
A System Specification Using Check-Points
Extraction Method

Chikatoshi Yamada, Yasunori Nakaga, and Mototsune Nakahodo

Abstract—Recently, model checking has played an important
role in design of complex systems, embedded systems, and other
critical systems. However, the model checking has problems of
its own class too. The major problem is that a large amount
of memory and time is often required, because the underlying
algorithm in the model checking usually involves systematic
examination of all reachable states of the system to be verified.
In this paper, we consider where designers of systems can extract
check-points, necessary signal events, in model checking of
formal verification. Moreover, we demonstrate some specification
examples, and some verification results by SPIN and NuSMV
model checking tools.

Index Terms—Model checking, Linear temporal logic, Check-
points extraction method.

I. I NTRODUCTION

T ODAY, industrial designs are becoming more and more
complex as technology advances and demand for higher

performance increases. Especially, hardware and software sys-
tems are widely used in applied field where no failure is
permitted: telephone switched network, electronic commerce,
medical equipment, and other critical systems. The validity of
a design accompanies checking whether the physical design
satisfies its specification. In traditional design flow, validation
is accomplished through simulation and testing. Some errors
inside a design may exhibit nondeterministic behaviors, and
therefore, will not be reliably repeatable. This makes testing
and debugging using simulation difficult. Also, exhaustive
testing for nontrivial designs is generally infeasible, therefore,
testing provides at best only a probabilistic assurance[1].

In design of complex systems, embedded systems, and
other critical systems, model checking, explores a finite state
space to determine whether or not a given property holds, has
played an important role. Model checking of formal verifi-
cation ascertains whether designed systems can be executed
or specified. Various formal methods for verification have
been studied[1], [2], [3], [4]. However, formal verification
has problems of its own class too. The major problem with
automatic formal verification is that a large amount of memory
and time is often required, because the underlying algorithm in
these methods usually involves systematic examination of all

Chikatoshi Yamada is with the Department of Information and Communi-
cation Systems Engineering, Okinawa National College of Technology, 905
Henoko, Nago, Okinawa 901-2192, Japan. (corresponding author to provide
phone: +81-980-55-4149; fax: +81-980-55-4149; e-mail: cyamada@okinawa-
ct.ac.jp).

Yasunori Nagata and Mototsune Nakahodo are with the Department of
Electrical and Electronics Engineering, University of the Ryukyus, 1 Senbaru,
Nishihara, Nakagami, Okinawa 903-0213, Japan.

Manuscript received March 14, 2007; Revised version June 16, 2007

reachable states of the system to be verified. As the number of
reachable states increases rapidly with the size of the system,
the basic algorithm by itself becomes impractical: the number
of states for the system is often too large to check exhaustively
within the limited time and memory that is available. This
phenomenon is known as the state space explosion problem[1],
[2].

In this research, we focus on specification process of model
checking in formal verification shown inFig.1, and to propose
a new method which can extract verification check-points in-
ductively from modeling systems. System designers can easily
derive check-points of verified systems by using the method.
The rest of this article is organized as follows: In section 2,
Model Checking, Signal Transition Graph, Temporal Logic
are briefly explained, and in section 3 our proposed Check-
Points Extraction Method is described by means of procedure
of specification. In section 4, we show some specification
examples. Moreover, some models are used for verification to
compare by SPIN and NuSMV model checking tool in section
5. Finally, we summarize the discussion in section 6.

II. PRELIMINARIES

A. Model Checking

The principal validation methods for complex systems are
simulation, testing, deductive verification, and model check-
ing. Simulation and testing both involve making experiments
before deploying the system, testing is performed on the actual
product. In the case of circuits, simulation is performed on
the design of the circuit, whereas testing is performed on
the circuit itself. In both cases, these methods typically inject
signals at certain points in the system and observe the resulting
signals at other points. These methods can be a cost-efficient
way to find many errors. However, checking all of the possible
interactions and potential pitfalls using simulation and testing
techniques is rarely possible. Formal verification attempts to
overcome the weakness of non-exhaustive simulation by prov-
ing the correspondence between some abstract specification
and the design in hand.

An important issue in specifications completeness. Model
checking provides means for checking that a model of the
design satisfies a given specification, but it is impossible to
determine whether the given specification covers all the prop-
erties that the system should satisfy.Safety propertyexpresses
that, under certain conditions, nothing badwill happen. Live-
ness propertyexpress that, under certain conditions, something
goodwill eventually happen.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Vol. 1, 2007 130

Systems

Signal Transition Graph

Relational State Graph

Check-Points Extraction

Model Checking (SPIN, NuSMV)

Proposed MethodTraditional Method

Modeling

Specification

Verification

Petrify tool

Temporal Order Relation

Fig. 1. The framework of proposed method.

B. Signal Transition Graph

In order to describe highly concurrent systems, graph-
based specification methods have been widely used. An Signal
Transition Graph (STG)[6], a labeled interpreted Petri Net[7],
has been considered as a well-suited specification method to
describe asynchronous circuits.

Definition 1: (Petri Net (PN)). A Petri Net is a bipartite
directed graph consisting of 4-tuple

∑
= (P, T, F,m0), where

1. P is a finite set of places.
2. T is a finite set of transitions, satisfyingP ∩ T = ϕ and

P ∪ T = ϕ .
3. F is a flow relationF ⊆ (P × T) ∪ (T × P), specifies

binary relation between transitions and places.
4. m0 is the initial marking of the PN.

When transitions are interpreted as rising and falling tran-
sitions of signals of a control circuit, an STG is one interpre-
tation of a PN.

Definition 2: (Signal Transition Graph (STG)). Let J be a
set of signals of a network, ASignal Transition Graphdefined
on J is a Petri Net

∑
J = ⟨ P, T, F,M0 ⟩ with T : J → { +

, - } .

Each transition of the STG is interpreted as a rising transi-
tion or a falling transition of a signal.

Consider an arbiter module shown inFig.2. An STG for the
arbiter module is shown inFig.3, where ’+’ mean a rising edge
and ’-’ means a falling edge of a certain signal, respectively.
This example uses two signalsu0 and u1. Black circle on a
transition edge indicates a token. A transition is enabled when
all input places have at least one token. When an enabled
transition fires, it removes one token from each input place
and adds one token to each output place.

user1 user2

arbiter

u1i u1o u2i u2o

Fig. 2. An arbiter module.

u0i+ u1o+ u0i- u1o-

u0o+ u1i+ u0o- u1i-

Fig. 3. A signal transition graph forFig.2

C. Temporal Logic

Temporal logic[1], [2], [4], [5] is a formalism for describing
sequences of transitions between states in a reactive system.
In the temporal logics that we will consider, time is not
mentioned explicitly; instead, a formula might specify that
eventuallysome designated state is reached, or that an error
state isneverentered. Properties likeeventuallyor neverare
specified using specialtemporal operators. These operators
can also be combined with boolean connectives or nested
arbitrarily. Temporal logics differ in the operators that they
provide and the semantics of those operators. Its operators
mimic linguistic constructions (the adverbs ”always” , ”until”
, the tenses of verbs, etc.) with the result that natural language
statements and their temporal logic formalization are fairly
close. Finally, temporal logic comes with a formal semantics,
an indispensable specification language tool.

1) Linear Temporal Logic(LTL):Temporal logic allows
us to formalize the properties of a run unambiguously and
concisely with the help of a small number of special temporal
operators. Most relevant to the verification of asynchronous
process systems is a specific branch of temporal logic that is
known as linear temporal logic(LTL), commonly abbreviated
as LTL. The semantics of LTL is defined over infinite runs.
With help of the stutter extension rule, however, it applies
equally to finite runs[1].

Here we give descriptions of LTL. LTL is a sort of temporal
logic, which has the following formulas:

• ¤ q : means thatq always holds for all successor states
on a certain path.

• ♦ q : represents thatq must be sometimes true for only
one successor state of the path, and is similar to the
formula which expresses future in linear temporal logic.

• pUq : is thatp must be true on the path states, beginning
at the current state, untilq becomes true.

• Xp : then simply states thatp is true in the immediately

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Vol. 1, 2007 131

following state of the run.

The correctness of properties to be verified is usually
specified in LTL. The LTL is extending propositional logic
with temporal operators that express how propositions change
their truth values over time. Here we use temporal operators:
Operators¤, ♦, and X meaningglobally, sometime in the
future, andnext time, respectively.

III. C HECK-POINTS EXTRACTION METHOD

A. Strong/Weak Temporal Order Relation

In verifying behaviors of a system, checking all signal
events is inefficient. Reducing signal events to be checked is
necessary for specifying behaviors of the system[8], [9]. Here,
We consider a system which has 3-inputs (a , b , c) and 2-
outputs (x , y). Suppose that behaviors of the system occur as
a → x → b → c → y → a , repeatedly. All relations of the
signal events can be indicated as follows:

{(a , x) , (a , y) , (x , b) , (b , c) , (b , y) , (c , y)},

where (a , x) indicates that outputx occur after inputa .
Although outputy is not an immediate successor of inputa
, (a, y) can be considered because outputy must occur after
inputa in the future. Definitions ofstrong/weak temporal order
relationsare as follows:

Definition 3: (strong temporal order relation). A strong
temporal order relationis any inverse input-output relation of
event sequences.

Definition 4: (weak temporal order relation). A weak
temporal order relationis any relation of input signal events.

Thus, behaviors of the system can be specified by introducing
strong/weak temporal order relations as follows:

{ (a , x) , (a , y) , (b , y) , (c , y) }

Its specification shows that outputx can occur after inputa
and outputy can occur by rendezvous inputsa, b, andc.

B. Converting STG to State Graph

To explain the procedure of the proposed method, we
especially consider an arbiter module shown inFig.2. Thus
we describe specification of temporal formulas for the arbiter
module. The STG of the arbiter module can be drawn inFig.3.
For the STG, states are connected with labeled edges as shown
in Fig.4 to represent order relations of events. Converting
the STG to the state graph can be made by Petrify tool[10]
automatically. A branch expression forFig.4 is shown in
Fig.5. The procedure of the proposed specification method is
described in the succeeding sections.

u0i+

u0o+

u1o+

u1i+

u0i-

u0o-

u1o-

u1i-

1

0

2

5

3

46

7

9

11

13

8

10

12

u1o+

u1o+

u0i-

u0i- u0o+

u0o+

u1i+

u0i-u0o-

u1i-

Fig. 4. A state graph forFig.3.

u0i+

u0o+

u1i+

u0i-

u0o-

u1o-

u1i-

u1o+

u1o+

u0i-

u0i-u0o+

u0o+

u1i+

u0i-

u0o-

u1i-

u1o+

u1i+u1i+

u0o- u0o- u0o-

u1i- u1i- u1i-u0i-

u1o- u1o- u1o- u1o-

A B C D E

Fig. 5. A branch expression for the state graph.

C. Procedure of Specification

In this section, we describe the procedure of the proposed
specification method shown inFig.6. This procedure corre-
sponds to the part in the wavy arrow line inFig.1. The
procedure is composed of five steps shown inFig.6. Here,
we explain the procedure as follows:

[STEP.1]
In this step, event sequences are extracted from branch expres-
sion, for example, path (A), (B), (C), (D) and (E) are extracted
from Fig.5.

(A) u0i+ u0o+ u1i+ u1o+ u0i− u0o− u1i− u1o−
(B) u0in+ u0o+ u1i+ u1o+ u0o− u1i− u0i− u1o−
(C) u0i+ u0o+ u1o+ u0i− u1i+ u0o− u1i− u1o−
(D) u0i+ u1o+ u0o+ u0i− u1i+ u0o− u1i− u1o−
(E) u0i+ u1o+ u0i− u0o+ u1i+ u0o− u1i− u1o−

[STEP.2]
In this step, checked signal events can be reduced by intro-

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Vol. 1, 2007 132

[STEP.1]

Extracting all paths from branch expression.

[STEP.2]

Extracting IO(Input-Output) relations.

[STEP.3]

Introducing temporal operators to an IO relation.

[STEP.4]

Specifying all paths using temporal formulas.

[STEP.5]

Combining transition relations for the same output.

Fig. 6. Procedure of Specification.

ducingstrong/weak temporal order relations.

(A) {(u0i+ , u0o+), (u0i+ , u1o+), (u1i+ , u1o+),
(u1i+ , u0o−), (u0i− , u0o−), (u0i− , u1o−),
(u1i− , u1o−)}

(B) {(u0i+ , u0o+), (u0i+ , u1o+), (u0i+ , u0o−),
(u1i+ , u1o+), (u1i+ , u0o−), (u1i− , u1o−),
(u0i− , u1o−)}

(C) {(u0i+ , u0o+), (u0i+ , u1o+), (u0i− , u0o−),
(u0i− , u1o−), (u1i+ , u0o−), (u1i− , u1o−)}

(D) {(u0i+ , u1o+), (u0i+ , u0o+), (u0i− , u0o−),
(u0i− , u1o−), (u1i+ , u0o−), (u1i+ , u1o−),
(u1i− , u1o−)}

(E) {(u0i+ , u1o+), (u0i− , u0o+), (u0i− , u0o−),
(u0i− , u1o−), (u1i+ , u0o−), (u1i− , u1o−)}

[STEP.3]
In each path, if IO relation shows that there is immediate
successor, specified asX operator, otherwise specified as♦
operator.

(A) {X(u0i+ , u0o+), ♦(u0i+ , u1o+), X(u1i+ , u1o+),
♦(u1i+ , u0o−), X(u0i− , u0o−), ♦(u0i− , u1o−),
X(u1i− , u1o−)}

(B) {X(u0i+ , u0o+), ♦(u0i+ , u1o+), ♦(u0i+ , u0o−),
X(u1i+ , u1o+), ♦(u1i+ , u0o−), ♦(u1i− , u1o−),
X(u0i− , u1o−)}

u0i+ u1o+ u0i- u1o-

u0o+ u1i+ u0o- u1i-

Fig. 7. A reduced signal transition graph forFig.3 by check-points extraction
method

(C) {X(u0i+ , u0o+), ♦(u0i+ , u1o+), ♦(u0i− , u0o−),
♦(u0i− , u1o−), X(u1i+ , u0o−), ♦(u1i− , u1o−)}

(D) {X(u0i+ , u1o+), ♦(u0i+ , u0o+), ♦(u0i− , u0o−),
♦(u0i− , u1o−), X(u1i+ , u0o−), ♦(u1i+ , u1o−),
X(u1i− , u1o−)}

(E) {X(u0i+ , u1o+), X(u0i− , u0o+), ♦ (u0i− , u0o−),
♦(u0i− , u1o−), X(u1i+ , u0o−), X(u1i− , u1o−)}

[STEP.4]
In all paths, relations of the same temporal operator and the
same IO can be extracted. Otherwise only the same IO relation
can be extracted. Since♦ expresses ”sometime in the future,”
thenextoperatorX can be covered asX ⊆ ♦ in order to apply
Partial Order Reduction. Thus, the extracted same IO relation
can be gathered by♦.

¤ [♦(u0i+ , u1o+) ∨ ♦u1i+ , u0o−)
∨ ♦(u0i− , u1o−) ∨ ♦(u1i− , u1o−)
∨ ♦(u0i+ , u0o+) ∨ ♦(u1i+ , u1o+)
∨ ♦(u0i− , u0o−) ∨ ♦(u0i+ , u0o−)
∨ ♦(u1i+ , u1o−) ∨ ♦(u0i− , u0o+)]

[STEP.5]
In all paths, relations of the same output can be combined.

¤ [♦(u0i+ , u0o+) ∨ ♦(u0i+ ∧ u1i+ , u0o−)
∨ ♦(u0i+ ∧ u1i+ , u1o+) ∨ ♦(u0i− ∧ u1i+ , u1o−)]

Check-points can be extracted by repeating the above-
mentioned steps.

IV. SPECIFICATION EXAMPLES

In this section, we demonstrate specifications of distributed
mutual exclusion(DME)[4] cells shown inFig.8 and an asyn-
chronous pipeline shown inFig.9. First, we show specifica-
tions for the DME cells as is shown inFig.8. Temporal for-
mulas are specified without our proposed method as follows:

[Specification without the proposed method]

[DME1]
¤ [♦ (u1.req+ ∧ d1.ack+ ∧ d2.req− , u1.ack−)
∨ ♦ (u1.req+ ∧ d4.req− , d1.req+)
∨ X (u1.req+ , d2.ack−)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Vol. 1, 2007 133

DME1User1 User2DME2

d1.req

d1.ack
u1.ack

u1.req

u3.req

u3.ack

d2.req

d2.ack

Fig. 8. DME cells.

∨ ♦ (u1.req− ∧ d1.ack− ∧ d2.req+ , u1.ack+)
∨ ♦ (u1.req− ∧ d2.req+ , d1.req−)
∨ X (u1.req− , d2.ack+)

[DME2]
¤ [♦ (u2.req+ ∧ d2.ack+ ∧ d1.req− , u2.ack−)
∨ ♦ (u2.req+ ∧ d1.req− , d2.req+)
∨ X (u2.req+ , d1.ack−)
∨ ♦ (u2.req− ∧ d2.ack− ∧ d1.req+ , u2.ack+)
∨ ♦ (u2.req− ∧ d1.req+ , d2.req−)
∨ X (u2.req− , d1.ack+)

Moreover, we indicate temporal formulas with our proposed
method as follows:

[Specification with the proposed method]

[DME1]
¤ [♦ (u1.req+ ∧ d1.ack+ ∧ d2.req− , u1.ack+)
∨ X (u1.req+ , d1.req+) ∨ AX (u1.req+ , d2.ack−)
∨ ♦ (d1.ack− ∧ u1.req− ∧ d2.req+ , d2.ack+)]

[DME2]
¤ [♦ (u2.req+ ∧ d2.ack+ ∧ d1.req− , u2.ack+)
∨ X (u2.req+ , d2.req+) ∨ AX (u2.req+ , d1.ack−)
∨ ♦ (d2.ack− ∧ u2.req− ∧ d1.req+ , d1.ack+)]

These temporal formulas considered only input-output rela-
tions by our proposed method.

Next, we show specifications for the pipeline as is shown in
Fig.9. Temporal formulas are specified without our proposed
method as follows:

[Specification without the proposed method]

[Ctrl1]
¤ [X (c1i+ , cr1o+) ∨ ♦ (c1i+∧ cr1i+ , c12i+)
∨ ♦ (c1i+ ∧ cr1o+ ∧ c1i+ , c12i+ ∧ c1i−)
∨ ♦ (c12o+ , cr1o−) ∨ ♦ (c12i+ , c1o−)
∨ X (c12o− , c12i−)]

 D1 D2 D3 D4

Ctrl3

R
e
g
1

R
e
g
2

R
e
g
3

c12o c23o c3o

cr1o

c1i c12i c23i c3i

c1o

Ctrl2Ctrl1

cr1i
cr2o

cr2i
cr3o

cr3i

Fig. 9. An asynchronous pipeline.

[Ctrl2]
¤ [X (c12i+ , cr2o+) ∨ ♦ (c12i+∧ cr2i+ , c23i+)
∨ ♦ (c12i+ ∧ cr2o+ ∧ c12i+ , c23i+ ∧ c12i−)
∨ ♦ (c23o+ , cr2o−) ∨ ♦ (c23i+ , c12o−)
∨ X (c23o− , c23i−)]

[Ctrl3]
¤ [X (c23i+ , cr3o+) ∨ ♦ (c23i+∧ cr3i+ , c3i+)
∨ ♦ (c23i+ ∧ cr3o+ ∧ c23i+ , c3i+ ∧ c23i−)
∨ ♦ (c3o+ , cr3o−) ∨ ♦ (c3i+ , c23o−)
∨ X (c3o− , c3i−)]

Moreover, we indicate temporal formulas with our proposed
method as follows:

[Specification with the proposed method]

[Ctrl1]
¤ [X (c1i+ , cr1o+) ∨ X (c1i+ ∧ cr1o+, c12i+)
∨ X (c1i− , cr1o−) ∨ X (cr1o− , c12i−)]

[Ctrl2]
¤ [X (c12i+ , cr2o+) ∨ X (c12i+ ∧ cr2o+, c23i+)
∨ X (c12i− , cr2o−) ∨ X (cr2o− , c23i−)]

[Ctrl3]
¤ [X (c23i+ , cr3o+) ∨ X (c23i+ ∧ cr3o+, c23i+)
∨ X (c23i− , cr3o−) ∨ X (cr3o− , c3i−)]

V. V ERIFICATION RESULTS

In this section, we show verification results for a shared
resources access structure shown inFig.10. All these model
verifications are performed on an 2.4GHz Core 2 Duo proces-
sor under Linux with 2GB of available RAM. In this article, all
simulations are verified by SPIN version 4.2.9, XSPIN version
4.3.0[1], [3], [11], [12], and NuSMV version 2.4.3[13].

For the structure, we report the number of OBDD nodes
necessary to represent the corresponding structure, transitions,
and memory required by the systems to analyze the structure.
Here, CPE indicates verification results with check-points
extraction method, andNormal indicates verification results
without the method, respectively. For verification of semaphore
by SPIN shown inFig.11, results are not much different
between with and without the method. Similarly, verification
results of mutex are also not much.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Vol. 1, 2007 134

Shared
resources

Semaphore
or

Mutex

Cell 1 Cell 2 Cell 3 Cell n
....

Fig. 10. A shared resources access structure.

Moreover, performance results of semaphore and mutex by
NuSMV are shown inFig.12 and Fig.13, where the number
of cells refer to the number of cell modules shown inFig.10.
For the results of semaphore, verification cannot be improved
very much. On the other hand, verification of mutex shows
efficient results for more and more larger structures.

VI. CONCLUSION

In design of complex systems, embedded systems, and
other critical systems, model checking, explores a finite state
space to determine whether or not a given property holds, has
played an important role. However, it is inefficiency to verify
the entire systems. This article considered the case where
designers of systems can extract check-points easily in model
checking of formal verification. Users must generally know
well temporal specification because the specification might
be complex. Our proposed method, check-points extraction
method, can gain temporal formula specifications inductively.
We aimed at input-output order relations for systems, not con-
sidering output-input order relations. Furthermore, we defined
strong/weak temporal order relations in the procedure of speci-
fication. Weak temporal order relations include orders of inputs
implicitly. Strong temporal order relations express inverse
input-output order relations. We showed that the verification
tasks are reduced for states, transitions, and memory with our
proposed inductive specification method. System designers can
easily lead complex temporal formulas by using the method.
In verification results, especially, required memory was able to
reduced for model checking. Then, it is assumed to be research
work in the future to verify embedded systems design.

REFERENCES

[1] E.M. Clarke, O. Grumberg, and D. A. Peled:Model Checking, MIT
Press, 2001.

[2] T. Kropf: Introduction to Formal Hardware Verification, Springer, 1999.
[3] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,

P. Schnoebelen, and P. McKenzie:Systems and Software Verification:
Model-Checking Techniques and Tools, Springer, 2001.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2 4 6 8 10

Normal

CPE

Cells

Transitions

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2 4 6 8 10

Normal

CPE

Memory [B]

Cells

Fig. 11. Verification performance ofsemaphore by SPIN: Transi-
tions(upper), amount of Memories(lower).

[4] Kenneth L. McMillan: Symbolic Model Checking, Kluwer Academic
Publishers, 1993.

[5] Dov M. Gabbay, Mark A. Reynolds, and Marcelo Finger:Temporal
Logic Mathematical Foundations and Computational Aspects, Volume
2, Oxford Science Publications, 2000.

[6] Sung-Tae Jung and Chris J. Myers: ”Direct Synthesis of Timed Circuits
From Free-Choice STGs,”IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, Vol.21, No.3, pp.275–290, March 2002.

[7] Alex Yakovlev, Luis Gomes and Luciano Lavagno:Hardware Design
and Petri Nets, Kluwer Academic Publishers, 2000.

[8] Chikatoshi Yamada, Yasunori Nagata, and Zensho Nakao, ”Inductive
Temporal Formula Specifications for System Verification,” Journal of
Advanced Computational Intelligence and Intelligent Informatics, Vol.9
No.3, pp.321-328, 2005.

[9] Chikatoshi Yamada, Yasunori Nagata, and Zensho Nakao, ”An Efficient
Specification for System Verification,” Journal of Advanced Computa-
tional Intelligence and Intelligent Informatics, Vol.10, No.7, pp.931-938,
2006.

[10] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A.Yakovlev: ”Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,”IEICE Transactions on
Information and Systems, Vol.E80–D, No.3, pp.315–325, 1997.

[11] Gerard J. Holzmann:The SPIN Model Checker – Primer and Reference
Manual, Addison-Wesley, 2004.

[12] http://spinroot.com/

[13] http://nusmv.irst.itc.it/

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Vol. 1, 2007 135

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 5 10 15 20

OBDD nodes

Cells

Normal

CPE

 4.5e+006

 5e+006

 5.5e+006

 6e+006

 6.5e+006

 7e+006

 0 5 10 15 20

Normal

CPE

Memory [B]

Cells

Fig. 12. Verification performance ofsemaphore by NuSMV: OBDD
nodes(upper), amount of Memories(lower).

Chikatoshi Yamada received a B.E., an M.E., and D.E. degree from the Uni-
versity of the Ryukyus, Okinawa, Japan in 1998, 2000, and 2006, respectively.
He was a Lecturer in Takushoku University Hokkaido College. Currently he
is a Assistant Professor in the Department of Information and Communication
Systems Engineering, Okinawa National College of Technology. His research
interests include computer-aided logic design, formal design verification, and
embedded systems. He is a member of IEEE Computer Society and IEICE.

Yasunori Nagata received his B.E. and M.E. degrees in electronics and
information engineering from University of the Ryukyus, Okinawa, in 1984
and 1987, respectively. He received D.E. degree in computer science from
Meiji University in 1996. He is currently a Professor in the Department of
Electrical and Electronics Engineering, University of the Ryukyus. His main
research interests are in asynchronous digital system design, fault-tolerant
system, multiple-valued logic and temporal logic. Dr. Nagata is a member of
IEEE and IEICE.

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 0 5 10 15 20

OBDD nodes

Cells

Normal

CPE

 1e+007

 2e+007

 3e+007

 4e+007

 5e+007

 6e+007

 0 5 10 15 20

Memory [B]

Cells

Normal

CPE

Fig. 13. Verification performance ofmutex by NuSMV: OBDD
nodes(upper), amount of Memories(lower).

Mototsune Nakahodoreceived a B.E. and an M.E. degree from the University
of the Ryukyus, Okinawa, Japan in 2003, and 2005, respectively. Currently
he is a doctoral student in the Department of Electrical and Electronics Engi-
neering, University of the Ryukyus. His reseach interests are in asynchronous
VLSI circuit, embedded system and software engineering.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Vol. 1, 2007 136

