fig. 10 and Fig. 12 show 
simulation courses of three-variable control loop where 
auxiliary controllers RP (54) are used and absolute invariance 
of control loop (51) is ensured. 

The following parameters were chosen and used at all 
simulation experiments (see Fig. 9 - Fig. 12) 
• setpoints time vector (tw1, tw2, tw3): [40, 160, 180] 
• setpoints vector (w1, w2, w3):  [0.7, 0.7, 0.7] 
• disturbances time vector (tv1, tv2, tv3): [100, 220, 340] 
• disturbances vector (v1, v2, v3): [0.4, 0.4, 0.4] 
• time step (k): 0.05 
• total simulation time (tS): 400 
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Fig. 9 Simulation courses of control loop with utilization the method 
of balance tuning (49) without the use of auxiliary controllers RP and 

with the use of correction members KC which ensure approximate 
invariance of control loop (53) 
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Fig. 10 Simulation courses of control loop with utilization the 

method of balance tuning (49) with the use of auxiliary controllers 
RP (54) and with the use of correction members KC which ensure 

absolute invariance of control loop (51) 
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Fig. 11 Simulation courses of control loop with utilization the 

method of desired model (50) without the use of auxiliary controllers 
RP and with the use of correction members KC which ensure 

approximate invariance of control loop (53) 
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Fig. 12 Simulation courses of control loop with utilization the 

method of desired model (50) with the use of auxiliary controllers RP 
(54) and with the use of correction members KC which ensure 

absolute invariance of control loop (51) 
 

Variables in the simulation courses of control loop (see Fig. 9 -
 Fig. 12) correspond to variables described in the three-variable 
control loop of the condensing steam turbine (see Fig. 4), i.e. 
• controlled variable: 

0201 321 ,, ppω yyy ϕϕϕ →→→  

• manipulated variable: 
NTSTVT yyy uuu ϕϕϕ →→→ 321 ,,  

• setpoints: 
0201 321 ,, ppω www ϕϕϕ →→→  

• disturbance variable: 
0201 '3'21 ,, mmM vvv

G
ϕϕϕ →→→  

E. Evaluation of simulation courses and used approach to 
control of multi-variable control loop 

The simulation courses (see Fig. 9 - Fig. 12) were compared 
by using the ISE criterion (55) and the ITAE criterion (56) 
(see Table I). 

[ ] 
∞∞

≈−===
St

K dttedttytwdtteJ
0

2

0

2

0

2 )()()()(ISE  (55) 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 6, Volume 7, 2013 346



 

 

( )  ⋅≈−⋅=⋅==
∞∞ St

K dttetdttytwtdttetJ
000

)()()()(ITAE  (56) 

where tr is the control time, ts is the simulation time, w(t) is the 
setpoint, y(t) is the controlled variable, e(t) is the control error 
(see Fig. 13). 
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Fig. 13 Possible courses of control loop 

 
Table I Quality of control for simulation courses of three-variable 
control loop 

Fig. No. Fig. 9 Fig. 10 Fig. 11 Fig. 12 

JK1 - ISE 2.095 2.553 0.760 0.985 
JK1 - ITAE 746.056 326.157 226.924 94.818 
tr,1 (δ = 2%) 32.550 34.800 11.500 8.050 
umax,1 1.362 1.186 1.719 1.131 
ymax,1 0.750 0.700 0.735 0.708 

JK2 - ISE 0.534 0.293 1.666 0.3508 
JK2 - ITAE 258.218 132.908 385.663 159.336 
tr,2 (δ = 2%) 3.600 4.600 6.400 5.500 
umax,2 1.263 1.147 1.529 1.411 
ymax,2 0.709 0.700 0.829 0.700 

JK3 - ISE 1.047 0.334 3.608 0.400 
JK3 - ITAE 611.530 270.275 792.435 324.041 
tr,3 (δ = 2%) 4.750 5.550 7.2 6.600 
umax,3 1.788 1.665 2.202 1.969 
ymax,3 0.706 0.700 1.139 0.7 

*) tr,i - control time at change of setpoint wi (i = 1, 2, 3) 
 

In this case, gained simulation courses of control loop are 
compared from the point of view of minimal size of ISE 
criterion or ITAE criterion, further the time of control tr, 
maximum values of manipulated variable ymax and controlled 
variable umax (see Table I). They can be considered quite 
different points of view for optimal adjustment. Namely 
requirements for the smallest overshooting and for the shortest 
time of control are generally valid for optimal adjustment. 
However these requirements are antagonistic and therefore the 
optimal adjustment of controller is always a compromise 
between them. 

The RGA tool (9), (10) or RNGA tool (19), (20) can be 
used to compare properties of the original MIMO controlled 
plant GS (s) (43) and the MIMO control loop from the point of 
view degree internal coupling. It is considered the MIMO 
control loop with the use the auxiliary controllers GRP (s) (54) 
and without the use the auxiliary controllers GRP (s). In this 
case, the disturbance variables are not considered. 

The RNGA matrix of three-variable controlled plant (43) 
was determined by and (46). The RNGA matrix of closed loop 
transfer function matrix GW/Y (s) (6) of three-variable control 
loop was calculated in the following form, i.e. e.g. 

• the RNGA matrix of GW/Y (s) (6), where the MIMO 
primary controllers GR (s) (49) were used and the auxiliary 
controllers GRP (s) was not used 
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• the RNGA matrix of GW/Y (s) (6), where the MIMO primary 
controllers GR (s) (49) were used and the auxiliary 
controllers GRP (s) (54) was used 
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whereas ε > 0, ε → 0 [31], and 
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It is obvious from the simulation courses of the control loop 
shown in the Fig. 9 - Fig. 12 and from other simulation 
experiments that the proposed approach to control can be used 
for control of a control loop.  
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From the simulation courses of the control loop is obvious 
that the control loop is absolute invariant (see Fig. 10 and 
Fig. 12) and also approximate invariant (see Fig. 9 and 
Fig. 11). In this first case influence of disturbance variables is 
completely eliminated via separate elements of the transfer 
function matrix of the correction members GKC (s) (51), i.e. via 
the correction members KCij. In this second case influence of 
disturbance variables is eliminated only at steady state only via 
three elements of the transfer function matrix of the correction 
members GKC (s) (53), i.e. via the correction members KC11, 
KC22, KC33. Correction members were determined from the 
transfer function matrix of the controlled plant GS (s) and from 
transfer function matrix of the measurable disturbance 
variables GSV (s) by using RGA tool. 

From the simulation courses of the control loop (see Fig. 10 
and Fig. 12 compare to Fig. 9 and Fig. 11) is also obvious 
that the control loop is decoupled. It means that the condition 
of decoupling control loop was fulfilled. Fulfilment this 
condition was ensured via separate elements of the transfer 
function matrix of the auxiliary controllers GPR (s) (54), i.e. via 
the auxiliary controllers RPij. The auxiliary controllers RPij 
were determined from the transfer function matrix of the 
controlled plant GS (s) by using RGA tool and also RNGA 
tool. 

Parameters of the transfer function matrix of the primary 
controller GR (s) were determined by two SISO synthesis 
methods (49), (50) only for dominant elements of the transfer 
function matrix of the controlled plant GS (s). These dominant 
elements of the transfer function matrix of the controlled plant 
GS (s) were determined by using RGA tool and also RNGA tool. 

Thus, to determination of separate elements of the transfer 
function matrix of the auxiliary controllers GRP (s) and the 
correction members GKC (s) is not necessary to know 
parameters of separate elements of the transfer function matrix 
primary controllers GR (s), i.e. a change of parameters of the 
primary controllers does not affect correction members and 
auxiliary controllers. 

IV. CONCLUSION 

The goal of this paper was to describe and show one of the 
possible approaches to control of a MIMO control loop, which 
used the RGA tool, the RNGA tool and eventually also NI tool 
to determine optimal input-output variable pairings in the 
MIMO controlled plant, i.e. dominant elements of the transfer 
function matrix of the controlled plant GS (s) and also transfer 
function matrix of the measurable disturbance variables 
GSV (s). Advantage of described and used the approach to 
control is that the change of parameters of separate elements of 
the transfer function matrix of the primary controllers GR (s) 
(e.g. at change SISO synthesis method) does not affect 
parameters of separate elements of the transfer function matrix 
of correction members GKC (s) and auxiliary controllers 
GRP (s). This control method enables to use any known SISO 
synthesis method to determination of parameters of separate 
elements of the transfer function matrix primary controllers 

GR (s) for corresponding dominant elements of the transfer 
function matrix of the controlled plant GS (s). The control 
method combines ensuring decoupling control loop via 
auxiliary controllers, which are elements of transfer function 
matrix of the auxiliary controllers GRP (s), and the use of the 
separate elements of the transfer function matrix of the 
correction members GKC (s) for ensuring absolute invariance or 
approximate invariance of MIMO control loop. Simulation 
verification of proposed control method was presented on 
three-variable control loop of the condensing steam turbine. 

Determined parameters of the matrix controllers GR (s) and 
GRP (s) and also the correction members GKC (s) have good 
results of the control and fulfilled basic control requirements 
such as the stability, the reference signal tracking and 
disturbance attenuation. 

The described and used control method is valid under the 
following condition, i.e. this control method is considered for 
MIMO controlled plants with same number of input and output 
signals. MIMO controlled plants containing non-minimal 
phase, transport delay, or having high order dynamics may, in 
some cases, be also cause of certain limitations of the control 
method, e.g. from the point of view of ensuring absolute 
decoupling control loop and also absolute invariance of 
control loop. 

The future work will be focused on the reduction of some 
limitations of proposed control method, verification of other 
approach to control of a MIMO control loop and also 
simulation verification of proposed, let us say, modified 
version of control method for other MIMO controlled plants, 
e.g. model of balance platform system [36], the quadruple-tank 
process [2]. 
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