
 

 

  
Abstract— In this paper we present a model free hybrid visual 

servoing system. The “model free” term refers to the system with 
the unknown kinematics model that has to be estimated on-line, 
while “hybrid” specifies the visual controller architecture. The 
proposed system has a conventional Jacobian estimation part 
necessary for control output generation and it is supplemented 
with an additional adaptive neural network (ANN). It is shown 
that ANN could be used to improve the visual servoing 
performances of the conventional visual servoing controller, as 
well as to enable the mimetic control of the robot which dynamics 
differs from the robot which it mimics. 
 

Keywords—Jacobian estimation, Mimetic control, Model-free 
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INTRODUCTION 

 Numerous advances in robotics have been inspired by 
the biological systems. Necessity for improvements has 
been recognized due to lack of sensory capabilities in 
robotic systems which make them unable to cope with the 
challenges such as unknown and changing workspace, 
undefined location, calibration errors and so on. Well 
known facts which claim, that vision is the most powerful 
sense in humans and that using vision humans manipulate its 
environment, result with response to this challenge after 
which the visual servoing was born. It emerges naturally 
from our own human experience and from observing other 
living beings which are able to execute complicated tasks 
thanks to their sometimes primitive visual systems [1]. 
Visual servoing (VS) is now a mature subject which 
currently hosts many different research lines such as image 
processing, computer vision algorithms, real time control, 
robot modeling, linear and non-linear control theory, etc. 
VS aims to control a robot through artificial vision in a way  
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as to manipulate the environment, just as humans do. Using 
the context of technical system vocabulary, VS has been 
defined as using visual data within the control loop [1], 
enabling visual-motor (hand-eye) coordination.  

On the other side researches from many scientific 
disciplines are designing artificial neural networks to solve 
the variety problems in pattern recognition, prediction, 
optimization, associative memory, and control [2]. As the 
visual servoing problem tackles almost all of mentioned 
areas, it seems natural to use the artificial NN for the 
problem solving. There are numerous examples from 
research theory and practice which applied the mentioned 
approach. The drawback of many neural schemes to tackle 
visual-motor control problem is that of a long training 
period [2]. In this article we suggest an approach using 
EMRAN-RBF which is able to learn this visual-motor 
coordination on-line. Consequently, conventional (model-
based or model-free) control of a single robot manipulator 
has been improved and/or, as it is shown in our simulations 
it can be used for mimetic visual servoing in which 
EMRAN-RBF appropriately translate conventional visually 
servoed robot movements causing the similar behavior of 
another robot. For the clarity reasons, the next section of the 
paper briefly described all the important terms used in this 
paper, specify the state of the art and what our contribution 
are comparing to the previous approaches. In Section 3 the 
control algorithms have been presented, while Section 4 
give an overview of the simulated system characteristics. 
Section 5 presents the simulation results, and finaly, Section 
6 concludes the paper.  

 

STATE  OF-THE-ART 

The main goal of the visual servoing is to move the robot 
tip (or mobile robot) to a certain pose with respect to 
particular objects or features in images. Based on the error 
signal domain, two types of visual servoing system could be 
defined: image based visual servoing (IBVS) and position 
based visual servoing [3]. The first one assumes that the 
error is defined in 3D (task space) coordinates, while IBVS 
is based on the error which is defined in terms of image 
features. The specification of an image-based visual servo 
task involves determining an appropriate error function f, 
that yields f=0 when the task is achieved [4]. Visual 
servoing problem could be formulated as a nonlinear least 
squares problem in which the goal function F is define as: 
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where, ),( tf θ  is an appropriate function, based on which 

the error has been calculated and could be expressed as: 
 
∆f= J (q)* ∆q                 (2) 
 
In (2) J is the Jacobian matrix, which relates the rate of 
change in the image space with the rate of change in the task 
space. Conventional approaches assume that the Jacobian 
could be identified analytically based on the camera 
calibration parameters, depth estimation, and the number of 
features parameters related to number of degrees of freedom 
the robot has to be controlled [3]. Also, it can be taken into 
account that visual servoing algorithms have been 
independent of the hardware types of configuration (robot 
and camera). Such approach is model free visual servoing 
[5,6] which we have also partially used in this paper. We 
formulate the visual servoing problem as a nonlinear least 
squares problem solved by a quasi-Newton method using 
Broyden Jacobian estimation. Such system is supplemented 
with adaptive neural network (ANN) EMRAN-RBF [7] to 
enable mimicking of the robot movements, as we show in 
this paper. It is also possible to use the same ANN to 
improve the accuracy in the task solving (i.e. approaching, 
tracking). The approach used in this paper slightly differs 
from the other approaches with neural networks [8,9]. 
Typical example has been presented in [9] where the hybrid 
neural control scheme has been proposed for the problem 
solving. The problem has been viewed as a calibration 
problem for which the authors propose three ways in which 
the problems could be solved: model-based, model-free and 
hybrid approach. The first one is related with combined 
model of the manipulator and camera that can be used to 
compute the joint space coordinates given the camera 
coordinate. The second, model-free approach, assume that a 
learning paradigm is adapted using on-line data to learn the 
required mapping. The last one, hybrid approach, treats the 
model generated in the first approach as an approximate 
model. The authors [9] are using this model to construct the 
learning paradigm and save considerable time. Then, the 
learning paradigm is fine-tuned by choosing selected 
workspace regions where the error is expected to be 
pronounced, thereby improving the accuracy of the model-
based approach to that of the model-free approach. In this 
paper model-free approach assume that the system Jacobian 
has been defined using numerical estimation technique and 
after that, the real robot joint values of the first robot have 
been used as an input to the ANN controller which, using 
also a visual signal from the camera adopt the input values 
to the appropriate changes in the system. The paper also  
shows that the same NN could be used to improve the visual 
servoing tasks of the conventional controller and explains 
under which circumstances it can be useful. 
 
 

III THE CONTROL SCHEME 
 

In this paper we are interested in mimetic robot visual 
control in a fixed camera configuration. Fig.1. shows the 
structure of the visual servo systems used in this paper. 
Here, so called image-based visual servoing is considered, 
in which the error signal that is measured directly in the 
image, is mapped to the robot actuators' command input. 
Visual controller has two separated parts. The first one is 
the conventional visual servo controller and the second one 
is adaptive NN. In the remainder of this section we briefly 
present the main characteristics of those two most important 
parts of the system. 
 

A. Conventional visual controller 

 

In our earlier paper [10], as well as in [11,12], the control 
law for conventional visual controller has been developed 
minutely. Here, for the clarity reasons, we reply that the 
visual controller is constructed in order to determine the 

joint velocities 
•

q   as: 

KeJq +
•

=                     (3) 

where +J , K, and e are the pseudo inverse of the Jacobian 
matrix J that relates joint coordinates with image features, 
control gain, and the error signal that is obtained by 
comparing the desired and current image feature 
parameters, respectively. 

The relation between joint coordinates and image features 
is given by (2). The same relation could be rewritten using 
derivatives (4) 
 

••
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where J is a compound of a robot and image Jacobian. If the 
expression (3) is multiplied by J then we get 

11 KeJJqJ
+

•

=                 (5) 

 
that after rearrangement finally yields decoupled closed 
loop dynamics of first order (6). 
 

d
KfKff 111 =+

•

                (6) 

 
However, the compound Jacobian J depends on the 

system calibration parameters that are hard to obtain 
accurately in practical applications. In the proposed visual 
servoing scheme, the Jacobian J is obtained by the 
estimation process. Various estimation scheme have been 
exhaustively studied [11,12] and have shown various 
degrees of successfulness in performing various tasks. One 
of the standard schemes is algorithm based on the Broyden 
estimation technique which can be used for on-line 
estimation of the Jacobian matrix. 
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Fig. 1. Mimetic visual servoing block diagram. 
 
 

 
 

Fig. 2. Single robot visual servoing block diagram 
 

Consequently, the update equation of its estimate 
∧

J  is given 
by (7), 
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where the adaptation constant η  is introduced in order to 

maintain the convergence overcoming the noise problems of 
the Broyden method [13, 14]. In this paper, we propose to 
use the additional ANN controller to adapt the visual control 
task achievement in a way that the robot follows the robot 
tip of another one or to improve the visual task 
achievements of a conventional visual controller. 
 
B. ANN for visual mimicking 

 

The ANN we use has been based on the network from 
library [7]. Differently from existing neural network 
collections and toolboxes, in this library, a neural network is 
strictly treated as a dynamic system with its inputs, outputs 
and states, and the "dynamic" of the approximation process 
is therefore considered as an essential part of this "system". 
In addition, emphasis is given to the approximation result 
rather than to the approximation process. Therefore, it seems 
reasonably to use the network together with a conventional 
estimator which approximates the process and after that 
ANN directs the results to fit into the approximated process. 
The Neural Network is represented as Simulink block with 
its inputs and outputs. Inputs to the block are: 

• The input vector to the NN 

• The error between the real output and the network 
approximation 

• A logic signal that enables/disables the learning. 
 
Outputs from the block are: 

• The value of the approximated function for the 
current point in the input space 

• All the «states» of the network, namely the weights 
and all parameters that change during the learning 
process. 

 
By means of the supplied interface, the user can easily set 

the network parameters that usually remain constant within 
a specific simulation such as, for example, the number of 
inputs to the network, the learning rate or the sample time. 
For visual mimicking purpose we have used EMRAN-RBF 
neural network. The details are given in [1]. For the clarity 
reasons, we present here the most important parts. The 
EMRAN-RBF is a variation of the standard MRAN 
(Minimal Resource Allocating Network) [15]. The RAN 
itself emerges in order to avoid the dimensionality problems 
generated by the standard RBFNs, proposed a sequential 
learning technique for RBSNs. The RAN network has 
proven to be suitable for online modelling of non-stationary 
processes. The RAN learning algorithm proceeds as follows 
[7]: 

At each sampling instant, if all of the following 3 criteria 
are met one unit is added: 

Current estimation error criteria, error must be bigger 
than a threshold: 
 

1)(ˆ)()( Ekykyke ≥−=             (8) 

 
Novelty criteria, the nearest center distance must be 

bigger than a threshold: 
 

2
1
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Windowed mean error criteria, windowed mean error must 
be bigger than a threshold: 
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 This new neuron is initialized with the following center, 
variance and weight respectively: 
 

)()(1 kxkM =+µ               (11) 
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where λ  is a constant called «overlapping factor». 
 
 If one (or more) of the criteria is not satisfied, the vector 

)(kθ  containing the tuning parameters of the RBF-NN is 

updated using the following relationship: 
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where e(k) is the prediction error and η is the learning rate 

and )(kθ  is the vector of parameters to be updated. 

 
Based on the described characteristics, in EMRAN-

RBFNs, the growing and pruning mechanism remains 
unchanged, while the parameters are updated following a 
"winner takes all" strategy. In practice, only the parameters 
of the most activated neuron are updated, while all other are 
unchanged. This strategy, (named Extended MRAN, or 
EMRAN) implies a significant reduction of the number of 
parameters to be updated online, and for this reason it is 
particularly suitable for online applications. More details on 
EMRAN-RBF could be found in [7]. We have found it well 
suited for the visual mimicking purpose when using together 
with conventional visual servoing controller. Consequently, 
visual task could be performed remotely using a camera 
which "see" the robot and a projection of the "robot master" 
which also visually performs the task, or as simulation 
shows, the EMRAN-RBF could be used to improve the 
visual task goals achievements. 

 

IV SIMULATIONS 

 
A. The system 

 

 The simulated system is presented in Fig.1. and Fig.2. 
During simulations the task has been performed using 2DOF 
planar manipulator with two revolute joints and a camera 
that can provide position information of the robot tip and the 
target in the robot workplace. The robot direct kinematics is 
given by the following equations, 
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where 21 ,qq  are the robot joint angles and x is a vector of 

robot tip coordinates in the Cartesian world coordinate frame 

(Fig.3). mLll 4.021 ===  is the length of the robot 

single link. Translation and rotation of the camera frame 
with respect to the robot world base frame is given by the 
RPY homogenous transformation matrix Rc (16). It is 
rotated around y-axis for 135°, and translated for 1.2 m in 
both, y and z direction respectively.  
 



















−

−−
=

1000

2.1707.0707.00

2.1707.0707.00

0001

CR
         (16) 

 
A block named “robot servo” in Fig. 2. represents the robot 
system dynamics which includes motor, current and velocity-
loop dynamics for joints. It has been modeled with the first 
order open loop transfer function as: 
 
G(s)=100/(s+100)               (17) 
 
which means that the velocity-loop is very fast with respect 
to the sampling interval (Tcamera). For the mimicking task, we 
use the robots with the same dynamics, although the 
algorithm performs well for robots with different dynamics. 
The input velocity error has been saturated according to 
robot specification with limit=0.5 rad/s. Visual feedback 
gain has been set to K=5. The “robot servo” itself represents 
an open loop system, due the direct feedback from joints has 
been used as input in visual servo controller (Fig.1.and 2.) 
for Jacobian update  Ĵ  calculation. 
 

B. Simulation results 

 

 In this paper, the image processing node generates the 
target point applied in the visual task definition within the 
image. When the first robot tip reached the target, the target 
point was moved to another position in order to  
 

 
Fig. 3. Planar 2DOF parallel manipulator 

 
provide traveling of the robot tip through the whole robot 
work plane. The position of the target point determined 
corners of a characteristic trajectory in the image plane. The 
projection of the target positions on the robot workplane is 
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depicted by Fig.4. The initial robot tip position is marked 
with "0" and the corresponding robot joint angles have the 
following values: oo 120,30 21 == qq . The initial target 

position is marked with "0", and the referent positions are 
marked "1", "2", "3" and "4". For the first robot task, the 
target point positions were generated in the following order: 
"0"-"1"-"2"-"3"-"4"-"1"-"0".The control algorithm has been 
implemented in SIMULINK model using the appropriate S 
function. For reference trajectory, marked with points “0”-
“1”-“2”-“3”-“4”  (Fig. 4.), the rectangle has been chosen 
with the upper left corner (380,340) and the down right 
corner (130,150), expressed in the image coordinates. A 
target start position has been the same as the robot tip start 
position and it has been moved during simulations with 
constant speed (measured in pixel/s). The trajectory 
rectangle has Xmax=250 pixel and Ymax= 190pixel width and 
height, respectively. The trajectory rectangle has the start 
point Tstart=(x_end0, y_end0)=(246, 236) and  
T_camera=0.033 s has been used in simulations as camera 
refresh rate (measured in s). Along the curves “1”-“2” and 
“4”-“3” the y component of the speed has been set to zero. 
The robot tip starts from the point where target is positioned 
and marked in Figure 4. as “0”. It is worth to notice that all 
simulations have been performed under the geometrical 
noise, which is generated through truncation of image pixels 
value of the robot tip position, which is a normal procedure 
in IBVS.  
 We have started our simulations using only one robot 
performing the described task using Broyden estimation 
method for conventional visual controller Jacobian 
estimation with constant 15.0=η . 

 
Fig. 4. Target movement 

 
The robot tip traces presented in Fig.5.a. follows the desired 
curve. Small deviations appear while robot tip tracks the 
trajectory between points marked as "4"-"1" and "1"-"0". 
We have study more deeply the mentioned deviations in our 
previous work and suggest how they can be improved with 
other Jacobian estimation techniques [12]. In this paper we 
intentionally choose average performances conventional 
visual controller to emphasize the improvement effects 
caused by ANNs. Fig.5.b. shows the same trajectory traces 

when EMRAN-RBF neural network has been added to 
conventional visual controller according to scheme 
presented in Fig.2.  
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Fig. 5. The task in which the first robot tip has been 
sequentially moved through the specified points. The image 
of the reference curve (solid line) and robot tip curve 
(dashed line) have been presented for: 
a) conventional visual controller only 
b) added EMRAN-RBF neural network 
 
  Neural network corrects the deviations causing the robot 
tip trajectories almost perfectly follows the desired 
trajectory. The EMRAN-RBF neural network parameter has 
been setup through appropriate Simulink block interface 
(Fig.6). We have found out that the most important 
parameters are learning rates and sample time, which are 
[0,175438 0,175438 0,175438] and 0,033, respectively. The 
rest of the parameters are shown in Fig.6. It is worth to 
emphasize that improvement of the tracking characteristics is 
not always possible with an ANN. In the case of more 
complicated tracking tasks, during which the robot end 
effector traces more complex curves such as one presented 
in Fig.9., it is hard to adjust the parameters of the ANN to 
achieve better results. The more appropriate is to use visual 
controller with overall better performances for a specific 
tracking task [11]. 
 After the desired tracking characteristic of the first robot 
had been achieved, we have proceed with the simulations 
which include two robots connected with neural network 
according to scheme in Fig.1. Such scheme enables mimetic 
behavior of the second robot. In our simulations we have use 
one camera for visual servoing of the first robot and one 
camera for the second one. Consequently, the robots could 
be positioned not in the desired points, 
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Fig.6. Parameter setup block for standard visual controller 
improvement 

 
 

 
 

Fig.7. Parameter setup block for mimicking task 
 
 
but in the points projected from appropriate camera optical 
center positions.  
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Fig. 8. First robot tip trajectory (solid line-red), which is a 
referent one for the mimetic movements of the second robot 

(dashed line-blue). 
 
 For correct positioning, at least two cameras have to be 
used, but under such conditions the real experiment has to be 
planned more carefully due the both robots' end effector 
would reach the same space positions. The neural network 
parameters for mimetic trajectory are [0,27 0,27 0,27] for 
learning rates and 0,001 for sample time (Fig.7). The results 
of the robots' end effector movements are presented in Fig. 
8. Simulations show that the second robot perfectly follows 
the tip of the first one as the tracking trajectories overlap 
perfectly, as Fig.8. indicates. The same conclusion has been 
confirmed through the second simulation task, which is 
presented in Fig.9. The tracking trajectory has been more 
complex spreading the whole robot workspace. The robot 
end effector starting point has bas been the same as before: 
Tstart=(x_end0, y_end0)=(246, 236). The robot tip has to pass 
through the points "0"-"1"-"2"-"3"-"0"-"4"-"5"-"6"-"0"-"7"-
"8"-"9"-"0"-"10"-"11"-"12" and finally return back to point 
marked as "0" again. The simulation results are shown in 
Fig.10. The both robot tip traces overlapped each other 
along the whole trajectory, which confirms the conclusion 
that the EMRAN-RBF neural network could be used for 
mimicking tasks.  It is worth to notice that the same results 
appear even the robots do not have the same dynamics. Such 
achievements have given us the idea that the whole system 
could be used for muscle training under the therapy in which 
healthy part of the body trains its symmetrical parts forcing 
the achievement of the same visual goals. 
 

CONCLUSION 

 The image based visual servoing paradigm represents the 
challenge in the visual controller design due to numerous 
unknowns present in the system. Such systems have been 
usefull in an unstructured envinronment and for well defined 
industrial tasks as well. Typicaly, such systems are designed 
as model and calibration free visual servo system in which 
various numerical methods could be used for Jacobian 
estimation. 
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Fig.9. More complex target movement 
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Fig.10. More complex overlapped trajectories of the robots' 
end effector. The first robot tip trajectory (solid line-red) is a 
referent one for the mimetic movements of the second robot 

(dashed line-blue). 
 
In this paper we have shown that average quality numerical 
solutions could be improved with EMRAN-RBF neural 
network for the simple and well defined tracking tasks. 
Moreover, the same neural network is able to transfer the 
visual servoing goals to the other robot which has the same 
configuration, but different dynamics. Consequently, the 
other robot sucessfully mimic the first one in achieving the 
visual goals. Real application for such type of control cover 
the broad range of  human activities, such as telepresence, 
and rehabilitation therapy.  
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