
 

 

  
Abstract— Time-frequency distribution (TFD) of signals gains 

increasing applications in various areas of sciences and engineering 
for processing non-stationary signals and nonlinear signals. 
Traditional methods in the field are short-time Fourier transform 
(STFT), generalized TFDs in the Cohen class (GTFD), and wavelet 
transform (WT) based TFD. Recently, Huang et al. introduced a new 
method called Hilbert-Huang transform (HHT). This is an adaptively 
data-driven approach without the limitations caused by various 
window functions for STFT, different kernels for GTFD, and different 
mother functions for WT. This paper discusses four types of TFDs 
with demonstrations, providing a case to show that HHT based TFD 
may have high resolution. 
 

Keywords— Time-frequency distribution, Hilbert-Huang 
transform, wavelet based time-frequency distribution, generalized 
time-frequency distribution, short-time Fourier transform based 
time-frequency distribution. 

I. INTRODUCTION 
UPPOSE {X(t)} for t ∈R  is a stationary process. Then, its 
autocorrelation function (ACF) is given by  

E[X(t)X(t + τ)] = rXX(τ),  
where E stands for mean operation and τ ∈R  is time lag. 
Power spectral density (PSD) function of {X(t)}, denoted by 
SXX(ω) = F[r(τ)] is time invarying, where F means the Fourier 
transform and .ω ∈R To be precise, 

[ ]( ) F ( ) ( ) .j
XX XX XXS r r e dωτω τ τ τ

∞ −

−∞
= = ∫                       (1) 

Hence, the PSD of a stationary process is analyzed in frequency 
domain without time information. 

Computational methods of the PSDs for stationary processes 
have been well studied. However, spectral analysis of 
non-stationary processes and nonlinear signals is worth studying 
in practice, such as the response of structures in a given random 
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loading environment, see e.g. [1-3]. 
The PSD of a non-stationary process is time varying. That is, 

it is also a function of time in addition to frequency. More 
precisely, the PSD of a non-stationary process {x(t)} should be 
expressed by Sxx(t, ω), which is called evolutionary spectrum. In 
the field of signal processing, it is usually termed 
time-frequency (TF) distribution (TFD). By analogy with 
stationary processes, the PSD of a non-stationary process is 
defined as 

[ ]( , ) F ( , ) ( , ) .j
xx xx xxS t r t r t e dωτω τ τ τ

∞ −

−∞
= = ∫                       (2) 

Hence, the PSD of a non-stationary process is analyzed in a TF 
plane. It can be used to study statistical properties of x(t). For 
instance, the instantaneous mean square value at t is given by 

2E ( ) ( ,0) ( , ) .xx xxx t r t S t dω ω
∞

−∞
⎡ ⎤ = =⎣ ⎦ ∫                            (3) 

Some early work regarding the mathematical properties of 
TFD was reported by Priestley [4], Loynes [5], Mark [6], 
Shinozuka [7,8]. There are several types of methods that are 
commonly used in engineering to describe Sxx(t, ω), such as 
Priestley’s evolutionary spectrum [4], Mark’s physical 
spectrum [6], short-time Fourier transform (STFT) [9,10], 
TFDs in the Cohen class [11], and wavelet-based TFD [12]. 
Recently, Huang and et al. introduced a new type of TFD based 
on Hilbert-Huang transform (HHT) [13,14]. Its applications in 
practice are noticeable, see e.g. Du and Yang [15], Yang and 
Gao [16,17]. 

Recall that resolution is a standard issue in spectrum analysis 
(Gonçalvès and Flandrin [18]). In this paper, we provide our 
experimental comparison of frequency resolution for four types 
of TFDs, namely, STFT based TFD, wavelet (Daubechies) 
based TFD, Choi-Williams TFD in the Cohen class, and HHT 
based TFD. The results in this paper demonstrate that HHT 
based TFD has higher resolution than other three. 

The rest of paper is organized as follows. We give 
comparison demonstration in Section 2 together with the brief 
description of each computational method. Conclusions are 
given in Section 3. 

II. BRIEF OF COMPUTATIONAL METHODS FOR FOUR TYPES OF 
TFDS WITH COMPARISON DEMONSTRATIONS  

While briefing the computational methods, we use the 
following signal 
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x(t) = [cos(0.1πt) + cos(0.4πt)][u(t) − u(t − 100)] + [cos(0.5πt) + 
cos(0.9πt)][u(t − 200) − u(t − 300)],                           (4) 

for the demonstration purpose, where u(t) is the unit step 
function. Fig. 1 indicates its plot. 
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Fig. 1. Signal to be processed. 

 
Fig. 2. STFT based TFD of x(t). 

 

A. STFT 
Linear transforms were first introduced by Gabor [19]. The 

basic idea behind Gaor regarding TF description of a signal is to 
obtain a TFD of the signal by performing Fourier analysis on the 
signal as it is when observed through a set of identical windows 
that are translated with respect to each other in time. The 
functionality of windows is to localize the signal in TF plane. 
The window function Gabor suggested is Gaussian. 

STFT is a kind of linear transforms. It is an extension of 
Gaor’s transform [20]. Denote Sx(t, ω) the STFT of x(t). Then, 

( , ) ( ) ( ) ,j
xS t x h t e dωτω τ τ τ

∞ −

−∞
= −∫                                 (5) 

where ( )h t  is a window function. Using the Hamming window 
of the window size 15, we obtain the STFT based TFD of x(t) in 
(4), see Fig. 2. 

Note that STFT stands for a set of methods. Different 
methods use different window functions. To select a window 
function so that it is optimally suitable for the signal to be 
processed may be an uneasy task in practice. In addition, the 
bandwidth of the analyzing functions is a constant that is 
independent of center frequency. Similarly, the time duration or 
window size of the analyzing functions is also a constant. To 
choose concrete values of the bandwidth and the time duration 
so that they are optimally suitable for the signal to be processed 
when a window function is given appears a hard problem. 

 

B. Choi-Williams TFD in Cohen Class 
Different from STFT, a class of TFDs is discussed by Cohen 

[11,21]. TFDs in the Cohen class are generalizations of the 

Wigner-Ville distribution that was first introduced by Wigner 
[22] in 1932 in quantum mechanics and Ville [23] in 1948 for 
TF analysis. 

Denote WD ( , )x t ω  the Wigner distribution (WD) of a 
real-valued signal x(t). Then, 

WD ( , ) .
2 2

j
x t x t x t e dωττ τω τ

∞ −

−∞

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫                       (6) 

The main unsatisfactory point of WD in practice is that it 
produces cross-terms. In fact, using the Fourier series, one has 

1( ) cos( ),n nx t A n tω ϕ= +∑ where An and ϕn are the amplitude 
and the initial phase of the nth harmonic of x(t), respectively. 
Thus, 

1

1

( / 2) ( / 2) cos[ ( / 2) ]
                                  cos[ ( / 2) ].

n n

n n

x t x t A n t
A n t

τ τ ω τ ϕ
ω τ ϕ

+ − = + +∑
− +∑

 (7) 
In order to suppress cross-terms and to obtain auto-terms as 
many as possible, a kernel is utilized in the Cohen class. Denote 
Φ(u, τ) the kernel function. In the general sense, we denote a 
TFD in the Cohen class by GTFD(t, ω), which is written by 

( )

GTFD( , )
1 ( / 2) ( / 2) ( , ) ,

2
j ut ut

t

x t x t u e dtd duτω

ω

τ τ τ τ
π

∞ ∞ ∞ − −

−∞ −∞ −∞
= + − Φ∫ ∫ ∫

 (8) 
where Φ(u, τ) satisfies the conditions mentioned in [11]. 

The literature regarding kernel design is rich, see e.g. Oh and 
Marks [24], Jeong and Williams [25]. Several commonly used 
kernels are Gaussian function discussed by Choi and Williams 
[26], Bessel function studied by Guo et al [27], corn-shaped 
kernel [24], and others, see [11] for details. The Gaussian 
function used in Choi-Williams TF distribution (CWD) is given 
by 

2 2

CWD ( , ; ) ,
u

u e
τ

στ σ
−

Φ =                                                  (9) 
where σ is a scaling factor to control its attenuation rate. Fig. 3 
indicates its plot for σ = 1. We use CWD(t, ω) to represent 
Choi-Williams TFD. Fig. 4 shows CWD of x(t) in (4). 

Note that to select the optimal kernel for general signals may 
be difficult since kernel selection is signal dependent (Baraniuk 
and Jones [28,29]). 

CWD kernel

CWD  
Fig. 3. Choi-Williams kernel for σ = 1. 
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Fig. 4. CWD of x(t) for σ = 1. 

 

C. Wavelet Based TFD 
WT of a signal x(t) is defined by  

*1WT ( ; ) ( ) ,x
tt a x g d

aa
ττ τ

∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫                        (10) 

where g(t) is the basic wavelet or the mother function, ∗ 
represents the complex conjugate, a > 0 is a scalar. The constant 
1/ a  is used for energy normalization. Different numbers of a 
and t cause the property of multiresolution. 

Note that g(t) in (10) can be taken as an impulse function of a 
linear system. Denote f0 the central frequency of the analysis 
system. Then, the scalar a can be expressed by 

0 .fa
f

=                                                                       (11) 

Hence, WT is a tool for TF analysis of signals with the local 
frequency f = af0, see e.g. Rioul and Vetterli [30], Strang and 
Nguyen [31]. 

WT receives considerable attention in the field of TF 
analysis, see e.g. Daubechies [32]. There are a number of 
mother functions in the field, such as Daubechies’s 4-coefficient 
wavelet, Haar wavelet, Morlet wavelet, and so on [31]. 

Denote φ the mother function of Daubechies’s 4-coefficient 
wavelet. Then, its plot is indicated in Fig. 5. We use it to obtain 
WT based TFD of x(t) in (4) (Fig. 6). 

Note that the selection of the optimal mother function for 
general signals may be a hard issue as different mother function 
corresponds to different kind of WT. 
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Fig. 5. Daubechies’s 4-coefficient basic wavelet. 
 

 
Fig. 6. WT based TFD of x(t). 

 

D. HHT Based TFD 
By using HHT, a signal being analyzed can be represented in 

TF domain by combining the empirical mode decomposition 
(EMD) with the Hilbert transform (Huang et al. [13,14]). 
Different from three approaches mentioned previously, EMD is 
adaptively data-driven, see e.g. Flandrin [33,34]. 

Denote H the operator of the Hilbert transform (HT). Then, 
H[x(t)] is given by 

1 ( )H[ ( )] ( ) .xx t y t d
t

τ τ
π τ

∞

−∞

= =
−∫                                      (12)  

As any analytic signal z(t) can be expressed by the sum of its real 
part x(t) and the imaginary part y(t) that is the Hilbert transform 
of the real part (Papoulis [35, Chap. 7]), one has  

z(t) = x(t) + jy(t).                                                        (13) 
In the polar coordinate system, the above can be rewritten by  

z(t) = a(t)exp[jϑ(t)],                                                   (14)  
where a(t) = [x2(t) + y2(t)]0.5 and ϑ(t) = tan−1[y(t)/x(t)] are the 
instantaneous amplitude and the instantaneous phase of z(t), 
respectively. Thus, x(t) can be recovered from z(t) by  

x(t) = Re[z(t)] = Re{a(t)exp[jϑ(t)]}.                          (15)  
Based on HT, therefore, the instantaneous frequency ω(t) is 
expressed by 

2 2

( ) ( ) ( ) ( ) ( )( ) .
( ) ( )

d t y t x t y t x tt
dt x t y t
ϑω −= =

+
                           (16) 

Note that to assure of the physical meaning of ω(t) requires 
that θ(t) must be a single-valued function over time, i.e., a 
mono-component function. However, θ(t) of a signal being 
processed in general may not be mono-component but 
multi-component. Thus, a method to decompose x(t) into a 
series of mono-functions is desired. In this aspect, Huang et al. 
[13,14] developed a method called EMD that decomposes x(t) 
into a series of mono-functions termed intrinsic mode functions 
(IMFs). 

It is noted that, physically speaking, the necessary conditions 
to define a meaningful instantaneous frequency are that the 
signal being processed must be symmetric regarding the local 
zero mean, and have the same numbers of zero crossings and 
extrema. This implies that, in an IMF, the number of extrema 
and the number of zero crossings must be either equal or 
different at most by one in the whole data set, and the mean 
value of the envelope defined by the local maxima and the 
envelope defined by the local minima is zero at every point. 
Those conditions are strict such that the resulting IMF may not 
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satisfy them exactly in general. Hence, the result is generally 
nearly a mono-component function instead of a perfect one. 
However, this does not matter in practice when one considers 
that signals to be processed usually include a certain amount of 
noise or measurement errors in addition to computation errors in 
signal processing. 

The procedure to decompose x(t) into a series of IMFs is as 
follows. 
• First, identify all local maxima from x(t) and then connect 

them with the cubic spline line to form the upper envelope 
of x(t). Denote the upper envelope of x(t) by xup(t). 

• Second, identify all local minima from x(t) and then 
connect them with the cubic spline line to form the lower 
envelope of x(t). Denote the lower envelope of x(t) by 
xlow(t). 

• Third, compute the mean by  
m11(t) = [xup(t) + xlow(t)]/2                                          (17)  

and construct a new signal h11(t) by  
h11(t) = 11( ) ( ).x t m t−                                                   (18) 

In the ideal case, h11(t) is an IMF since it satisfies all the 
conditions of IMF. In practice, however, there may exist 
overshoots and undershoots during processing. This is 
particular true for processing shock and impact signals in 
mechanics. Those overshoots or undershoots may distort the 
mean values, accordingly make the envelope mean differ from 
the true local mean, and, as a result, make h11(t) asymmetric. To 
deal with this practical issue, Huang et al. suggested the fourth 
step below. 
• Fourth, repeat the shifting process (18) by taking h11(t) as a 

new signal. After kth iterations, we have 
h1k(t) = 1( 1) 1( ) ( ),k kh t m t− −                                          (19) 

where m1k(t) is the mean envelope after the kth iteration, and  
1( 1) ( )kh t−  is the difference between the signal and the mean 

envelope at the ( 1)thk −  iteration. Define h1k(t) as the first IMF 
component. Express it by 

c1(t) = h1k(t).                                                              (20) 
• Fifth, having separated c1(t) from x(t), one has the residue 

given by 
r1(t) = 1( ) ( ).x t c t−                                                      (21) 

The criterion for stopping the iteration suggested by Huang et 
al. is like this. Given the standard deviation expressed by 

1( 1)

2

1( 1) 1
2

0

( ) ( )
SD .

( )
k

N
k k

t

h t h t

h t
−

−

=

−
=∑                                        (22) 

Then, the iteration stops when SD is equal to or less than a 
predetermined value. Huang et al. suggested that, typically, SD 
≈ 0.2 ~ 0.3, which is very rigorous limit for the difference 
between two consecutive iteration. 
• Sixth, treating r1(t) as a new signal and the above iteration 

procedure is repeated to extract the rest of IMFs to the 
signal x(t) as 

1 2 2

1

( ) ( ) ( )
.

( ) ( ) ( )n n n

r t c t r t

r t c t r t−

− =⎧
⎪
⎨
⎪ − =⎩

                                                (23) 

• Seventh, the signal decomposition procedure ends when 
rn(t) becomes a monotonic function or a constant, which 
implies that no further IMFs can be extracted from x(t). 

Replacing (23) into (21), a series of IMFs of x(t) are obtained. 
Therefore, x(t) can be expressed as the combination of ci(t) plus 
the residue rn(t). That is, 

1
( ) ( ) ( ).

n

i n
i

x t c t r t
=

= +∑                                                   (24) 

Now, performing HT on ci(t) yields 

2 2( ) [ ( )] H[ ( )] ,i i ia t c t c t= + 1 H[ ( )]( ) tan .
( )
i

i
i

c tt
c t

ϑ − ⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (25) 

The instantaneous frequency is given by 
( )( ) .i

i
d tt

dt
ϑω =                                                           (26) 

In the polar coordinate system, x(t) is expressed by 

1

( ) Re ( )exp ( ) ( ).
n

i i n
i

x t a t j t dt r tω
=

⎛ ⎞⎡ ⎤= +⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∫                     (27) 

Ignoring the residue is practically allowed since it is either a 
monotonic function or a constant. Doing so yields 

1
( ) Re ( ) exp ( ) .

n

i i
i

x t a t j t dtω
=

⎛ ⎞⎡ ⎤≈ ⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∫                         (28) 

Let ( , )ia t ω  be the combination of the amplitude ( )ia t  and 
the instantaneous frequency ( )i tω  of the ith IMF. Denote by 
HHT( , )t ω  the HHT of x(t). Then, 

1
HHT( , ) ( , ).

n

i
i

t a tω ω
=

=∑                                              (29) 

Fig. 7 indicates IMFs and residue of x(t) in (4). Fig. 8 is 
HHT( , )t ω  of x(t) in (4). 
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Fig. 7. IMFs of x(t). 

 
Fig. 8. HHT based TFD of x(t). 
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E. Discussions 
Judging from Figs. 2, 4, 6, and 7, one sees that HHT( , )t ω  

apparently has higher frequency resolution than those with 
STFT, CWD and WT. In general, however, it is difficult to deal 
with the issue of resolution comparison among SFTF, WT and 
GTFD since there are different window functions for SFTF, 
various mother functions for WT and a number of kernels for 
GTFD, though, for the signal in (4), CWD appears better in 
frequency resolution than WT based one, which in turn is 
superior to STFT based one. 

III. CONCLUSION 
We have discussed 4 types of TFDs. The demonstrations with 

x(t) given in (4) indicate that HHT based TFD has high 
resolution. 
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