
 

 

  
Abstract—In order to identify and classify the proper textured 

region, a decision theoretic method and two types of statistic texture 
feature are used. The first type features derive from the average co-
occurrence matrices: contrast, energy, entropy, homogeneity, and 
variance. The second type features are the following: the grey level 
histogram, the grey level difference histogram, and the edge density 
per unit of area. The algorithms are implemented in Visual C++ and 
Matlab and allows the simultaneously display of both the 
investigated region, and the Euclidian distance between this and a 
reference image. The result is the classification of the tested texture 
and the defect localization (if a region with defect exists) inside of 
the divided regions. In order to compare regions, a data base with the 
reference texture images is created. For the texture defect detecting, a 
combination between the template matching and the decision 
theoretic method is used. Our experimental results indicate the fact 
that the selected features which derive from the average co-
occurrence matrices have a good discriminating power both for 
texture classification and defect localization. The results also confirm 
the fact that the distances between the regions without defect are 
relatively small and the distance between a region with defect and a 
region without defect is relatively great. The image difference 
histogram has better behavior referring to texture classification than 
to defect detection and localization.  
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I. INTRODUCTION 
It is very hard to define rigorously the texture into an 

image. The texture can be considered like a structure which is 
composed by many similar elements (patterns) named textons 
or texels, in some regular or continual relationship. 

 Texture analysis is made by using various approaches, like 
statistical type (characteristics associable with grey level 
histogram, grey level image difference histogram, grey level 
co-occurrence matrices and the features extracted from them, 
autocorrelation based features, power spectrum, edge density 
per unit of area, etc), fractal type (box counting fractal 
dimension), and structural type. The statistical approach 
utilizes features to characterize the stochastic properties of 
grey level distribution in the image. 
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There are two important kinds of problems that texture 
analysis research attempts to solve: texture segmentation and 
texture classification. Another problem, texture synthesis is 
often used for image compression application. 

Texture classification involves deciding what texture class 
an observed image belongs to. Thus, one needs to have an a 
priori knowledge of the classes to be recognized. The major 
focus of this paper is the classification process, based on 
statistical features (especially derived from average co-
occurrence matrix), and the defect detection and localization, 
based of texture analysis of regions which are obtained by 
image partition. 

    For the purpose of algorithm validation, two 
experimental studies have been conducted. The first study is 
focused on region classification of textured images and the 
second study is focused on defect identification and 
localization.  

With this end in view, the whole image is partitioned in 
four equivalent regions like in Fig.1. Different textured 
regions are compared by minimum distance criterion. The 
measured features are derived from average co-occurrence 
matrices (contrast, energy, entropy, homogeneity, and 
variance), from grey level histograms or from contour pixel 
densities.  

 

                            
 

 
 

The experimental results indicate that the five features 
selected from medium co-occurrence matrices have a good 
discriminating power, both in texture classification 
applications and in defect detection and localization. 

II. STATISTICAL METHODS TO TEXTURE ANALYSIS    
The statistical approach is more useful than structural 

approach to texture analysis. The simplest statistical features 
like the mean (1) and standard deviation (3) can be computed 
indirectly in terms of the image histogram h.   

Thus, 
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Fig.1 four regions image partition 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Vol. 1, 2007                                                                      79



 

 

 

∑
=

=
K

i
ii xhx

N 1
)(1μ                            (1) 

∑
=

=
K

i
ixhN

1
)(                               (2)            

 

∑
=

−=
K

i
ii xhx

N 1

22 )()(1 μσ                   (3) 

 
where N = n1 n2 is the image dimension, and K is the number 
of grey levels. 

 The shape of an image histogram provides many clues to 
characterize the image, but sometimes it is inadequately to 
discriminate textures (it is not possible to indicate local 
intensity differences). 

  Another simple statistic features is the edge density per 
unit of area, Dene (4). The density of edges, detected by a 
local binary edge detector, can be used to distinguish between 
fine and coarse texture like in Fig.3. The density can be 
evaluated by the ratio between the pixel number of extracted 
edges (which must be tinned – one pixel thickness) and image 
area (pixel number of region matrix): 
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In equation (4), Ne represents the number of edge pixels and 

A is the region area.       
 In order to characterize textured images, connected pixels 

must be analyzed. For this reason, correlation function (5), 
difference image function (6) in certain direction d =(Δx, Δy),  
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Id(x,y) = I(x,y) – I(x+Δx , y+Δy)                 (6) 

 
and also the co-occurrence matrices (9), must be considered. 

From histogram of difference image hd, one can extract the 
mean (7) and standard deviation (8): 
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The most powerful statistical method to textured image 
analysis is based on features extracted from the Grey-Level 
Co-occurrence Matrix (GLCM), proposed by Haralick in 1973 
[1]. GLCM is a second order statistical measure of image 

variation and it gives the joint probability of occurrence of 
grey levels of two pixels separated spatially by a fixed vector 
distance d=(Δx, Δy). Smooth texture gives co-occurrence 
matrix with high values along diagonals for small d. The 
range of grey level values within a given image determines the 
dimensions of a co-occurrence matrix. Thus, 4 bits grey level 
images give 16x16 co-occurrence matrices. The elements of a 
co-occurrence matrix Cd depend upon displacement d: 

 
Cd (i,j) = Card{((x,y),(t,v)) / I(x,y) = i, I(t,v) = j,  

               (x,y), (t,v) ∈NxN, (t,v) = (x+ Δ x, y+ Δ y)}         (9) 
 
      From the co-occurrence matrix Cd one can draw out 

some important statistical features for texture classification. 
These features, which have a good discriminating power, are 
the following [1], [2]: contrast, entropy, energy, homogeneity, 
and variance.  

III. LOCAL FEATURES BASED ON AVERAGE CO-OCCURRENCE MATRIX 
For each pixel we consider increasing (2d+1)x(2d+1) 

symmetric neighborhoods, d = 1, 2, 3,...,10. Inside each 
neighborhood there are 8 principal directions: 1, 2, 3, 4, 5, 6, 
7, 8 (Fig. 2). We evaluated the co-occurrence matrices Cd,k 
corresponding to vector distances determined by the central 
point and the neighborhood edge point in the k direction (k = 
1,2,...,8). For each neighborhood type, an average co-
occurrence matrix Cd is calculated (10):  

 
Cd = 1/8(Cd,1 + Cd,2 + Cd,3 + Cd,4 + Cd,5 + Cd,6 + 

        + Cd,7 + Cd,8)  , d = 1,2,...,10                     (10) 
 
Thus, for 3x3 neighborhood, d = 1; for 5x5 neighborhood, 

d = 2; for 7x7 neighborhood, d = 3, and so on. 
 

                          
 

      
In order to quantify the spatial dependence of gray level 

values, from average co-occurrence matrices Cd, d = 1, 2,..., 
10, we calculated various textural features like Contrast – 
Cond – (11), Energy – Ened – (12), Entropy – Entd – (13), 
Homogeneity – Omod – (14) and Variance – Vard – (15). 
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Fig.2 principal directions for co-occurrence matrix calculus 
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In the preceding notations, LxL is the dimension of co-

occurrence matrices. 

III. EXPERIMENTAL RESULTS FOR TEXTURE CLASSIFICATION BY 
STATISTICAL FEATURES 

For algorithm testing and program validation we used two 
textured images I1 and I2, each partitioned in four regions Ii(1), 
Ii(2), Ii(3), Ii(4), i=1,2 (Fig. 1). In fact, the regions are 128 x 
128 images with 16 grey levels. From these images we 
considered two regions, I1(1), I1(2), for I1 image, and two 
regions, I2(1), I2(2), for I2  image (Fig. 3).  

 

      
 
 

 
Firstly, the analysis of the simple grey level histogram (Fig. 

4, Fig. 5, Fig. 6, and Fig. 7) demonstrates that the regions can 
be discriminated by the aid of the mode location and mode 
value (histogram peak) which is greater for I1(1) and I1(2) than 
for I2(1) and I2(2). Secondly, supposing that the histograms 
are not so different, another set of texture features makes 
possible the region classification.  

Textural features like Cond (8), Ened (9), Entd (10), Omod 
(11), and Vard (12) are calculated. The normalized results are 
presented in Table I, for d = 1, 2,..., 10. For the purpose of 
discriminated power evaluation of the selected features we 

calculate the Euclidian distances between regions from the 
same image: D{I1(1),I1(2)}, D{I2(1),I2(2)}, and  the Euclidian 
distances between regions from different images: 
D{I1(1),I2(1)}, D{I1(1),I2(2)}, D{I1(2),I2(1)}, D{I1(2),I2(2)}. 

 

 
 

 

 
 
 
 

 
 

 
 

              
The Euclidian distance D{I1, I2} between two images I1 and 

I2, which are characterized by the feature vectors 
[C1,E1,Et1,O1,V1]T and [C2,E2,Et2,O2,V2]T is expressed by the 
following relation: 

 

 
 
 
 
 
 
 
 

Fig.7 grey level histogram for I2(2) 

 
 
 
 
 
 
 
 
 

Fig.6 grey level histogram for I2(1) 

 
 
 
 
 
 
 
 
 
 
 

Fig.5 grey level histogram for I1(2) 

 
 
 
 
 
 
 
 
 

Fig.4 grey level histogram for I1(1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 image regions derived from two images 
         (I1 and I2) with different textures 
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where: C = Con, E = Ene, Et = Ent, O = Omo, V = Var. The 
results of mentioned distances calculus are presented in the 
Table II. 

 
The normalized characteristics are necessary because the 

ranges of initial characteristics can differ too much for 
efficient Euclidian distance calculation. 

From Table II, one can observe that the distances between 
two different regions, like D{I1,I2}, are greater than distances 
between two similar regions, like D{I1,I1} or D{I2,I2}. In order 
to appreciate the efficiency of the presented algorithm, we 
analyzed the most unfavorable cases, namely the minimum 
distance between two regions coming from different images, 
and the maximum distance between two regions coming from 
the same image. 

These distances are grouped in two categories, for d = 
1,2,…,5 and d = 6,7,…,10 (Table III). Thus, Dmin{I1,I2} is 
grater than max{DMax{I1,I1}, DMax{I2,I2}}, especially in large 

neighborhood case (d = 6,7,…,10).  
Towards ameliorate the classification accuracy, a 

development of the recognition algorithm, consisting in the 
attachment of new textural features like edge point density per 
unit of area and statistical features extracted from histogram of 
difference image, is proposed. 

 

 
 

 
                          

    
Thus, we considered an edge extraction algorithm, based on 

binary image and logical function [11], which gives tinned 
edges. The edge densities for the analyzed regions I1(1), I1(2), 
I2(1), and I2(2) show that this feature has also a good 
discriminating power (Table IV) and the combination with the 
previously second order type statistical features will give 
better results in texture classification.                   

IV. TEXTURE DEFECT DETECTION  
We assumed that there is a texture defect in a region I(k). 
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Comparing with other image regions, one can decide if the 
texture of that region is tainted. The comparison in based by 
minimum Euclidian distance between feature vectors, like in 
the previous case. We have tested different statistic texture 
features like: histogram difference, edge density per unit of 
area, contrast, energy, entropy, homogeneity, and variance. 

 The method for defect detection and localization is similar 
with a template matching one. For experimental work we have 
divided a image with defects, I3 (Fig. 8), in four regions, like 
in Fig.1. A region with reference texture (template texture), 
for example I3(4), is compared with the others: I3(1), I3(2), 
I3(3). If one region is not deteriorated, like I4(3), then the 
distance D{I3(3),I3(4)} is small (Table V). If one region is 
tainted, like I3(1), then D{I3(1),I3(4)} is relatively high. The 
test image I3 is processed to be grey level type, 256 levels, and 
1024x1024 pixels. Consequently, the dimension of the inside 
regions is 512x512 pixels. 

 

 
  
   The feature vector is composed by five normalized statistical 
textures derived from average co-occurrence matrices. The 
defect decision is based upon an error threshold in distance 
evaluation. If the distance is grater than the threshold, then 
there is a defect in the tested region. In rest, there is not a 
defect in the tested region.    

Also, we tested the efficiency of the grey level image 
difference histogram in texture classification and defect 
detection. With that end in view we have considered the same 
images form Fig. 8. 

 
 

      
 

 

          
 

 
The difference images in the displacement (x = 20, y = 20) 

for I3(1), I3(3), and I3(4) are respectively I3’(1), I3’(3), and 
I3’(4) – Fig.9. The image difference histograms are presented 
in Fig.10. In graphical histogram representation, the value for 
gray level 0 is too high and irrelevant comparing with the 
others. Therefore it is neglected (thin line in graphical 
representation).   

One can observe that the difference image histogram has 
better behavior referring to texture classification than to defect 
detection and localization. The basic aspect of the histogram is 
similar for regions without defect texture, but is dissimilar for 
region with defect texture. For this reason, the image 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 image with defect in texture, I3 , and three regions inside 

 
 
 
 
 
 
 
Fig.9 difference image for some regions inside of I3 

     
 
 
 
 
   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.10 difference image histograms for regions inside of I3 
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difference histogram can be also utilized in texture 
classification by minimum distance criterion.   

Another statistical feature analyzed is the edge pixels 
density per unit of area. With that end in view we have 
extracted the contour image from initial regions with a proper 
threshold [11] so that the texture model is not deteriorated 
(Fig.11). In the case of the image investigated, (I3) the values 
for the thresholds and for the pixels densities are given in 
Table VI. One can observe that this feature has not a good 
discriminating power in the case of texture defect detection.  

 

 
 

 
TABLE VI 

 EDGE PIXEL DENSITY 
 

Regions Threshold Density 
I3(1) 70 0.119 
I3(3) 70 0,175 
I3(4) 70 0.180 
I4(1) 50 0.024 
I4(3) 50 0.025 
I4(4) 50 0,025 

V. CONCLUSION 
Because it is considered an average co-occurrence matrix, 

the presented algorithm is relatively insensible to image 
translation and rotation. The results confirm that the statistic 
second order features, extracted from medium co-occurrence 
matrices, especially in the case d = 6, 7,…,10, offer a good 
discriminating power both in texture identification process 
and in defect detection and identification. The main 
application of the algorithm consists in texture identification 
and classification and defect detection in the regions of 
textured images (like images from satellite or images from 
video camera of intelligent vehicles). The additional features 
like difference image histograms and edge pixel density per 
unit of area increase the power of discriminating for texture 
identification and classification. The efficiency of the defect 
detection and localization depends upon the range of image 
partition and the texture element dimension. 
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Fig.11 contour images for regions inside of I3 
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