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     Abstract⎯ A digital procedure aimed at improving the estimate 
of the parameters of a faulted line is suggested. The approach is 
particularly suitable to increase the performances of algorithms 
nowadays commonly adopted in distance protection especially 
when signals received by relays are very noisy and uncertainties 
are present in line parameters. The described procedure is based on 
a combined use of the weighted recursive least-square method and 
Kalman filter. The results of a simulation campaign carried out to 
investigate performances and capabilities of the estimator are also 
included in the paper. The extensive simulation studies indicated 
that the trip signal could be obtained in less than a quarter of the 
cycle, and therefore the method may prove useful in high speed 
digital relaying.  
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I. INTRODUCTION 
In the event of faults and transients occurring in both MV 
and HV transmission networks, accurate and quick 
responses of the distance relays are of crucial importance in 
order to maintain the system stable and reliable. Distance 
protection is usually based on the estimate of the line direct 
impedance between the relay and fault [1], [2], [3], [4], [5]. 
Since symmetrical electrical power lines exhibit constant 
kilometric impedance, the fault distance can be promptly 
evaluated once Rd and Ld line fault parameters are known. 
Although the working principle is relatively simple, when 
the relay is operating in the field a number of 
inconveniences may arise, such as the presence of non-linear 
loads, measurement noise, exponentially decaying current 
components, transients phenomena [8]. Other difficulties 
may involve the line parameter uncertainties due to the arc 
resistance, return path resistance, power swings, serial and 
derived compensation. Basic voltage and current 
components are usually extracted by means of the Discrete 
Fourier Transform [9], or other orthogonal series expansion 
(Walsh, Harr), and the Least Square Method [15]. These 
procedures exhibit good frequency but poor time resolution, 
which means that about one and a half cycle is required 
before the tripping command can be generated. Actually, 
time delay can be critical for protection selectivity and 
system stability. In order to reduce computation time, a 
number of methods were proposed based on shorter or 
adaptive data window length, for instance the method based 
on the Phase-Modified Fourier Transform [4].  
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In this case time computation was drastically reduced but 
frequency resolution worsened slightly. Alternative methods 
based on deterministic and random input signals are also 
presented with an aim to improve the accuracy of parameter 
estimation while minimizing the error in the quadratic sense, 
which leads to the least-square solutions in the non-
recursive or recursive forms [2], [3]. Techniques based on 
Kalman filtering and parameter estimation [5], [10], [11], 
are mainly used to improve the algorithm results in the 
presence of high signal distortion and measurement noise 
[5], but also when random parameters variations could 
occur, e.g. in case of variant arc resistance [12], [13].  
The method here proposed aims at achieving good 
performance in presence of both noise and uncertainties on 
line parameters. The adopted line model is the well known 
and most frequently used Rd and Ld  equivalent circuit [5], 
[14]. In this case, the following differential equation can be 
written:  

( )( ) ( )d d
di tR i t L v t
dt

⋅ + ⋅ =    (1) 

 
where the unknowns can be expressed as: 
 
 [   ]d dR Lϑ = .  
 
The symmetrical component approach, which was proposed 
in the past and is still now used widely, operates by 
extracting medium physical effects through signal filtering. 
In this case the use of the d dR L  circuit and an analysis in 
the complex space allow to achieve the fault parameter 
estimation.  
The most recent digital procedures have greatly improved 
this approach, allowing better precision and reliability in the 
estimated results [4], [5], but the need for a phasor 
representation has always prevented some of the capabilities 
offered by digital technology, for instance the possibility to 
operate directly on the samples of the acquired quantities 
instead of on medium-filtered, pre-processed signals.  
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In order to exploit the latter possibility, in the following the 
combined use of the Kalman filter and Weighted Recursive 
Least-Square (WRLS) approach is proposed to estimate 
fault line parameters. 
 

II APPLICATION OF THE KALMAN FILTER 
Let us suppose that a ϑ (deterministic and unknown) vector 
must be assessed starting from m independent 
measurements. Each iy  measurement is supposedly 

affected by an added in  noise, which can be represented 
with a Gaussian distribution with zero mean and known 

2
niσ variance: 
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If the iy measurements and in noises are reported in two 

different vectors, named Y and N  respectively, equation 
(3) can be written in a matrix form as follows:  
 

NAY +⋅= ϑ                   where: 
 
• A  is the coefficient matrix. 
 
• N  is a random Gussian vector representing an 

additive noise with zero mean and 2
Nσ variance.  

 
• ϑ  is a deterministic, unknown vector. 

 
• Y  is a random Gussian vector with zero mean and 

ϑ⋅= AmY  variance. 
 
With regards to the above described notations, the observed 
X random variable can be written as follows: 

 
NAX +⋅= ϑ    where: 

 
• [ ])1()()( += kukukxA  is the coefficient 

matrix; )(kx , )(ku  and )1( +ku  are the 
known quantities.  

 
• N  is a random Gaussian vector with zero mean. 
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The problem to be solved involves an assessment of the 
maximum verisimilitude for ϑ parameters starting from 
x measured values.  

If the known quantities of the X vector are acquired at 
different, subsequent instants of time, the following dynamic 
formulation can be given: 
 

)()()()( kNkkAkX +⋅= ϑ  
 
where: 
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where ε represents the error affecting the performed 
measurements. 
The algorithm of the recursive minimum mean-square 
estimation allows a computation of the optimum assessment 
of )1(ˆ +kϑ  using the knowledge of the )(ˆ kϑ assessment of 
the previous time instant. 
In order to use the Kalman filter formulation, the problem 
must be rewritten in a dynamic form [5], [10], [11]. Since 
the ϑ vector parameters are constant, the state equation can 
be simply written as:  
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III. A COMBINED USE OF THE KALMAN FILTER AND WRLS 

APPROACH 
Once the type of a short circuit is identified, each relay must 
estimate the distance between its own position and the fault 
in order to achieve the required selectivity for a correct line 
trip either during instantaneous operation or in reserve 
(second or third step).  
The problem is introduced by assuming the validity of the 
(1) differential equation and the availability from A/D 
conversion devices of sampled and digitalized signals.   
 

The quantities α, β and γ 
depend on the system 
under examination. 
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In addition, the following assumptions are established:  
 

• 
s

s f
T 1

=   : sampling step  ( sf : sampling 

frequency). 
 
• sTkt ⋅=   :  the discretized real time, where  

+∈ Nk . For simplicity reasons in the following 
this time value will be indicated as: kt = . 

 
• The derivative operation is approximated using the 

centered Euler method.  
 

According to the above assumption, the following relation 
can be written: 
 

( ) ( 1) ( 1) ( )
2 S

di t i k i k D i k
dt T

+ − −
≈ = . 

 
As a consequence, the (1) differential equation can be 
rewritten as:  
 

( 1) ( 1)( ) ( )
2d d

s

i k i kR i k L v k
T

+ − −
⋅ + ⋅ =% % . 

Finally, by adopting the matrix notation, the same relation 
takes the following form: 
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A heuristic solution can be obtained by writing the (3) 
relation for two subsequent instants and solving a system 
with two equations and two unknowns [   ]d dR Lϑ =% % % . 
Unfortunately, this method supplies solutions oscillating 
around the right value. For this reason, by assuming that the 
samples of voltages and current must always satisfy the 
discrete (2) relation, the same equation can be written m 
times so as to obtain the following equation system:  
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In a compact form, the same system can be written as:  
 

( ) ( ) ( )A k k Y kϑ⋅ =% , where ( 2)( ) mA k R ×∈ , 2( )k Rϑ ∈  

and  ( ) mY k R∈ . 
 
The problem is here to solve the (4) redundant system 
defined inside the k time interval. In order to obtain an 
optimal solution, objective criteria must be established to 
evaluate the reliability of the estimate. As a matter of fact, 
this means to establish an objective, either cost, weight or 

merit function. It is evident that for each objective criterion 
established, a different optimal solution will be obtained. 
Since a continuous evaluation of the goodness of the 
estimate can be obtained from the computation error, 
assuming the error as  ϑε ~AY −= , the most frequently 
adopted criterion refers to the norm of the ε  error. In this 
case, the objective function refers to the minimum value of 
the norm of ε , which is defined as: 
 

( ) ( ) ( ) ( )Tk k W k kε ε ε
Δ

=  
 
where ( )W k  is named the weight matrix, that is defined as 
symmetrical and positive. The associated optimal 
ˆ( )kϑ estimate is obtained by solving the following 

optimization problem:  
 

2
m̂in[( ( ) ( ) ( )) ( )( ( ) ( ) ( ))]T

R
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The procedure exhibits a single solution only when the rank 
of the ( )A k  matrix has the same dimension as the 
unknown vector. This solution is obtained by setting the 
gradient of the previous relation as equal to zero: 
 

ˆ2 ( ) ( )( ( ) ( ) ( )) 0TA k W k Y k A k k
ϑ

ϑ− − =%  

 
The Weighted Least-Square estimate can be written as:  
 

†ˆ( ) ( ) ( )Wk A k Y kϑ = ⋅         (5) 
 
where † 1( ) ( ( ) ( ) ( )) ( ) ( ))T T

WA k A k W k A k A k W k−= ; 
† ( )WA k  is a pseudo-matrix. 

 
This formulation involves a static problem since 
the ( )A k matrix is built until the m dimension is reached; 
once the estimate is computed, in case a new estimate is 
required  further samples must be acquired and more 
equations must be added to the ( )A k matrix. 
The dynamic or recursive formulation is a technique that 
uses a reduced numerical complexity and minor data storage 
capabilities, allowing to calculate an optimal estimate from 
the knowledge only of both the estimate computed in the 
previous instant and the equation in the current time instant. 
To this purpose, it is useful to define the following matrix:  
  

1))()()(()( −
Δ

= kAkWkAkS T         (6) 
 
In this case, taking into account equation (5), the optimal 
estimate at instant k is: 
 

)()()()()(ˆ kYkWkAkSk T=ϑ . 
 
The problem can be solved by establishing the following 
positions:  
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At this point, specific relations must be searched for the 
computation of the following two quantities: 
 

• 1))1()1()1(()1( −+⋅+⋅+=+ kAkWkAkS T  
       (when )(kS  is known). 
 
• )1()1()1()1()1(ˆ +⋅+⋅+⋅+=+ kYkWkAkSk Tϑ  

       (when )(ˆ kϑ is known). 
 
The recursive relation between )1( +kS  and )(kS  can be 
found by developing the following linked block matrices:  
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The computation of the second quantity requires a derivative 
operation of the recursive relation between )1(ˆ +kx  and 

)(ˆ kx :  

 
Finally, the fault distance can be accurately estimated by 
means of relations (4), (5), (7), (8) and (9). 

 
IV THE PROPOSED ESTIMATE ALGORITHM 

Based on the above demonstrations, the computation 
algorithm shown in Fig. 1 was implemented.  
 

Ts=0.4 ms
m=10
mG=2

Start

S(k)=5

Identification of the 
matrices: A(k)єR(mx2)

Y(k)єRm I(k)єW(k)(mxm)

8)0(ˆ =θ
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matrices: a(k+1), w(k+1), 
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NO Fault
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ε% < ε%max
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 t<tmax

End
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Block 4 Block 5
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YES
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)8()1k(ĝ =+θ

 
 
Fig. 1 the implemented algorithm for the line parameter estimate; block 1= initial conditions, block 2= starting process; block 3= pre-
fault process; block 4= post-fault process, block 5= WRLS process 
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The proposed algorithm was tested through simulations 
performed on a 150 kV sub-transmission system whose 
characteristics were reported in previous papers [4], [5].  
The validation of the algorithm requires the availability 
of current and voltage signals reaching the relay 
terminations when a fault occurs. This information is 
obtained from simulations performed with a MATLAB 
code. In order to account for the random disturbances 
caused by non-linear loads, two harmonic generators 
were inserted in the electric system. The simulations 
that were performed on the behavior of the electrical 
system regarded many significant fault transients [8]. 
Data obtained from the MATLAB simulator are 
subsequently processed by the proposed algorithm in 
order to evaluate fault distances. As an example, Fig. 2 
shows signals observed by R3 and R4 relays placed at 
the faulted line terminations as provided by the 
MATLAB simulation. The consequent fault distances 
computed by the proposed algorithm (described in Fig. 
1) are shown in Fig. 3. Through the L estimate, after 
only 4ms all involved relays exhibit error percentages 
lower than 2% (Fig. 3b). As to the R estimate, errors are 
below 2% after 8ms (Fig. 3 a). 
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Fig. 2 voltage and current signals as observed by the R3 and R4 

relays involved in the line trip 
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Fig. 3 estimated fault distances by R1, R3, R4 and R6 relays; a) 
estimate from Rd; b) estimate from Ld  
 

V CONCLUSIONS 
The contribution of this paper concerns an improvement 
of parameter estimation in a faulted line. The proposed 
digital procedure can be easily and usefully 
implemented as a part of the present signal processing 
of the most used distance protection algorithms. The 
approach, which is based on the commonly adopted 
simplified line model, combines the use of the recursive 
least-square method and Kalman filter estimator, 
providing good performances during either transient or 
fault conditions. 
Simulation results indicate that the estimate procedure is 
fast and accurate and particularly suitable in case of 
signal distortion, measurement noise, and parameter 
uncertainties.  
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