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Abstract – In nanoscale technologies process variability
makes it extremely difficult to predict the behavior of man-
ufactured integrated circuits (IC). The problem is especially
exacerbated in analog IC where long design cycles, mul-
tiple manufacturing iterations, and low performance yields
causes only few design to have the volume required to be
economically viable. This paper presents a new framework
that accounts for process variability by mapping the analog
design problem into a robust optimization problem using a
conic uncertainty model that dynamically adjust the level of
conservativeness of the solutions through the introduction of
the notion of budget of uncertainty. Given a yield requirement,
the framework implements uncertainty budgeting by linking
the yield with the size of the uncertainty set associated to the
process variations depending on the design point of interest.
Dynamically adjusting the size of the uncertainty set the
framework is able to find a larger number of feasible solutions
compared to other robust optimization frameworks based on
the well known ellipsoidal uncertainty (EU) model. To validate
the framework, we applied it to the design of a 90nm CMOS
differential pair amplifier and compared the results with those
obtained using the EU approach. Experimental results indicate
that the proposed Conic Uncertainty with Dynamic Budgeting
(CUDB) approach attain up to 18% more designs meeting
target yield.

Keywords – Nanoscale Technology, Microelectronics, Pro-
cess Variations, Robust Design Optimization, Geometric Pro-
gramming, Uncertainty Set

I. INTRODUCTION

The difficulty of designing and manufacturing IC in
nanoscale technologies is increasing to a point that only few
products make the volume required to be economically viable
[1]. This is particularly problematic in analog ICs where
the large spread in circuit’s performance metrics, caused by
process variability, translates in a significant yield penalty
[2], [3]. For this reason, it is essential for the design tools
to incorporate uncertainty to obtain design circuits that are
insensitive to random parameter variations as much as possible.

This paper describes the development of a framework for
the design of analog IC blocks with a guaranteed performance
yield bound. The method proposes to formulate the design with
uncertainty problem as a robust optimization problem [4] to be

mapped in the form of a special type of convex optimization
problem called geometric programming (GP) [5], [6], [7].

In general, process variations can be divided in two cate-
gories: global variations and local variations. Global variations
represents the variations occurring between different dies in
the same wafer or different wafers. Local variations represent
the variations between devices and interconnects within the
same die. While global variations can be reasonably modeled
as gaussian distributed random variables (RV), local variations
are much more difficult to model. Local variations are random
in nature, but they have strong spatial correlation and some
variation sources are known to be non-gaussian with asym-
metric distributions [8], [9]. Spatial correlation quantifies the
fact that devices close to each other are more likely to have
similar characteristics than devices far apart.

With process variations modeled as RVs, the most natural
way to formulate the design with uncertainty problem is
as a stochastic optimization problem [4], [10], [11]. Unfor-
tunately, stochastic optimization has two major drawbacks.
First, it assumes that uncertainty has an accurate probabilistic
description, which often is not the case [4]. Second, it is
plagued by high computational complexity [7]. For these
reasons, in this work we use robust optimization rather than
stochastic optimization. Robust optimization is an approach to
optimization under uncertainty, in which the uncertainty model
is not stochastic, but rather deterministic and set based [4],
[12]. Robust optimization has recently become very popular
[13], [14] thanks to the the development of fast interior point
algorithms for convex optimization [7].

In robust optimization instead of looking for a solution
that is robust to uncertainty in some probabilistic sense, we
construct a solution that is feasible for any realization of
the uncertainty in a given set. The resulting set-based design
problems can be formulated as follows:

minimize: f0(x)

subject to: fi(x, ui) ≤ f (i)limit ∀ui ∈ Ui, i = 1, ...,m
(1)

Where f0 is the objective function to be optimized (i.e. the
performance metric to be optimized), x = (x1, x2, ..., xn)
is the vector of variables the objective function depends on
(i.e. the design and process parameters), fi(x, ui) are the
performance constraints with uncertainty parameters ui, and
f
(i)
limit is the maximum limit that can be imposed on the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 7, 2013 143



performance constraints function fi(x, ui). The uncertainty
parameters ui ∈ Rk are assumed to take arbitrary values in the
uncertainty sets Ui ⊆ Rk. The goal is to compute minimum
cost solutions x∗ ∈ Rn among all those solutions which are
feasible for all realization of disturbances ui within Ui.

Requiring that the design solutions x∗ must guarantee the
performance constraints, lead to overly conservative design
solutions and restrict significantly the applicability of robust
optimization [4]. In practice is often sufficient to seek to ”im-
munize” the design solutions in a more relaxed ”probabilistic”
sense. In this work, we address the restriction by using the
concept of ”budget of uncertainty”. The notion of budget of
uncertainty allows to structure the uncertainty set in a way
that flexibly explore the trade-off between yield projection
and design parameters variability and the solutions obtained
are expected to be close to those obtained using stochastic
methods. There are several possible ways the notion of budget
of uncertainty can be implemented.

An approach, that has recently gained popularity among
several authors [1], [15] is to structure the uncertainty set using
an ellipsoidal uncertainty (EU) model. The idea is to approxi-
mate the uncertainty set, using the maximal ellipsoidal that can
be inscribed inside the design parameters variation region. In
order to capture variability, the design and process parameters
(i.e. transistors’ length (L), width (W), threshold voltage (Vth),
oxide thickness (Tox), etc.) are modeled as random variables
with some joint probability density function (pdf) p (µ,Σ),
where µ is a vector of means and Σ is a covariance matrix.
For any vector X ∈ Rn with random perturbations around its
center point X0 ∈ Rn, and non singular covariance matrix
Σ ∈ Rn×n, the parameter variability can be estimated by an
ellipsoid uncertainty set in Rn:

Uε =
{
X s.t. (X −X0)

T
Σ−1 (X −X0) ≤ ψ2

}
(2)

where ψ and Σ determine how far the uncertainty ellipsoid
extends in every direction from X0. Figure 1 illustrates an
ellipsoid in R2. The length of the axis of the ellipsoid are
proportional to ψ. The proportionality factors λ1 and λ2 are
given by the eigenvalues of the matrix Σ, and the direction of
the axis l1 and l2 are given by the eigenvectors.

x2

x1



x20

x10

X0

Fig. 1. Example of a two-dimensional ellipsoidal uncertainty set

If Σ is a symmetric and positive semidefinite matrix (that is,

Σ = ΣT ≥ 0) an alternative representation of (2) can be
obtained by making the substitution Σ−1/2(X −X0) = u:

Uε =
{
X = X0 + Σ1/2u s.t. ‖u‖2 ≤ ψ

}
(3)

where ‖u‖2 = (uTu)1/2 is the 2-nom of vector u ∈ Rn. The
ellipsoid represent an n-dimensional region, where the vector
X varies around the center point X0. The vector u represents
the movement of X around X0. The parameter variations are
bounded within the ellipsoid region. Although, the approach
can achieve satisfactory results [1], [15], often, it can be signif-
icantly improved. Figure 2 illustrates the major shortcoming of
the EU method: the maximal inscribed ellipsoid in most cases
leaves out significant regions of the feasible design space.

x2

x1



x20

x10

X0

Uncertainty
Ellipsoid

Feasible Space

Fig. 2. Example of two-dimensional ellipsoidal uncertainty set giving modest
coverage of the feasible design space

The reason for this shortcoming is that the size of the
ellipsoid is solely determined by the uncertainty distribution of
the design space (i.e. the variability of the design and process
metrics). There is no information about how the design space
maps into the performance space. For a desired performance
yield η, neglecting the dependence of the performance metrics
on the design and process metrics may lead to an over
conservative estimation of the variations.

To address the above limitation we propose to use a second
order Cone Uncertainty set with Dynamic adjustment of the
uncertainty Budget (CUDB).

The rest of the paper is organized as follows. Section II
describes: 1) how the framework models design and process
parameter variations, 2) the implementation of the framework
and 3), some of the underying algorithms. Section III discusses
the results obtained with the CUDB method and compare
them with the results obtained with the EU method. Finally,
Section IV summarizes the results of our work and provides
conclusions and future research directions.

II. CONIC UNCERTAINTY DYNAMIC BUDGETING
FRAMEWORK

In the proposed framework, we flexibly adjust the level
of conservativeness of the robust solutions by linking the
probabilistic bounds on the constraint performance violations
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to the performance yield η:

minimize: f0(x)

subject to: fi(x, ui) ≤ f (i)limit ∀ui ∈ Ui (η) , i = 1...m
(4)

A. Variability Model

To capture the variations that affect design and process
parameters, we propose to use a second order conic uncertain
set. Mathematically, a second order cone (SOC) in Rn+1 is
defined as [7]:

{(X, s) s.t. X ∈ Rn, s ∈ R, ‖X‖2 ≤ s} ⊆ Rn+1 (5)

where X is the vector of random variables representing the
design and process parameters, and s is the size of the
uncertainty set. Figure 3 illustrates the boundary of a second-
order cone in R3.
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Fig. 3. Example of second-order cone in R3, {(x1, x2, s) s.t. (x2
1+x2

2)
1/2

≤ s}

Choosing the appropriate smax value, we can flexibly vary
the uncertainty set to guarantee that all possible perturbation
values in the feasible solution space are captured. If we denote
with s the size of the uncertainty, and with δX the random
perturbations around a nominal design X0, the uncertainty set
can be put in the form:

UC = {(δX, s) s.t. δX ∈ Rn, s ∈ R,
‖δX‖2 = ‖X −X0‖2 ≤ s,
smin < s ≤ smax} ⊆ Rn+1

(6)

where smin = 0. If we consider a design point XA, to estimate
the variations around XA (that is δXA) we vary s from 0
to smaxA, with smaxA being the size of the uncertainty of
the variations δXA. At a different location XB , there exist a
different uncertainty set whose size is given by smaxB that
encompasses the variations δXB . Note that to capture all
possible perturbation values in the feasible region, not only
we need to be able to vary the size of the set but also its
shape. This is possible by extending the second-order cone
from its standard form (6) to the general form:

UC = {‖AδX + b‖2 ≤ smax} (7)

where δX ∈ Rn, A ∈ Rk×n, and b ∈ Rn. Figure 4 illustrate
how the conic uncertainty model allows to change size (smax)

and shape (matrix A) of the uncertainty set to fit the feasibility
space.

smaxA

XA

smaxB

XB

Conic Uncertainty Set

Design and Process
Variation

Feasible Space

Fig. 4. The conic uncertainty model allows changing size and shape of the
uncertainty set.

To determine the relationship between smax and the nomi-
nal design parameters X0 we use a fitting technique that rely on
data obtained by sampling the design and process parameters
variations. As discussed before, local variations are difficult
to model, especially in presence of strong spatial correlation.
Following [9], [16], [17], the entire die can be partitioned into
a number of grid elements. Each grid element on the chip is
denoted by its coordinate position: l = (x, y). The variations at
any two grids li and lj on the same chip will be correlated. The
correlation between two grid elements is assumed to depend
on the Euclidean distance between them:

ρ (li, lj) = ρ (‖li − lj‖) =

= ρ

(√
(xi − xj)2 + (yi − yj)2

)
(8)

The covariance function of correlated variations can be then
determined as:

cov (li, lj) = σiσjρ (‖li − lj‖) (9)

where σi and σj are the standard deviation of the variations at
grid li and lj respectively, and ρij is the correlation function.
Note that standard deviations σi and σj , and the correlation
function ρij across various dies will be different [9], therefore,
it is not possible to use a unique uncertainty set for all design
candidates.

In the fitting procedure, to derive the correlation function
ρ(‖li − lj‖) we employs the Matern model [18]. We start
the fitting procedure by performing random sampling around
a nominal design X0 and capture the largest variation from
the nominal value. The distance obtained is the smax value
associated to the particular nominal design X0. After repeating
the simulation a large number of times we collect all data pairs
(X0, smax) and fit them to a quadratic relationship of the form:

smax =
n∑
i=1

λix
2
i +

n∑
i=1

αixi +
n∑
i,j

βijxipj + k (10)

Before describing the framework implementation is impor-
tant to emphasize that the viability of the approach is based on
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recent theoretical work that formalizes how robust optimization
problems can be solved via convex optimization [4], [19]. The
framework maps the problem of designing an analog circuit in
a special type of convex optimization problem called geometric
programming (GP). A geometric program is an optimization
problem of the form:

minimize: f0(x)

subject to: fi(x) ≤ 1, i = 1, ..., p

gi(x) = 1, i = 1, ...,m

(11)

where f0, f1, ..., fp are posynomial functions and g1, ..., gm
are monomial functions. f0 is the objective function to be
optimized (i.e. the performance metric to be optimized), x =
(x1, x2, ....xn) is the vector of variables the objective function
depends on (i.e. the design and process parameters) and fi(x)
and gi(x) are the constraints. A function g is called a monomial
if it has the form:

g(x1, x2, ...xn) = c
n∏
i=0

xαi
i (12)

where c ≥ 0 and αi is a real number. A posynomial function
f is a sum of monomials.

f(x1, x2, ...xn) =

k∑
i=0

ci

n∏
j=0

x
αij

j (13)

If the circuit design problem can be expressed in the form
of a GP problem, then it is possible to use interior-point
algorithms for solving the problem very efficiently in terms of
computational complexity. Interior point methods for GP are:
1) extremely fast, 2) find globally optimal solution or provide
proof of unfeasibility (i.e. specifications are too tight), and
3) independent of starting point [19] [20]. If for simplicity we
consider the long channel model of a MOS transistor operating
in saturation we easily realize that all relevant equations we
need to describe an analog circuit can be put in the form of
monomial functions of the process and design variables µCox,
W , L and Id:

Vov =
√

2 µ−0.5C−0.5ox W−0.5L0.5I0.5d

gm =
√

2 µ0.5C0.5
ox W

0.5L−0.5I−0.5d (14)

Cgs =
2

3
C1
oxW

1L1

Analogously, it is possible to develop more complex GP
models that take into account channel length modulation, body
effect, short channel effect, and other second-order effects and
non idealities necessary to adequately describe the large and
small signal characteristics of nanoscale MOS transistors.

The key contribution of the approach proposed is to model
the dependence between the variation in the performance
constraints (e.g bandwidth, gain, power consumption, etc.) and
the variation in the design parameters (e.g. transistor sizes,
threshold voltage, oxide thickness, etc.). For a given yield re-
quirement, the performance yield information is mapped back
onto the design space and used to determine the associated size
of the uncertainty set. With respect to the notion of budget of
uncertainty associated to a given yield requirement, we can
rewrite the expression of the conic uncertainty set as:

{‖AδX(η) + b‖2 ≤ smaxΩ(η)} (15)

where Ω(η) is a factor scaling the conic set size according
to the specified yield requirement η. The scaling factor Ω(η)
is restricted to lie in the interval [0, 1]. If Ω(η) = 0, there
is no protection against parameter variability. If Ω(η) = 1,
the performance constraint is completely protected against
variability. If Ω(η) is between 0 and 1, there exists a trade off
between yield protection and parameter variability. Assuming
the physical parameter variations δX follow a multivariate
gaussian distribution δX ∼ Nn(µ,Σ), then the yield as-
sociated variations δX(η) will also be gaussian distributed
and of the form δX(η) ∼ Nn(Ωµ,Ω2Σ). The subscript n
indicates that δX and δX(η) ∈ Rn. Expressing the effect of
the variations on the performance constraint functions in terms
of the desired yield probability:

Prob {f (X0 + δX(η)) ≤ flimit} ≥ η (16)

and approximating the constraint functions with a fist order
Taylor expansion we can derive that:

Prob {f (X0 + δX(η))) ≤ flimit} '

' Φ

(
flimit − Ωµ

Ωσ

)
≥ η

(17)

and therefore extract Ω from η by simply inverting the
well know and tabulated [21] cumulative distribution function
(CDF) Φ(·).

B. Framework Implementation and underlaying algorithms

Figure 5 illustrates our proposed framework for optimizing
the design of analog circuits and systems subject to process
variations. The uncertainty budget introduced to account for
variability is modeled using a second order cone set. The size
and shape of the uncertainty set is dynamically adjusted based
on yield requirement. The framework acts as a wrapper around
the nominal design, the physical technology, the variability
model, the performance requirements and the GP convex
optimization software (in our case CVX [22]). The framework
consists of six steps.

• Design exploration

• Performance extraction

• Objective and constrain functions construction

• SOC size fitting

• Yield mapping and constraints formatting

• GP convex optimization solver

The first step consists of simulating a large number of
perturbations of the nominal circuit. The various circuit in-
stances simulated are automatically generated based on the
perturbation model provided. The nominal circuit and the
technology model are provided in a SPICE-like format.

The second step consists of analyzing all simulation results
and extract from them a numerical function for each perfor-
mance metric of interest. In our case the performance functions
extracted were gain, bandwidth and power dissipation. How-
ever, thanks to its modularity the framework can be easily
extended to any performance metrics.

The third steps is two fold. Initially, we approximate each
performance function with a monomial, and then we further
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Design Exploration

Performance Extraction

Monomial Fitting

Posynomial Fitting

SOC size Fitting

Yield Mapping and Constraints 
Formatting

GP Solver

Optimal Solution

Yield
Nominal 
Circuit

Technology 
Model

Perturbation 
Model

Objective and Constraints 
Posynomials

Fig. 5. Framework Structure

improve the approximation by taking the initial monomial and
fitting it in a posynomial with K terms. In our framework we
used K=5. The choice of K is a trade off between accuracy
and computational time. Both the objective and inequality
constraints functions must be put in posynomial form to be
processable by the GP convex optimization solver. Algorithm
1 summarizes the steps for constructing a monomial function.
Algorithm 2 summarizes the steps for transforming a mono-
mial in a posynomial with K terms.

Algorithm 1 Monomial Fitting

1: procedure BUILDMONO(X(i), f (i))
2: . Given N data points (X(i), f (i)) with i=1,..,N
3: . X(i) ∈ Rn+ and f (i) ∈ R+

4: . fit the data with a monomial: f̂(X) = cxα1
1 ...xαn

n

5: for i← 1 to N do
6: Y (i) ← logX(i) . log transform
7: z(i) ← logf (i) . log transform
8: end for
9: . find least-square approximation

10: minimize
∑N
i=1

(
logc+ α1y

(i)
1 + ...+ αny

(i)
n − z(i)

)
11: return c, α1, ...., αn

12: end procedure

The fourth step computes the size of the SOC uncertainty
of each constraints function according to (10).

The fifth step performs 1) the mapping between yield
requirement and parameter variability summarized in (17), and
2) reformats the constraints functions back into a posynomial
form. Since as part of the mapping process the constraints
functions f(X) are approximated by a first order Taylor
expansion they take the form:

f(X) = f(X0 + δX) ≈ f(X0) +∇f(X0) · δX =

= f(X0) +
n∑
i=1

(
∂f

∂xi

) ∣∣∣∣
xi0

δxi
(18)

and can be expressed as:

f(X0) + max
∀δX

{
n∑
i=1

(
∂f

∂xi

) ∣∣∣∣
xi0

δxi

}
≤ flimit (19)

Unfortunately, it can be easily worked out that the derivative
term in (19) is not posynomial. This is because the coefficients
αikck in (21) can be either positive or negative.

f(X) =
K∑
k=1

ck ·
n∏
l=1

xαlk

l (20)

∂f

∂xi
=

K∑
k=1

αikck ·
n∏
l 6=i

xαlk

l · xαik−1
i (21)

By substituting (20) and (21) in (19) the constraints can be
rewritten as in (23):

K∑
k=1

ck ·
n∏
l=1

xαlk

l +

+ max
∀δX


n∑
i=1


K∑
k=1

αikck ·
n∏
l 6=i

xαlk

l xαik−1
i︸ ︷︷ ︸

= gik(X)

 δxi


≤ flimit

(22)

K∑
k=1

ck ·
n∏
l=1

xαlk

l + max
∀δX

{
n∑
i=1

(
K∑
k=1

gik(X)

)
δxi

}
≤ flimit

(23)

The obstacle caused by the presence of negative coefficients
can be solved by properly reformatting the constraints expres-
sions. To this end we introduce two vectors φ+, φ− ∈ Rn to
collect the positive and negative coefficients. Thanks to the
introduction of the vectors φ+, φ− we can further manipulate
(23):

K∑
k=1

ck ·
n∏
l=1

xαlk

l + max
∀δX

{
n∑
i=1

(
K∑
k=1

gik(X)

)
δxi

}
=

=
K∑
k=1

ck ·
n∏
l=1

xαlk

l + max
∀δX
{〈φ+, δX〉+ 〈φ−, δX〉} ≤ flimit

(24)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 7, 2013 147



Algorithm 2 Posynomial Fitting

1: procedure BUILDPOSY(c, α1, ..., αn, X
(i), f (i))

2: . Given N data points
3: . (X(i), f (i)) with i=1..N , X(i) ∈ Rn+, f (i) ∈ R+

4: . and its monomial approximation (c, α1, ..., αn )
5: . fit the data with a K terms posynomial:
6: . f̂(X) =

∑K
j=1(c/K)x

λj,1

1 ...x
λj,n
n

7: . initialize posynomial to monomial
8: f̂(X)←

∑K
j=1(c/K)xα1

1 ...xαn
n

9: . compute root mean square error of monomial

10: rmseMono←
√

1
N

∑N
i=1

(
f̂ (i) − f (i)

)2
11: . set target rmse
12: rmseTarget← 0.9× rmseMono . improve 10%
13: p← 1 . perturbation trials
14: index← 0 . track best posynomial
15: rmsErr← rmseMono . smallest acceptable rmse
16: repeat
17: . pick K × n normally distributed random values
18: . δj,l (elements of matrix ∆)
19: ∆← randn(K,n) . mean=0, stddev=1
20: . make the standard deviation 0.2 |αl|
21: for j ← 1 to K do
22: for l← 1 to n do
23: δj,l ← 0.2 ∗ αl ∗ δj,l
24: λj,l ← αl + δj,l
25: end for
26: end for
27: . perturb the exponents in the monomial terms
28: f̂p(X)←

∑K
j=1(c/K)x

λj,1

1 ...x
λj,n
n

29: . compute root mean square error of posynomial

30: rmsePoly←
√

1
N

∑N
i=1

(
f̂p

(i)
− f (i)

)2
31: if rmsePoly ≤ rmsErr then
32: rmsErr← rmsePoly
33: index← p . pick the best among the trials
34: end if
35: p← p+ 1
36: until rmsePoly ≤ rmseTarget or p ≥ pmax
37: if index < 1 then . fitting did not converge
38: . must return the original monomial
39: for j ← 1 to K do
40: for l← 1 to n do
41: λj,l ← αl
42: end for
43: end for
44: end if

45: return Λ . size(Λ) = K × (n+ 1)

46: . Λ =

c/K λ1,1 ... λ1,n
...

...
. . .

...
c/K λK,1 ... λK,n


47: end procedure

where 〈a, b〉 denotes the inner product of two vectors a and b.
If we use Cauchy-Schwartz inequality:

〈a, b〉 ≤ ‖a‖2 · ‖b‖2 (25)

and recall the SOC uncertainty is modeled as ‖δX‖2 ≤ s we
can rewrite (24) as:

K∑
k=1

ck ·
n∏
l=1

xαlk

l + ‖φ+‖2 · s+ ‖φ−‖2 · s ≤ flimit

smin ≤ s ≤ smax

(26)

At this point, applying the properties of the 2-norm of a vector
we can introduce two new positive variables r1 and r2:

r1 = ‖φ+‖2 ⇔ r21 = φT+φ+

r2 = ‖φ−‖2 ⇔ r22 = φT−φ−
(27)

and conclude that the non-posynomial constraints in (19) can
be replaced by a set of posynomial constraints in the variable
set (X, r1, r2, s). The set of posynomial constraints can be put
in the form:

K∑
k=1

ck ·
n∏
l=1

xαlk

l + r1 · s+ r2 · s ≤ flimit

φT+φ+r
−2
1 ≤ 1

φT−φ−r
−2
2 ≤ 1

Xmin ≤ X ≤ Xmax

smin ≤ s ≤ smax

(28)

Finally, the sixth step solves the GP convex optimization
problem. An optimal assignment of the design parameters
that minimizes the performance objective subject to the given
constraints in presence of process variations is obtained.

III. EXPERIMENTAL RESULTS

To test our approach we applied it to the design of a 90
nm CMOS differential amplifier and compared the results with
those obtained using the ellipsoidal uncertainty method. The
amplifier schematic is shown in Figure 6. The framework is
implemented using MATLAB integrated with HSPICE for cir-
cuit simulation, and CVX for GP optimization. The goal of the
design was minimizing power consumption while satisfying a
minimum gain requirement.

minimize: Power (W,L, Vth, Tox)

subject to: Gv (W+δW,L+ δL, Vth+δVth, Tox+δTox)

≥ Glimit
(29)

where Gv is the DC voltage gain expressed in dB, and
Glimit=51 dB is the lower bound limit we want to satisfy. The
design variables used in the optimization process include the
design parameters W (channel width) and L (channel length)
and the process parameters Vth (threshold voltage) and Tox
(oxide thickness).

In this example, we set a 100% yield requirement, and per-
form robust design optimization using both the EU model and
the CUDB model. The results obtained running Montecarlo
simulations show that the optimal design achieved using the
EU method causes about 16% performance violation (Figure
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Fig. 6. Schematic of CMOS differential amplifier
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7), while the solution generated by the proposed method
perfectly meets the the required gain specification (Figure 8).

The proposed method (CUDB) maps the performance
space back onto the design space to form a yield-associated
uncertainty set. On the contrary, the EU method relies only on
the distribution variations in design space. Due to the highly
nonlinear behavior of analog circuits, neglecting the mapping
relationship between design parameters and performance may

lead to a very conservative estimation even if the yield speci-
fication can be guaranteed.

Figure 9 compares the power consumption achieved by EU
and CUDB for different yield specifications. At 100% yield
specification, a minor reduction of power consumption (about
8%) by the proposed method can be observed. The improve-
ment increases significantly when lower yield is required, and
becomes stable with yield specification below 80%. On average
the proposed method has achieved a 18% reduction of design
cost.
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Fig. 9. Comparison of power consumption between ellipsoidal method and
proposed method for differential pair design

IV. CONCLUSION

This paper presents a new robust optimization framework
for the design of analog circuits and systems in presence
of process variations. The proposed framework is based on
a conic uncertainty model that incorporates the concept of
budget of uncertainty by associating the performance yield
requirement with the size and shape of the conic uncertainty
set. With process variations characterized through the proposed
model, the design of analog circuits and systems can be posed
in the form of a robust optimization problem that can be
reformulated and efficiently solved as a general GP convex
problem. Experimental results based on the application of
the framework on the design of a differential amplifier show
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that, when compared to other existing methods, our method
produces a larger number of feasible solutions and a design
performance improvement up to 18%. Future work will include
validation on larger scale designs and iterative refinements of
the models based on earlier results. We also plan to extend
the framework to as many performance metrics as possible
including noise, stability and settling time.
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