
 

 

  
Abstract—In this paper, a blind deconvolution algorithm for 

spatially-invariant motion blurred images is discussed. To obtain the 
sharp images, the point spread function is estimated. For the linear 
motion blur case, it is sufficient to estimate the motion length and the 
motion direction. The parameters are estimated by using the modified 
Radon transform and power cepstrum analysis. The blurred images 
are restored by using a DST-based deconvolution method and the 
spatial domain-based inverse filtering. Experimental results show our 
proposed ideas. 
 

Keywords—Blind image deconvolution. discrete sine 
transformation, inverse filter, modified Radon transform, motion 
blur.  

I. INTRODUCTION 
otion blur is one of the most common causes of the 
image degradation. Motion blur occurs when there is a 
relative motion between the camera and the captured 

objects. Motion blur is an undesired effect that decreases 
resolution of an image mostly in the motion direction. To 
obtain the sharp images, various image deconvolution method 
can be applied. In the classical image deconvolution method, 
the point spread function (PSF) is given and the degradation 
process is inverted using one of the known algorithms such as 
least-square filtering, recursive Kalman filter, and constrained 
deconvolution method [1]-[4] However, in practical situations, 
the point spread function is unknown. It leads to the blind 
image deconvolution problem. 

There are two important problems in the blind restoration of 
images degraded by the linear motion blur: identification of 
parameters of the point spread function and deconvolution of 
the blurred images. In the linear motion blur case, the point 
spread function has two important parameters, i.e. motion 
direction and motion length. The image deconvolution is 
performed using the identified motion direction and motion 
length.  Since the success of the deconvolution of linear 
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motion blurred images depends on the accuracy of the 
estimated parameters, robustness of the estimation methods 
are very important to consider. 

Estimation of parameters of the point spread function plays 
important role in restoring the degraded image successfully. 
Many researchers have tried to solve this problem. The 
proposed algorithms were different in capability, accuracy, 
computational cost, etc. In [5], [6], bispectrum is used in blur 
identification. Estimation of parameters of the point spread 
function using cepstral analysis is presented in [4], [7], [8]. 
The recent works are presented in [9], [10]. In [10], Fuzzy sets 
and the Radon transform are used to identify the PSF. When 
motion length is small, the accuracy of motion direction 
estimation using the Radon transform will decrease. The 
Radon transform often fails in this case.  

In [9], 1-D cepstral analysis and the Hough transform are 
demonstrated. The Hough transform needs candidate points 
[10]. Performance of the Hough transform for small length 
becomes less. Moreover, since the estimated motion direction 
is used to rotate the Fourier spectrum image, the accuracy of 
motion length estimation will be affected. 1-D cepstral 
analysis does not give better result than 2-D if we measure the 
motion length directly from the origin. In this paper, an 
algorithm to identify parameters of the point spread is 
proposed. Once the parameters of the point spread function 
have been estimated, the remaining problem is the 
deconvolution of the blurred image.  

There are various image restoration methods that address 
motion blurred image. The image deconvolution methods 
have various capabilities and limitations. Many researchers 
apply the iterative techniques. However, the iterative 
techniques need more computational time [11]. The most 
well-known fast algorithms for image restoration involve the 
use of fast Fourier transform (FFT) to implement shift-
invariant deblurring operators [12]. However, ringing artifact 
usually appears in the estimated true image. Therefore, we 
apply spatial domain-based deconvolution methods to obtain 
the sharp images.  

II. PSF AND BLURRED IMAGE MODEL 
The point spread function of linear motion blur in spatial 

domain can be modeled as 

θsin y θ cosx v;       rect(v)
L
1y)h(x, +==          (1) 
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where rect(v) is given by  
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From (1), it is obvious that the point spread function of linear 
motion blur has two parameters: motion length (L) and motion 
direction (θ). Equation (1) concludes that the point spread 
function of linear motion blur is equal to zero, except along a 
line that has an angle θ with x-axis and length L. If (1) is 
written in term of delta function (δ), then the point spread 
function of linear motion blur for any angle can be expressed 
as 

∫
−

−−=
2L/

2L/

dtθ)sintδ(yθ)costδ(x
L
1y)h(x,  (2)

The point spread function of linear motion blur is a low pass 
filter. If it is convolved with an image, it will act as 
convolution kernel those low-passes the image in the direction 
of the motion blur.   
 In frequency domain, the PSF of linear motion blur is given 
by [13] 

)θ)sinξθcos(ξπLsinc()ξ,H(ξ 2121 +=  (3) 

where (ξ1, ξ2) represents the spatial Fourier coordinates. 
Equation (3) shows that parameters of the PSF are maintained 
in the frequency domain representation. If the frequency 
response shown in (3) is displayed as an intensity image, there 
will be parallel lines that show the sinc structure. Width and 
direction of the lines has strong relation with the motion 
length (L) and the motion direction (θ), respectively.  
 Since the PSF is linear spatially-invariant, the blurred image 
is modeled as an output of convolution between the true image 
f(x, y) and the point spread function h(x, y): 

y)(x,fy)(x,hy)(x,g ∗=  (4) 

In continuous form, (4) is expressed as 

ηζdd )ηy,ζx(f )ηζ,(hy)(x,g ∫ ∫
∞

∞−

∞

∞−

−−=  (5)

Equation (5) can be written in discrete domain as 

∑ ∑
−= −=

−−=
P

Pp

Q

Qq
qp, q)np,(mfhn)(m,g  (6) 

Since convolution in the spatial domain is equal to 
multiplication in the frequency domain, (5) can be written as 

)ξ,(ξH)ξ,(ξF)ξ,(ξG 212121 =  (7) 

III. PSF PARAMATERS ESTIMATION   
Estimation of parameters of the PSF is performed by using 

the Fourier spectrum of the blurred image. The spectrum of 
the blurred image is anisotropic, shown by parallel lines 
whose direction is perpendicular to the direction of motion 

blur. Direction of these lines can be identified using a line 
detection algorithm, such as the modified Radon transform. 
Sinc structure, shown by the parallel lines, has periodicity 
indicated by location of spectral zeros. The motion length can 
be estimated by observing spectral zeros.   

A. Motion Length Estimation 
If the PSF is spatially variant, its parameters should be 

estimated in spatial domain [14], [15]. Since the PSF of the 
linear motion blur is spatially invariant, the spectral zeros or 
zero crossings can be identified in spectral domain. For the 
linear motion blur case, the motion length and the motion 
direction can be estimated from the spectral zeros in the 
frequency response. 
 Let g(x, y), h(x, y), and f(x, y) denote the blurred image, the 
point spread function, and the original image, respectively. If 
the blurred image is noiseless, then a power density spectrum 
of the blurred image is defined as [4] 

2

21

2

21

2

21 )ξ,H(ξ)ξ,F(ξ)ξ,G(ξ =  (8) 

If the images g(x, y) and f(x, y) are divided into non 
overlapping sub-images gk(x, y), fk(x, y); k= 1, 2, ..., K, the 
power density spectra of these sub images will approximately 
satisfy relation similar to (8) [4] 
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Taking algorithms of both sides of (8) and adding the results 
for each of the sub images gives [4] 
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The first sum on the right side of could be approximated by 
an average power spectrum evaluated over a wide variety of 
images [16]. Magnitude response of the PSF can be estimated 
from the expression on the left-hand side of the aforesaid 
formula. An alternative to the above for identifying linear 
motion blur involves the computation of the 2-D power 
cepstrum of g(x, y) [4]. The power cepstrum used to estimate 
parameters of the PSF is given by 

|})ξ,G(ξ|{logg 21
1

τ
−ℑ=  (10)

In noiseless blurred image case, the power cepstrum of the 
blurred image is given by 

y)(x,hy)(x,fy)(x,g τττ +=  (11)

If n = ξ1 cos θ + ξ2 sin θ, (6) concludes as 

n)Lπ(sinc),(H 21 =ξξ  (12)

The response has zeros at n = m/L, where m = 0, 2, 3, … As a 
result, hτ(x, y) has a large negative spike at a distance L from 
the origin. Therefore, the motion length is identified by 
calculating the distance of the large negative spike from the 
origin.  
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B. Motion Direction Estimation 
Motion direction is estimated using the modified Radon 

transform and 2-D power cepstrum analysis. Motion direction 
estimation using power cepstrum analysis is performed by 
calculating the slope of a line connecting the origin to the 
large negative value of the cepstrum of the blurred image. We 
use both the modified Radon transform and the cepstral 
analysis in motion direction estimation.  
 The sharp edges of the image will cause additional lines in 
the spectral domain. The Radon transform will detect these 
edges. To avoid this effect, the boundaries of the image are 
smoothened out using a Gaussian window before estimating 
the motion direction. Since the values of the Gaussian 
windowed image will decay towards the image boundary, the 
edge effects disappear. Therefore, the blurred image is 
smoothened before PSF parameters estimation methods are 
applied. 
  The Radon transform of a function f(x, y), denoted as R(ρ, 
θ), is defined as its line integral along a line inclined at an 
angle θ from the y-axis and at a distance ρ from the origin.  
The Radon transform is given by [17]   

ρ)θsinyθcos(xδy)f(x,θ),ρ(R −+= ∫ ∫
∞

∞−

∞

∞−

 (13)

In the coordinate system (ρ, s), where 

θcosyθsinxs
θsinyθcosxρ

+−=
+=

 (14)

(13) can also be written as 

dsθ)cossθsinρθ,sinsθcos(ρfθ),ρ(R ∫
∞

∞−

+−=  (15)

In order to apply the Radon transform on a 2-D digital image 
g(m, n) of size MxN, discretization of the Radon transform 
must be considered. The discrete Radon transform discussed 
here is different from that has been proposed in [18]. To 
achieve the discrete Radon transform, continuous variables are 
sampled as follows [19]. 

1S0,1,...,k,Δsksss
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(17)

In (16), θmin, Δθ, T, and Δρ are set to 0, π/T, π, and 1, 
respectively. In order to let all pixels of an image be utilized in 

the Radon transform for any angle θ, the values of Δs and Pθ  
are set as [19] 
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(18)

⎡ ⎤ ⎡ ⎤ 2),modΔsM(1ΔsMPθ −+≈  (19)

where Pθ is adjusted to take an odd integer value. 
 Sρ,θ depends on both ρ and θ. If it is fixed and equal to M 
for some values of ρ, it will be arithmetically decreased in a 
series afterwards. Therefore, Sρ,θ is determined by [19] 
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θρ, ρρd])ρρ[(M

ρρM,
S  (20)

In (20), ρconst and d are given by [19] 

.
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β)Mα(2d

,θsinθcos
2

1Mρ ttconst

−
−

=

⎥⎦
⎤

⎢⎣
⎡ −

−
=

 (21)
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In (20) and (21), [.] denotes the rounding operation. If the 
Radon transform is applied to a digital image, the image pixels 
are not always exactly on the reference lines. Therefore, Sρ,θ is 
approximated by assuming that each pixel is assigned to its 
nearest reference lines. The pixel position is determined by 
rounding operation as follows [19]. 

].xθcossθsin[ρy
],xθsinsθcos[ρx

minkr
'
k

minkr
'
k

−−=
−−=

 (23)

By using (23), the discrete Radon transform of 2-D digital 
image is approximated from (15) as 

∑
=

≈
θρ,S

0k

'
k

'
ktr )y,x(gΔs)θ,(ρR  (24)

In the discrete Radon transform given by (24), the number of 
pixels projected on a line is not necessarily the same for 
different directions and/or coordinates of a direction. 
Therefore, the summation of all coordinates along this line 
may not act in a similar statistical base for different 
parameters ρ and θ. To overcome this problem, the discrete 
Radon transform in (24) is modified using the sample mean 
[19].  
 Define  a set Φr,t, a slightly different from [19], as 
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Using the aforesaid formula, (24) is rewritten as 

∑
−

=

=
1S

0k

tr,
ktr

θρ,

,ΨΔs)θ,R(ρ  (26)

where Ψk
r,t, is the kth element of the set Φr,t. 

Equation (26) can be written as  

)(ΦmeanSΔs)θ,R(ρ tr,
θρ,tr =  (27)

In the modified Radon transform, the summation in (26) is 
replaced by the sample mean. Therefore, (27) is written as 

)(ΦmeanΔs)θ,R(ρ tr,
tr =  (28)

By using the sample mean as shown above, a better 
performance for direction estimation is obtained because a 
more stabilized statistical behavior is obtained due to the 
different number of elements of the sets Φr,t [19].  

In order to apply the discrete Radon transform, Fourier 
spectrum of blurred image is treated as an image. To find 
direction of the lines which appear in the spectrum, the Radon 
transform is calculated for all directions with θ. We compute 
the variance of the results for each direction, and then form 
the variance array VA as 

⎥⎦
⎤

⎢⎣
⎡ −∈=

180
ππθ)],θ,(ρR[Var)(θV ttrρtA

r

 
(29)

The motion direction is obtained by finding the maximum 
value of variance array. 
 

IV. IMAGE DECONVOLUTION 

A. Inverse Filtering Method  
Image deconvolution method discussed here is a spatial 

domain based-image deconvolution performed along the 
blurring path. To achieve this, (6) is reformulated to get 1-D 
degradation process. Therefore, the blurred image at mth row 
is defined as 

∑
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Qq
mqm q)(nfh(n)g  
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In linear motion blurred case, (30) can be written as (31) 
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Equation (31) can be written in a matrix representation as 

mm HFG =  (32)

where Gm ∈ ℜNx1, H ∈ ℜNxN, and Fm ∈ ℜNx1 are defined by 
the following matrices.   
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(34)

In (33), all matrix elements are 1/L. From (32), the estimated 
true image is obtained by applying (35) to each row, i.e. m=1, 
2,…, M. Thus,  

m
1

m GHF −=ˆ  (35)

H-1 in (35) is computed by applying elementary row 
operations. The restored image is then defined as 
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(36)

where F̂ is an M x N  matrix.  
As for the motion blurred image with 0 < θ < π/2, (6) is 

redefined as 

∑ ∑
−= −=

−−=
P

Pp

Q

Qq
qp, )qj,pi(uhj)(i,z  

(37)

where u(i,j) is the interpolated pixel obtained from the original 
image F(m,n) given by (6) along the line at the motion 
direction. Therefore the size of U will not be equal to that of F 
anymore. If the size of F is M x N, then U is a matrix with size 
I x J. I  is computed by 

⎡ ⎤1))(Nθ(tanMI −+=  (38)

J should be carefully calculated. The image should be 
considered to have the size M x N. 
 
For N ≤  M: 

1}θtan1){(N
θsin

1J +⎥⎦
⎥

⎢⎣
⎢ −=  (39)

For N > M: 
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1
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By using (38) - (41), the degradation process that happens at 
motion direction 0 < θ < π/2 can be treated as the degradation 
process in horizontal direction. From (37), the blurred image 
at ith row is defined as 

∑
=

−=
L

0l
ii l)(ju

L
1(j)z  (42)

In matrix form, (42) can be written as 

ii HUZ =  (43)

where H ∈ ℜJxJ is defined in the same way as shown in (34). 
Zi ∈ ℜJx1 and Ui ∈ ℜJx1 are defined by the following 
matrices.   
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If (45) is applied to each row of Z, i.e. i = 1, 2, …, I, then the 
restored image is obtained and is given by (46). 

i
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i ZHU −=ˆ  (45)
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However, matrix Û is not the desired image. Each element of 
Û is an interpolated pixel along the line segment at the motion 
direction. Bilinear interpolation [20], [21] is applied to obtain 
the restored image, i.e, by re-interpolating the elements of Û .  
For the motion blurred image with motion direction π/2 < θ < 
π, (37) is reformulated as  

∑ ∑
−= −=

−−=
P

Pp

Q

Qq
flipqp,flip q)dp,(cuhd)(c,z  (47)

Matrix representation of (47) is given by 

flipflip HUZ =  (48)

where Uflip is a matrix obtained by performing matrix left-right 
flipping operation to the original image F and the 
interpolating F along a line segment at the motion direction. 

As a result, Zflip, whose elements are zflip(c,d), is in a form of 
left-right flipped matrix. For an M x N original image F, the 
size of Zflip is  C x D [22]: 

⎡ ⎤1))(N(tanM −+= ϕC  (49)
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For N>M 
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ϕ
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In (49)-(52), φ = π – θ.  
By using the same way shown in (42) – (46), the true 

restored image can be obtained after matrix left-right flipping 
operation. To increase the quality of the restored image, the 
bilateral filter is applied. The bilateral filter is employed 
because it can preserve the image edges. 

B. Discrete Sine Transformation Method 
In this section, linear motion blur given by (1) is 

reformulated as shown in (53). Here, a point spread function 
for horizontal direction is considered. Let denote T as 
exposure time to record the image and V as relative speed, 
then the horizontal width of the point spread function is VT = 
Ly = 2Dy+1. Thus, 
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The linear motion blurred image is defined as 
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−= −=
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y

y
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Since the motion direction is horizontal, by using the 
definition expressed in (54), (55) is reformulated as 

∑
−=
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y

y

D

Dl
l l)ju(i,aj)z(i,  (56)

In matrix representation, (56) is written as 

where zi ∈ ℜNx1, ui ∈ ℜNx1, and Ã∈ ℜNxN are defined as 
 

M1,2,...,i,uA~j)(i,z ii ==  (57)
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Therefore, ui can be obtained by computing the inverse of 
matrix Ã such that 

j)(i,zAu i
1

i
−= ~

 (60)

where usually Ã-1 is obtained by the computational complexity 
of O(N3) multiplications. To reduce the computational 
complexity, discrete sine transform (DST) is used. The 
Toeplitz matrix Ã can be decomposed as shown in (61) [23]. 
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where Q is a tridiagonal matrix and Â is a Hankel matrix, 
namely 
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and 
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In (61), αm is given by 
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Then, the following well-known results of eigenvalues and 
eigenvectors are applied for the tridiagonal matrix Q such that 
A can be diagonalized by DST [23]. 
 
Eigenvalues and Eigenvectors of Q 

 
The tridiagonal matrix Q is diagonalized by DST matrix such 
that we have the following relations [23]: 
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where S is the following DST matrix whose row (or column) 
vectors are eigenvectors of Q corresponding to eigenvalues of 
{λQ,i}: 
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Therefore, from (61) and (66), we have [23] 
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where {λA,i}, i = 1,…, N, are eigenvalues of A and are given 
by 
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Then, by applying DST to (57) with employing the relation in 
(61), we have 

,u)SSAS(AzS ii
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or 
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where yi = S zi and xi = S ui.  From (72), we can solve xi by the 
following iteration method: 
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1
A

t
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Next, from IDST (S = S-1), {ui ; i = 1, …, M} is obtained, and 
the restored image is obtained [23]. 
 

V. RESULTS AND DISCUSSION 
Experiments are performed by using computer with 

specifications: Intel Pentium M 1.86 GHz and 1 GB RAM. 
The software used in the simulation is Matlab 6.5.1. To 
approach practical situation, an RGB image is used. 
Artificially blurred image is obtained by blurring simulation 
with angles varying from 0 to π – π/180 and length varying 
from 1-79 pixels. Before estimating the parameters of the PSF, 
the blurred image is windowed using a Gaussian window. 

In this paper, the motion length (L) is estimated using only 
the 2-D power cepstrum analysis. However, in motion 
direction estimation (θ), two methods are used. As either the 
power cepstrum analysis and the modified Radon transform 
has different capabilities for a certain value of motion length, 
the two methods are used together. For L<14 pixels, the power 
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cepstrum analysis gives better motion direction estimation 
than the Radon transform does. The maximum error when we 
use the power cepstrum analysis is 3 degrees, but it becomes 
bigger if we use the modified Radon transform. For L≥14 
pixels, the modified Radon transform can give better 
estimation than the power cepstrum analysis. Therefore, the 
estimated motion length obtained by the power cepstrum 
analysis is used to determine the better method to estimate the 
motion direction. If L<14 pixels, then the power cepstrum 
analysis is used to estimate the motion direction. If   L≥14 
pixels, the motion direction is estimated using the modified 
discrete Radon transform. The estimated parameters are then 
used in the image deconvolution to get the estimated true 
image. Table 1 shows the results of PSF parameters 
estimation. Performance of the image deconvolution method 
and the image smoothing method can also be verified from the 
table. 

Table 1 PSF parameter estimation results for RGB image 

L θ L̂  θ̂  MSEr MSEs 

15 43 16 43 0.0541 0.0212 
24 136 24 138 0.0380 0.0348 
48 18 49 17 0.0467 0.0400 
53 27 54 27 0.0316 0.0270 
63 5 64 4 0.0283 0.0239 

 
In Table 1, MSEr denotes the mean square error computed 
using the restored image, and MSEs denotes the mean square 
error computed using the restored image after image 
smoothing using the bilateral filter. The MSE is computed by 

∑∑
−

=

−

=

−=
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NM

1MSE  
 

where (m,n)f̂  and f(m,n) denote the restored image and the 
original image, respectively. 

To show the capability of parameter identification and 
image deconvolution method, the original image, the blurred 
image, and the restored image are compared. Fig. 1, Fig. 2, 
Fig. 3, and Fig. 4 show the original image, the blurred image, 
the Gaussian-windowed blurred image, and the restored image 
(deconvolved image), respectively. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Original image 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Motion blurred image (L=15 pixels, θ=43o) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Gaussian-windowed motion blurred image 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Restored image using L̂ =16 and θ̂ =43 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5 The restored image smoothed using bilateral filter 
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The experimental result for the use of DST is given as 
follows. In the simulation, the original image is blurred by 
linear motion blurred in horizontal direction with L = 7 pixels. 
The original image, the blurred image, and the restored image 
are shown by Fig. 6 – Fig. 8. Here, we use a monochrome 
image. 
 

 
 

Fig. 6 Original Lenna Image 

 
 

 

 

 

 

 

 

Fig. 7 Blurred Lenna Image (L = 7 pixels) 

 
 
 
 

 

 

 

 

Fig. 8 Restored Image 

The mean square error of the restored image (Fig. 8) is 4.6 x 
10-25. For linear motion blurred image with θ ≠ 0o, after 
estimating L and θ, image is rotated θ degrees, and inverse 
filtering using DST is applied. 
 

VI. CONCLUSION 
PSF parameters estimation using the modified discrete 

Radon transform and the 2-D cepstral analysis has been 
demonstrated. Simulation results show the capability of the 
methods.  The method of PSF parameter identification 
discussed here can be applied to any image size, any motion 
direction, and any motion length. By applying two methods 
which have their own capability, the accuracy of motion 
direction estimation using these methods is better than by just 
applying one of the methods. Restoring the blurred images 
using spatial domain-based image deconvolution method can 
avoid artifact which often happens in frequency domain-based 
image deconvolution method. To increase the quality of the 
restored image, bilateral filter is used. The advantage of this 
filter is the ability in preserving the edge of the image. This 
filter can improve the mean square error of the restored image. 
Image deconvolution using DST has given an acceptable 
result where the mean square error of the restored image is 
considerably small. 
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