
 

 

  
Abstract—In this paper, we present new version of numerically 

stable fast recursive least squares (NS-FRLS) algorithm. This new 
version is obtained by using some redundant formulae of the fast 
recursive least squares (FRLS) algorithms. Numerical stabilization is 
achieved by using a propagation model of first order of the numerical 
errors. A theoretical justification for this version is presented by 
formulating new conditions on the forgetting factor.  An advanced 
comparative method is used to study the efficiency of this new 
version relative to RLS algorithm by calculating their normalized 
square norm gain error. It will be followed by an analytical analysis 
of the convergence of this version and we show, both theoretically 
and experimentally, their robustness. The simulation over a very long 
duration for a stationary signal did not reveal any tendency to 
divergence. 
 

Keywords—Fast RLS, Estimation, Adaptive Filtering, 
Propagation of Errors, Numerical Stability.  

I. INTRODUCTION 
N general the problem of system identification involves 
constructing an estimate of an unknown system given only 

two signals, the input signal and a reference signal. Typically 
the unknown system is modelled linearly with a finite impulse 
response (FIR), and adaptive filtering algorithms are 
employed to iteratively converge upon an estimate of the 
response. If the system is time-varying, then the problem 
expands to include tracking the unknown system as it changes 
over time. The system identification problem has numerous 
applications in control systems, digital communications, and 
signal processing, and a recent survey of adaptive filtering 
algorithms highlights the rich diversity of techniques available 
in the literature [1]. Adaptive filtering has been, and still is, an 
area of active research, playing important roles in an ever 
increasing number of applications [1], [2]. Numerous 
algorithms for the solution of the adaptive filtering problem 
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have been proposed over the years. The recursive least 
squares (RLS) algorithms are used in a broad class of 
applications. The RLS algorithm solves this problem, but at 
the expense of increased computational complexity. A large 
number of fast RLS (FRLS) algorithms have been developed 
over the years, but, unfortunately, it seems that the better a 
FRLS algorithm is in terms of computational efficiency, the 
more severe is its problems related to numerical stability [3]. 
Several numerical solutions of stabilization, with stationary 
signals, are proposed in the literature [5]–[10]. In the 
following section, we propose a new version of numerically 
stable FRLS (NS-FRLS) algorithm. This new version is 
obtained by using some redundant formulae of the fast 
recursive least squares FRLS algorithms. Numerical 
stabilization is achieved by using a propagation model of first 
order of the numerical errors [5], [8]. We provide a theoretical 
justification for this version by formulating new conditions on 
forgetting factor. It will be followed by an analytical analysis 
of the convergence of this version and we show, both 
theoretically and experimentally, their robustness. 

II. FRLS ALGORITHMS 
The main identification block diagram of a linear system 

with finite impulse response (FIR), by adaptive filtering using 
an adaptation algorithm, is represented in Fig.1. 

 
The output a priori error nε  of this system at time n is: 

nnn yd ˆ−=ε                             (1) 
where  

nnny xw T
1ˆ −=                              (2) 

is the model filter output, [ ]T
121 ...,,, +−−−= Lnnnn xxxx  is a 

vector containing the last L samples of the input signal nx , 
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Fig. 1: System identification block diagram         
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[ ]T
1,1,21,11 ...,,, −−−− = nLnnn wwww  is the coefficient vector of 

the adaptive filter and L is the filter length. We assume that 
the desired signal from the model is: 

noptnn vd xw T+=                           (3) 

where [ ]T
,2,1, ...,,, Loptoptoptopt www=w is the unknown 

system impulse response vector and nv  is a stationary, zero-
mean, and independent noise sequence that is uncorrelated 
with any other signal. The superscript T describes 
transposition. The filter nw  is calculated by minimizing the 
weighted least squares criterion according to [1]: 

( )∑
=

− −=
n

i
i

T
ni

in
n dJ

1

2
)( xww λ                  (4) 

where λ denotes the exponential forgetting factor (0<λ≤1). 
The recursive solution is written as follows: 

nnnn εgww += −1                      (5) 
where ng represents the adaptation gain, given by: 

321321
FRLSRLS

1 ~
nnnnn kxRg γ== −                        (6) 

with   
T

1
1

nnn

n

i

T
ii

in
n xxRxxR +== −

=

−∑ λλ               (7) 

The quantity nR  is the L-by-L sample covariance matrix of 

the input signal nx . The variables nγ  and nk~  respectively 
indicate the likelihood variable and normalized Kalman gain 
vector. This latter is calculated, independently of the filtering 
part nw , by a FRLS algorithm using forward/backward linear 
prediction analysis over the signal nx  [1]. The calculation 
complexity of a FRLS algorithm is of order L. This reduction 
of complexity, compared to that of RLS algorithms, which 
have a complexity of order L2, have made all FRLS algorithms 
numerically unstable. 

III. NUMERICALLY STABLE FRLS ALGORITHM  
In this section, we present a new version of numerically 

stable fast recursive least squares (NS-FRLS) algorithms. This 
new version is obtained by using some redundant formulae of 
the fast recursive least squares FRLS algorithms. Numerical 
stabilization is achieved by using a propagation model of first 
order of the numerical errors [5], [8]. 

A. Proposed Approach  
Any adaptive algorithm can be seen as a nonlinear dynamic 

system in discrete time, which is theoretically written in the 
form of state: 

[ ]nnn xφφ ;f 1−=                             (8) 
where the function [.]f  depends on the structure of the 
algorithm. The vector nφ  containing all quantities (scalar and 
vectorial) of the recursive variables of FRLS algorithms 
corresponding to the analysis, by forward and backward linear 
prediction of order L, of a signal nx . 

In finite precision, system (8) is written as: 
( )nnnn exφφ += − ];ˆ[fˆ 1                          (9) 

where the vector nφ̂  is calculated by the algorithm in the 
presence of the instantaneous numerical errors represented by 
the vector  )(ne .  
The introduced error will be noted nφΔ : 

nnn φφφ −=Δ ˆ                               (10) 
this is a vector containing the errors in the states of the system. 
Using the following assumptions: 

• Analysis of the errors to the 1st order:     
             )(Δ)(Δ 1 nn nn eφFφ += −                      (11) 

where )(nF  represents a transition matrix for the error 
propagation, it is expressed by: 

[ ]
1

,f
)(

−=∂
∂

=
n

nn φφφ
xφ

F                      (12) 

This assumption makes it possible to obtain a linear system of 
propagation depending on time. 

• Calculation in infinite precision:    ( )ne  = 0  

1Δ)(Δ −= nn n φFφ                            (13) 
• The solution existence of the least squares 

We can write the state vector of the errors at the time n as 
follows: 

[ ]TTTT b
n

k
n

a
nn φφφφ ΔΔΔ=Δ             (14) 
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represent respectively the errors cumulated up until the time n 
in the forward, Kalman and backward recursive variables. The 
(3L+3)x(3L+3) dimensional matrix ( )nF  given by:       

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )⎥

⎥
⎥

⎦

⎤

⎢
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⎣
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nnn
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333231

232221

131211

FFF
FFF
FFF

F                 (16) 

represents the propagation matrix of the errors. 
The stability of system (13) depends on the study of the matrix 
properties.  Then, if all of the eigenvalues of the matrix ( )nF  
are less than one in magnitude, the algorithm is numerically 
stable locally about its optimum solution. 

B. Numerical Stability 
Using some redundant formulae of FRLS algorithms, we 

can calculate differently the backward a priori prediction 
errors in tree ways: nr  is given by definition using the 

backward prediction nb and the input signal; 0f
nr  is calculated 

by using in its formula the backward prediction error variance 

nβ  and +
+ nLk ,1

~
 the (L+1)th coefficient of the normalized 

Kalman gain  vector +
+ nL ,1

~k  of order  L+1; 1f
nr  is calculated 

by using in its formula the likelihood variable nγ , the forward 
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predictor error variance nα  and +
+ nLk ,1

~
.  

By making the difference between these backward a priori 
prediction errors, we have defined a variable called 
divergence indicator nξ  [8]: 

⎩
⎨
⎧

≠
=

−=
practical0
theory0f

nnn rrξ           (17) 

where 
])1[( 10 fff

nsnsn rrr μμ +−=                   (18) 
with 

10 ≤≤ sμ                                (19) 
In practice, the variable nξ  that depends of the recursive 

variable is never null, due to the precision of machines used. 
This variable, theoretically null, does not modify the structure 
of the algorithm. Also, its introduction in an unspecified point 
of the algorithm modifies its numerical properties. We define 
three backward a priori prediction errors ( γ

nr , β
nr  and b

nr ), 
theoretically equivalents, which will be used to calculate the 
variables nγ , nβ  and nb  respectively. By introducing our 
variable into the algorithm and using suitably the scalar 
parameters ),,( bμμμ βγ  and sμ , the propagation matrix 

( )nF  is modified to obtain the numerical stability. 
  A version of numerically stable (NS-FRLS) algorithms [9] 

is given in Table I. The resulting stabilized FRLS algorithms 
have a complexity of 8L. Let us note that for sμ =0 

and === bμμμ βγ – 1, the algorithm corresponds to the FTF 
(Fast Transversal Filter) [4], numerically unstable. 

C. Analysis Prediction Part 
The study of the stability of matrix for the numerical errors 

propagation )(nF  in all its general case is a very difficult task 
because of its complexity. However, for version that we 
developed, we can deduce that the matrix )(11 nF has all its 
eigenvalues lower than one and that the matrix )(13 nF   is null. 
We can thus say that the matrices )(12 nF  and )(23 nF  can be 
made negligible by choosing of a forgetting factor λ  very 
close to one. In this case, the matrix )(nF  is very similar to a 
lower triangular matrix per blocks; we could therefore write 

)(nF  as follows:  
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FFF
0FF
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Thus we can approach the errors cumulated until the time n in 
Kalman k

nφΔ  and backward b
nφΔ  recursive variables by: 

[ ]a
nk

k
n

k
n n 1122 T)( −− Δ+Δ=Δ φφFφ              (21a) 

[ ]k
n

a
nb

b
n

b
n n 11133 ;T)( −−− ΔΔ+Δ=Δ φφφFφ         (21b) 

where [.]Tk  and [.]Tb , non explicit functions, which do not 

depend on k
n 1−Δφ  and b

n 1−Δφ  respectively. The matrices 
)(22 nF  and )(33 nF can be written as follows: 
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with 
)1()21()()( 1121 −−− −++= nnnsnnnc θθρμμθρ γ

γ     (23) 

n

n
n α

λα
ρ 1−=             (24);       

n

n
n β

λβ
θ 1−=            (25) 

[ ]T11 )()( nnnbnLb ncn xxRIM −− −= θ            (26a) 

)1)(1(2)1()( 1 γμθμ +−−+= −
n

b
b nc          (26b) 

( ){ })1()1)(1(21)( 11 −− −−−−+= nnsnc θμμθμλ γβ
β (27) 

)(nu = { } k~
~

)1(2)1( ,1
1 +

+
− −−− nLn

b
ns kγμμθμλ γ        (28) 

where ( )nkM called companion matrix with eigenvalues equal 

to the poles of the backward predictor 1−nb , the quantities (*) 
do not influence on the study and LI  represents the identity 
matrix. 

By taking the following expression: 

nLnLLnLLnLk ,1
1

1,1
T

1
1

,1
T

1,1
~~

+
−

−++
−+

++
+
+ == xRqkq λ         (29) 

where the vector [ ]T
1 1,0...,,0,0=+Lq  makes it possible to 

extract the (L+1)th component from a vector of (L+1) order 
and by using the following approximation: 

nLXLLnLk ,1
1

,1
T

1
1

,1 )1(
~

+
−

++
−+

+ −−≅ xRqλ             (30) 

with { }T
,1,1,1 E nLnLXL +++ = xxR , where { }.E  denotes expected 

value. A forgetting factor λ  close to one make it possible to 
weaken the influence of a vector )(nu , and to approach the 

numerical errors in the calculation k
nφΔ  and b

nφΔ  by first 
order models deduced respectively from )(22 nF  and )(33 nF : 

)()( 1 npnc nn γγ γγ +Δ=Δ −                  (31a) 

)()( 1 nn bnbn pbMb +Δ=Δ −               (31b) 

)()( 1 npnc nn ββ ββ +Δ=Δ −               (31c) 

By assuming that the perturbation terms ( )(npγ , 

)(nbp and )(npβ ) remain limited. The choice of the control 
parameters, so that the system is stable, amounts to studying 
the scalars gain ( )(ncγ , )(ncβ ) and matrix gain )(nbM . More 
precisely, it is necessary that these gains are lower than one. 
There are an infinity number of solutions for the choice of the 
control parameters from these equations and for each solution 
there is a stability condition on λ . 

The analysis using the mean behavior of system (21) does 
not make it possible to find the true stability condition, 
because the numerical errors can be of null mean but of 
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unlimited variance. Let us calculate the variance of nbΔ , for 

that we use the statistical approach, { } Lnbnn Ibb 2
,

TE Δ=ΔΔ σ , we 
can write:  

{ } { } { }T
11

21T E)(EE −−
− ΔΔ=ΔΔ nnnnn bbbb θ  

( ){ } { } { }T
11

1
,

1 EEE −−
−− ΔΔ− nn

T
nntNbn nc bbxxRθ  

( ){ } { } { }T1
,

T
11

1 EEE T
nntNnnbn nc xxRbb −

−−
− ΔΔ− θ  

( ){ } ( ){ }T1T
11

12 EE T
nnnnn

T
nnnb nc xxRbbxxR −

−−
− ΔΔ+  

{ })()(E nn T
bb pp+              (32) 

We assume that the elements of disturbing vector )(nbp  are 

sequences of white noise, mean-zero and of known variance 
2

bpσ . We notice that the variables nθ and nR  are slow 

variable quantities compared to the input signal nx . And we 

assume that the components of vector nbΔ  are independent 

between them and independent of the various theoretical 

variables given in the algorithm. Moreover, the input signal is 

a sequence of uncorrelated Gaussian variables, 

{ } Lxxxnn IRxx 2TE σ== , and the variable nθ  has an 

asymptotic value λ  and { } Lnnn IxxR )1(E T1 λ−=−  [12]. We 

can write: 

LnbLnb II 2
1,
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, −Δ

−
Δ = σλσ  Lnbbc I2

1,
1 )1(2 −Δ

− −− σλλ  

Lpxb b
nc IH 2422 )()1( σσλ +−+ −       (33) 

with 
( ) ( )( )γμλμ +−−+= − 1121 1b

bc              (34) 
where 

{ }T
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T
nnn xxbbxxH T

11E)( −− ΔΔ=                (35) 
is a )( LL× square matrix  whose elements are given by : 
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= =

+−+−+−+−−− ΔΔ=
L
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m
jninmnknnmnkji xxxxbbh

1 1
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By developing the expression (36), we find: 
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If  ji ≠  ⇒ 0=ijh ; and if ji =  ⇒  
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1, E2E +−+−

=
+−−Δ ∑ += inkn

L

k
knxnbii xxxh σσ       (38) 

We get: 

⎪⎩

⎪
⎨
⎧

≠

=+
= −Δ

ji
jiL

h xnb
ji

0
)2(42

1, σσ
               (39) 

Finally, we obtain the following expression: 
22

1,
2

, bpnbnb G σσσ += −ΔΔ                     (40)   

where 
( ) ( ) ( )2112 2212 +−+−−= −− LccG bb λλλλ        (41) 

By assuming that 2
bpσ  is limited, the stability condition of 

equation (40) is given by the solution of the following 
inequality: 

1<G                                   (42) 
By studying the stability of system (40) for a suitable choice 
of the control parameters, then expression (41) will be a 
function of λ  and L only. For appropriate choices we selected 
the following control parameters: 

1,0 === bμμμ βγ  and   0 ≤≤ sμ 1            (43) 
 By applying condition (42), we get: 

5.32
11

74
54

+
−=

+
+

>
LL

Lλ                     (44) 

These conditions can be written in another simpler form: 

pL
11−=λ                                  (45)  

where the parameter p  is a real number strictly greater than 2 
to ensure numerical stability. 

D. Analysis Filtering Part 
The analysis uses the common independence assumption 

that the current input signal vector is statistically independent 
of the current coefficient vector of the adaptive filter [1]. We 
define the weight-error vector at time n as: 

noptn www −=Δ                         (46) 

The output a priori error nε  can be written as: 

1−Δ+= n
T
nnn v wxε                        (47) 

The recursion in (5) on the coefficient error vector is: 

nnnnnLn vgwxgIw −Δ−=Δ −1
T ][              (48) 

The mean behavior of the RLS coefficient error vector can 
now be determined by taking the expected value of both sides 
of (48) and using the independence assumption to yield [1] 

{ } [ ]{ } { }nnnn
T
nnnLn vxRwxxRIw 1

1
1 EEE −

−
− −Δ−=Δ    (49a) 

We obtain:  
{ } { }1EE −Δ=Δ nn ww λ                     (49b) 

The steady-state solution of (49b) is: 
If λ <1 ⇒  { } L0)(E =∞Δw ; from which we obtain the 
steady-state mean coefficient vector of the RLS adaptive filter 
as: 

 { } opt)(E ww =∞                          (50) 

The mean square error )(nMSE = { }2E nε can be written as: 

)(nMSE { }[ ]T
11

2 Etr −− ΔΔ+= nnxxv wwRσ       (51) 
We obtain:  

)(nMSE { }2
1

22 E −Δ+= nxv wσσ              (52) 

where { } 22E vnv σ= , tr[.] represents the trace operator  and .  
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denotes the 2-norm vector. 

 
 
We define the normalized misalignment in dB as follows:  
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which measures the mismatch between the true impulse 
response and the modeling filter. For that, we need to 
determine the next expressions: 

{ }=ΔΔ TE nn ww { } { } { }TTT
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T
11 EEE nnnnnn xgwwww −−−− ΔΔ−ΔΔ  
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where 

{ } { } 121T1T )1(EE −−− −== xxnnnnnn RRxxRgg λ         (55) 

So, 
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v
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2
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2T )1(EE

σ
σ

λλ −+ΔΔ=ΔΔ −−   (56) 

By taking the trace of both sides of (56), we find: 

{ }[ ] { }[ ]T
11

2T EtrEtr −− ΔΔ=ΔΔ nnnn wwww λ + L
x

v
2

2
2)1(

σ
σλ−    (57) 

Finally we can write the mean square norm coefficient error 
vector as: 

{ } { } L
x

v
nn 2

2
22

1
22

)1(EE
σ
σ

λλ −+Δ=Δ −ww     (58) 

The stability of the recursion (58) is guaranteed if 1<λ . 

IV. SIMULATIONS 
 To confirm the validity of our analysis and demonstrate the 

improved numerical performance, some simulations are 
carried out. In order to evaluate the numerical stability of the 
different algorithms, all simulations were performed in 32-bit 
single-precision floating-point representation. The input signal 

nx  used in our simulation is a white Gaussian noise, with 
mean zero and variance one. 

A. Prediction Part 
We are only interested in right process of the prediction 

part algorithm because divergences only concerns the 
prediction part; the filtering part is robust compared to the 
numerical implementation, it only requires a forgetting factor 
lower than one [2] and the right functioning of the adaptation 
gain (6) provided by the prediction part. It is stable if the latter 
one is. For that, we evaluate for the good behavior of the 
divergence indicator ( 0→nξ ) and the likelihood variable 
( 10 ≤< nγ ). We define thereafter the normalized square norm 
gain-error in dB by: 

{ }
{ } ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ Δ
=

2

2

10
E

E
log10)(

n

n
nNGE

g

g
                (59) 

where ( )nnnnn kxRg ~1 γ−−=Δ  is gain-error vector. Variable 
)(nNGE  makes it possible to measure the mismatch between 

the gains nn xR 1− and nn k~γ  calculated by RLS and NS-FRLS 
algorithms respectively. For a suitable choice of the 
parameters, we checked the validity of the numerical stability 
condition on λ  given by equation (45). In addition, if this 
condition is not satisfied then the proposed algorithm 
diverges. 
For a filter of order L=32 and sμ =0.5, Fig.2 and Fig.3, show 
the evolution of variables nγ , nξ  and )(nNGE  correspond to 
the case numerically unstable (p<2) and numerically stable 
(p>2) respectively. 
     
 
 
 

Table I: New version of numerically stable fast recursive least squares 
(NS-FRLS) algorithm 
Initialization:  

 L0~
0000 ==== kbaw ; 00000 ;;1 EEL === βλαγ ; 

100
2

0
LE xσ≥  

Variables available at the discrete-time index n: 

1111111 ;;;;~;; −−−−−−− nnnnnnn wkba βαγ . 

New information: nx and nd . 
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Modeling of nx and Lnx −  
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2
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- Filtering Part: 
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1−−=ε ; 

nnnnn kww ~
1 γε+= − . 
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     During the first iterations, the likelihood variable nγ  
(Fig.2a) is almost constant (asymptotic value), then it starts to 
oscillate, to finish with a divergence. The divergence indicator 

nξ  (Fig.2b) increases indefinitely until total divergence of the 
algorithm. For the normalized squared norm gain-
error )(nNGE  (Fig.2c), we notice that it diverges well before 
the other variables; it increases indefinitely until the total 
divergence of the algorithm.  Fig.3 illustrates the stability of 
this version, where the divergence indicator nξ  remains very 
weak, and the likelihood variable nγ  fluctuates around its 
optimal value. We notice that variable )(nNGE  converges 
and remains stable (simulations were run for more than 107 
samples). The algorithm was tested successfully by 
simulations at very long term and for different orders of filter 
to improve the stability of the algorithm. 

B. Filtering Part 
    We try to estimate an impulse response optw  of length 

L=32 the same length is used for the adaptive filter nw . 
Performance of the estimation is measured by the mean square 
error )(nMSE  and normalized misalignment )(nNM . The 
reference signal nd  is obtained by convolving optw   with nx  

and adding a white Gaussian noise signal nv  with the signal-
to-noise ratio (SNR) is equal to 50 dB. We run the NS-FRLS 
algorithm with a forgetting factor λ (45) where p=3. Fig.4 
illustrates the behaviour of the mean square error )(nMSE  
obtained from simulations and determined from the theoretical 
expression in (52). From this plot, we observe that simulation 
and theoretical curves agree very well. Fig.6 plots the 
normalized misalignment )(nNM  as obtained from the 
theoretical analysis (53) and from simulation results. It can be  

Fig. 2: Evolution of the variables nγ , nξ  and )(nNGE  

for L = 32, p = 1. 95, sμ = 0. 5 
Fig. 3 Evolution of the variables nγ , nξ  and )(nNGE  

for L = 32, p = 3, sμ = 0. 5 
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seen that, for adaptive filter, there is a good agreement 
between the actual behavior of the algorithm and that 
predicted by the theoretical expression. Note that the noise 
effect does not severely degrade the performance of adaptive 
estimator. This indicates that the proposed algorithm is robust. 

 

V. CONCLUSION 
We have analyzed the numerical properties of the stabilized 

FRLS algorithm by using a propagation model of first order of 
the numerical errors. We have presented new version of a 
numerically stable fast recursive least squares (NS-FRLS) 
algorithm. The condition of stabilization was shown to be 
capable of maintaining a good convergence performance by 
way of computer simulations. This algorithm thus modified is 
stable numerically for a suitable choice of the control 
parameters and the forgetting factor. The introduced variable 

)(nNGE , allowed us to compare and to show the stability 
evolution of the algorithms. Simulation experiments related to 
the mean square error and the normalized misalignment 
proved well the validity of the analysis.Numerical stability 
was checked by simulation over very long duration of 
stationary signal and for different orders of filter.  
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Fig. 4: Comparison of theoretical and simulation curves 
        of the )(nMSE for L=32, p = 3, sμ = 0. 5 

Fig. 5: Comparison of theoretical and simulation curves 
        of the )(nNM for L=32, p = 3, sμ = 0. 5 
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