
 

 

  
Abstract—This paper presents a denoising method to preserve the 
image fine details and edges while effectively reducing the additive 
noise. The denoising mothod is performed in a two-phase process. The 
first process reduces noise in the corrupted image to a certain level by 
using a small filtering window to ensure that the image fine details and 
edges are still preserved. Then, further denoising is performed only in 
the smooth regions by using a bigger filtering window to remove the 
remaining noise more effectively. The use of two different filtering 
window sizes in the processes is important to achieve an optimum 
preservation of the image fine details and edges. The utilization of the 
mean deviation in the determination of the threshold value contributes 
to a more accurate division of smooth and nonsmooth regions. The 
performance of the proposed denoising method is investigated by the 
visual effects, method noise and objective image quality evaluation. 
Simulation results demonstrate that the proposed method is effective 
for preserving the image fine details and edges while eliminating the 
noise. This method provides high performance for all evaluation 
criteria in comparison to the conventional approaches. 
 

Keywords—Fine details and edges preservation, Image denoising, 
Mean deviation, Smooth region. 

I. INTRODUCTION 
eveloping a denoising method that is capable of 
suppressing additive noise totally from a noisy image 
without corrupting the image details, is still a challenging 

problem. The task is especially difficult in images that are rich 
in textures and edges. Until recent years, many related denoising 
methods with different approaches have been proposed [1]-[6], 
based on linear and nonlinear denoising methods. 

  Generally, linear filters [7][8] degrade the edges and produce 
blurrer image. However, if the image pixel intensities are nearly 
constant (without edges), and if the image is degraded by the 
additive white Gaussian noise (AWGN), the linear filters are the 
best in the sense of the least squares and the maximum of 
probability [9]. The Wiener filter is a well-known linear filter 
and has better performance in preserving the fine details and 
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edges while smoothing the noisy image compared to other linear 
filters such as the Gaussian filter or mean filter. However, the 
Wiener filter performance is significantly affected by the 
estimation accuracy of the original image and noise properties. 

  On the other hand, nonlinear filters [10][11][12] detect and 
eliminate image pixels that are determined as noise. Nonlinear 
filters such as the bilateral filter (BL) [12] and the total variation 
filter (TV) [10] are reported to have superior performance in 
noise removal and preservation of strong edges. The BL 
performs spatial averaging by taking a weighted sum of the 
pixels in a local neighbourhood; the weights depend on both the 
spatial distance and the intensity distance. The TV searches for 
the minimal energy functional to reduce the total variation of the 
image by using a global power constraint. Therefore, the TV 
reduces the total variation of the noisy image to be as close as 
possible to the original image. However, the performance of the 
BL and TV depend significantly on the selection of the filter 
weight settings, which control the trade-off between the fine 
details and edges. In many cases, the fine details and textures 
can be severely oversmoothed. Therefore, despite of 
extensively proposed denoising methods, developing a 
technique that could restore a noisy image identical to its 
original image is still a difficult task. 

  In this paper, we propose the smooth region’s mean 
deviation-based (SR-MD) denoising method. The main goal of 
the SR-MD is to preserve the image fine details and edges while 
effectively reducing the noise level. 

  The paper is organized as follows. The SR-MD algorithm is 
described in Section II. A performance comparison of the 
SR-MD is discussed in Section III. Finally, the concluding 
remarks are drawn in Section IV. 

 

II. PROPOSED DENOISING METHOD 
  In this section, we describe the SR-MD, which is performed 

in the spatial domain. Assume that an original image y(i, j) is 
corrupted by an additive zero-mean white Gaussian noise n(i, j). 
The mean (”average”, μ) and variance (standard deviation 
squared, σ2) are the defining parameters of the AWGN. It has a 
random value within the distribution and does not depend on the 
original image intensity [13]. The noisy image, x(i, j), is given 
by 
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A. SR-MD  
  The proposed denoising method is performed in a two-phase 

process. First, the image is restored by reducing noise to a 
certain level that will still preserve the image fine details and 
edges. Secondly, the image restored by the first process is 
further denoised only in the smooth regions to remove 
remaining noise. We expect to produce a final restored image 
with effectively reduced noise and well-preserved fine details 
and edges by utilizing the proposed approach. 

  In the first process, our main goal is to preserve the fine 
details and edges as much as possible. Therefore, we seek, 
around each pixel, the window with the smallest distance to the 
mean deviation (MD) [14] of the additive noise, MDr.  

  For the the SR-MD method, we propose the usage of the MD, 
rather than the variance or standard deviation to estimate the 
noise distribution. The advantage of the noise estimation by 
using the MD over the standard deviation is that the MD is 
actually more efficient than the standard deviation in practical 
situation [15]. The standard deviation emphasises a larger 
deviations; by squaring the values makes each unit of distance 
from the mean exponentially (rather than additively) greater  
[15]. This will cause overestimation of the noise distribution. 

The MD is the mean of the absolute difference between a set 
of pixel values, f(i, j), with the size of a x b pixels, and their 
mean, μf(i, j). The MD is defined by 
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 For Gaussian distribution, the standard deviation, σ, can be 
determined by 1.253 x MD.  

   For each pixel, we utilize an adaptive square window, 
denoted as q(i, j).  q(i, j) should be small enough to preserve 
the fine details in the image [16]. Therefore, we set the size of 
q(i, j) to 3 x 3 pixels. For each q(i, j), we define five different 
windows, qv(i, j), surrounding the (i, j)th pixel of the noisy 
image x(i, j), where v = 1, 2,…, 5 (see Fig. 1). The windows q2(i, 
j) to q5(i, j) are utilized to detect the fine details and edges more 
effectively. For each (i, j)th pixel of x(i, j), the mean deviation 
of each window qv(i, j) is calculated and denoted as MDqv(i, j). 
We compute the distance of each MDqv(i, j) from MDr , dMDqv(i, 
j), by 
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We find the window qv(i, j) with the lowest dMDqv(i, j), (i.e. the 
closest distance to MDr), denoted as qv(i, j) (min). The mean and 
mean deviation of the window qv(i, j) (min), μqv(i, j) (min), and 
MDqv(i, j) (min), respectively, are employed to restore the (i, j)th  

 
v=1        v=2        v=3 

 
 

 
v=4       v=5  

 
Fig. 1 Adaptive window filter for SR-MD, qv(i, j) 

 
 
pixel of x(i, j). The restored image, g(i, j), is obtained by 
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In (5), the (MDr)2 is utilized as a threshold value. In the noisy 
environments, especially in high noise level, the noise existence 
may produce a large deviation among the pixels, which 
sometimes exceed the MDr. Therefore, we utilize slightly 
higher threshold value, (MDr)2 to divide the smooth and 
nonsmooth regions. 

  If the MDqv(i, j) (min)  ≤  (MDr)2, the(i, j)th pixel of the 
corrupted image x(i, j) is assumed belongs to the smooth region, 
(i.e. approximates the average value of the (i, j)th pixel of the 
original image y(i, j)). Therefore, the mean μqv(i, j) (min) is 
assigned to the(i, j)th pixel of g(i, j). If the MDqv(i, j) (min)  >  
(MDr)2, the (i, j)th pixel of the corrupted image x(i, j) is 
assumed belongs to the nonsmooth region. When μqv(i, j) (min) + 
MDqv(i, j) (min)  ≥  μqv(i, j) (min) , the (i, j)th pixel value of x(i, j) is 
assumed to be higher than the (i, j)th pixel value of y(i, j). Thus 
the MDqv(i, j) (min) value is subtracted from μqv(i, j) (min) and assigned 
to the  (i, j)th pixel of g(i, j). Otherwise, when μqv(i, j) (min) + 
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MDqv(i, j) (min)  <  μqv(i, j) (min) , the (i, j)th pixel value of x(i, j) is 
assumed to be lower than the (i, j)th pixel value of y(i, j). Hence, 
the MDqv(i, j) (min)  value is added to μqv(i, j) (min) and substituded to 
the  (i, j)th pixel of g(i, j).. 

  The second process is to eliminate the remaining noise in the 
smooth regions of the restored image g(i, j). The window should 
be large enough to be robust against the noise in the image  [16]. 
Therefore, we utilize a 5 x 5 square window, p(i, j), centered on 
(i, j) of the image g(i, j). The mean and mean deviation of this 
window, denoted as μp(i, j) and  MDp(i, j), respectively, are  
employed to restore the output image of the first process, g(i, j). 

  The final restored image (i.e. estimated original image), h(i, 
j), is obtained by 
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Since the overall noise in g(i, j) has been reduced, the MDr is 
utilized as the threshold value, instead of (MDr)2. If the  (MDp(i, 

j) < MDr, the (i, j)th pixel of the final restored image h(i, j) is 
assumed to belong to the smooth region. Therefore, the mean 
μp(i, j) is assigned to h(i, j). If the  MDp(i, j)  ≥  MDr , the (i, j)th 
pixel of the final restored image h(i, j) is assumed to belong to 
the nonsmooth region, and the (i, j)th pixel value of g(i, j) is 
assigned to h(i, j) (i.e. no denoising is performed). 
 

B. Experiments with the SR-MD 
  We have conducted experiments on the standard images 

from the SIDBA database to test the performance of the SR-MD. 
The images are contaminated by the AWGN with constant and 
known noise variance, σ2. In Fig. 2 we present how the proposed 
method works in different image patterns for the case σ2 = 100. 

  Fig. 2(a) illustrates the fact that proposed denoising method 
is well adapted to recovery of the oscillatory patterns. We can 
observe that the edges are preserved and a certain level of noise 
has been suppressed. 

  Fig. 2(b) shows the denoising at an edge in a smooth region. 
Note that the edge has been successfully distinguished from the 
noise. The edge remains preserved while noise level in the 
surrounding smooth region is better suppressed. 

  Due to the nature of this method, the proposed method 
performs denoising best in the smooth region (see Fig. 2(c)). In 
the smooth region, there are no significant discontinuity pixel 
values, leading to effective reduction in this region. 

  In smooth region with some changes of gradient (see Fig. 
2(d)), most of the original smooth region is well reconstructed. 

III. RESULTS AND DISCUSSION 
  In this section, we compare different denoising approaches 

based on three well-defined criteria: the method noise, visual 
effect, and objective image quality evaluation of the restored 
images. Note that every criterion evaluates a different aspect of 
the denoising method. We have compared our method to the 
conventional denoising methods: the BL [11] and TV [9].  

 
(a) oscillatory patterns 

 

 
(b) edge in smooth region 

 

 
(c) smooth region 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 7, 2013 193



 

 

 

 
(d) smooth region with gradient change 

 
Fig. 2 Denoising results by using SR-MD for different image patterns. 
(Upper left) Original image, (Upper right) Noisy image, (Lower left) 

g(i,j), (Lower right) h(i,j) 
 

Here we assume the noise variance is known (thus, we can 
calculate the mean deviation from the variance value). Each 
denoising method for comparison processes the standard 
images with the same parameters setting (no tuning of 
parameters was performed (except for noise distribution value) 
for different noise level or image type). We present the 
examples of a simulation study using four grayscale standard 
images (256 x 256) from the SIDBA database: Barbara, Lena, 
Boat and Woman, which have different image characteristics 
(see Fig. 3). All images are corrupted with different range of 
AWGN (noise variance, σ2 = 25, 100 and 225). 

  The method noise is defined as the difference between a 
noisy image and the restored image. It shows which details are 
preserved by the denoising process and which are eliminated. 
The method noise of the restored image h(i, j) is represented by 

 
(7))( )()(  i, j hi, j x i, jm −=  

 
where m(i, j) is the method noise (noise estimated by denoising 
method). In order to preserve as many features as possible of the 
original image, the method noise should look as much as 
possible similar to a white noise. Fig. 4 shows the method noise 
of different methods for Woman with σ2 = 100.  

   The BL modifies most of the image fine details and edges. 
The TV effectively removes noise in the smooth regions. 
However some of the strong contrast edges are not well 
preserved. The proposed method effectively reduces noise in 
the smooth regions, and also preserves edges with low contrast 
and most of the strong contrast edges. From the method noise 
investigation, we found that the proposed method has better fine 
details and edges preservation relative to the BL and TV. 

 
(a)  Barbara 

 
(b) Lena 

 
(c) Boat  

 
(d) Woman 

 
Fig. 3 Standard test images from the SIDBA database  
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(a) Noisy 

 
(b) BL 

 
(c) TV 

 
(d) SR-MD 

 
Fig 4 Method noise comparison of Woman image (σ2 = 100) 

 
 
 

The visual effect of the restored image is another important 
criterion to evaluate the performance of a denoising algorithm. 
The objective is to find out the visual quality of the restored 
image, the effectiveness of the noise suppression, and the 
reconstruction of the fine details and edges. For the convenience 
in comparing the visual effects, we illustrate only the results of 
the restored Barbara image corrupted by different noise levels 
(σ2 = 25, 100 and 225) in Fig. 5, Fig. 6 and Fig. 7, respectively, 
as well as restoredWoman image corrupted by noise level of σ2 
= 225 in Fig. 8.  

  From Fig. 5(b), Fig. 6(b), Fig. 7(b) and Fig. 8(b), they show 
that the BL reduces noise but left additional artifacts in the 
restored image. Fig. 5(c), Fig. 6(c), Fig. 7(c) and Fig. 8(c) show 
that the TV results in strong noise removal (for example, the 
background area) but produces cartoonlike restored image. The 
TV smoothes most of the fine details and edges (for example, 
the hair details) at the same time. Fig. 5(d), Fig. 6(d), Fig. 7(d) 
and Fig. 8(d) show that our method reduces a considerable 
amount of noise and furthermore preserves the fine details and 
edges better than the BL and TV. 
    For the objective image quality evaluation, the mean measure 
of structural similarity (MSSIM) [17] is utilized. The MSSIM 
aims at mimicking human perception. It models the image 
distortion as a combination of correlation loss, luminance 
distortion and contrast distortion. The maximum value for the 
MSSIM is 1. Therefore, a restored image with the MSSIM value 
closer to 1 indicates that the estimated restored image is closer 
to the original image. Let us remark that the MSSIM by itself 
would not be sufficient, and other quality evaluation criteria are 
also necessary to evaluate the performance of denoising 
methods.  

  Table I shows the performance comparison of different 
methods in term of MSSIM for different noise levels. The 
proposed method provides a relatively higher performance 
when compared with the BL in all images and noise levels. 
Furthermore, the performance of the proposed method is 
approximating those of the TV in most cases. In all noise levels, 
the proposed method has been verified to maintain high MSSIM 
performance, which is above 0.80.  

  The investigation validates that the proposed method 
provides a comparable performance in the fine details and edges 
preservation compared with the conventional methods. The 
SR-MD method is simple and utilizes less parameters setting 
(i.e. noise’s MD for threshold and window sizes for q(i, j) and 
p(i, j), respectively) compared to the TV. The TV performance 
depends heavily on many parameters settings [10]. Moreover, 
the SR-MD can perform denoising by using fixed constant 
parameters (i.e. window sizes) for all noisy images because the 
threshold value only depends on the noise distribution in each 
image. 
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(a) Noisy 

 
(b) BL 

 
(c) TV 

 
(d) SR-MD 

 
Fig 5 Restoration comparison of Barbara image (σ2 = 25) 

 
(a) Noisy 

 
(b) BL 

 
(c) TV 

 
(d) SR-MD 

 
Fig 6 Restoration comparison of Barbara image (σ2 = 100) 
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(a) Noisy 

 
(b) BL 

 
(c) TV 

 
(d) SR-MD 

 
Fig 7 Restoration comparison of Barbara image (σ2 = 225) 

 
(a) Noisy 

 
(b) BL 

 
(c) TV 

 
(d) SR-MD 

 
Fig 8 Restoration comparison of Woman image (σ2 = 225) 
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Table I: Performance comparison in MSSIM 

 

 
 

 

IV. CONCLUSION 
  From the study, it is found that the proposed method is 

effective for preserving the image fine details and edges while 
eliminating the noise. 
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