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 Abstract—In this paper we have studied experimentally the 

case of chaotic synchronization of two identical nonlinear electronic 
circuits. This is a very interesting research area because of its 
applications to the field of secure communications. The circuit we 
have used is a second order, Duffing – type, nonlinear electronic 
circuit driven by a sinusoidal voltage source. The nonlinear element 
has a cubic i-v characteristic. We have studied the dynamic behavior 
of the system in the case of the bidirectional coupling via a linear 
resistor. Both experimental and simulation results have shown that 
chaotic synchronization is possible. 
 

Keywords—Chaos, Duffing equation, Chaotic synchronization, 
Bidirectional coupling.  

I. INTRODUCTION 

ynchronization, among dynamical variables in coupled 
chaotic systems would appear to be almost an oxymoron 

as the definition of chaos. Since the beginning of the ‘90s, 
many researchers have discussed the synchronization of two 
coupled chaotic systems [1] – [4]. Synchronization of chaotic 
systems plays an important role in several research areas. For 
example, neural signals in the brain are observed to be chaotic 
and it is worth to consider further their possible 
synchronization [5]. Other interesting examples may be seen 
from the working artificial neural networks [6], biological 
networks [7], coupled chaotic neurons [8], multimode lasers 
[9], coupled map lattices [10], [11], and coupled electric 
oscillators [12]. Also, the topic of synchronization has risen 
great interest as a potential mean in communication [13], [14]. 
The last few years, a considerable effort has been devoted to 
extend the chaotic communication applications to the field of 
secure communications.  

Generally, there are two methods of chaos synchronization 
available in the literature. In the first method, a stable 
subsystem of a chaotic system could be synchronized with a 
separate chaotic system, under certain suitable conditions. The 
second method to achieve chaos synchronization between two 
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identical nonlinear systems is due to the effect of resistive 
coupling without requiring to construct any stable subsystem 
[15] – [17]. As we know from the bibliography, periodically 
forced synchronized chaotic circuits are much more noise-
resistant than autonomous synchronized chaotic circuits. 

In this paper we have studied the case of bidirectional 
coupling of two identical, second order Duffing-type electrical 
oscillators.   

II. THE DUFFING – TYPE CIRCUIT 

Duffing’s equation,  
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is one of the most famous and well studied nonlinear non-
autonomous equations, exhibiting various dynamic behaviors, 
including chaos and bifurcations. One of the simplest 
implementations of the Duffing equation has been presented 
by Kyprianidis et al. [18]. It is a second order nonlinear 
circuit, which is excited by a sinusoidal voltage source and 
contains two op-amps (LF411) operating in the linear region 
Fig. 1. This circuit has also a very simple nonlinear element, 
implementing a cubic function of the form   
 

3i(v) = p v + q v⋅ ⋅                                               (2) 

 
which is shown in Fig. 2. 
Denoting by x1 and x2 the voltages across capacitors C2 and C4 
respectively, we have the following state equations. 
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where, 3

1 1 1f (x ) p x q x= ⋅ + ⋅ , is a cubic function. 

Finally, from (3) and (4), we take the Duffing equation (1), 

where, 
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Fig. 1 Τhe electronic circuit obeying Duffing’s equation 
 

 
Fig. 2 Τhe nonlinear element implementing the cubic function 
of the form 3i(v) = p v + q v⋅ ⋅  

 
The values of circuit parameters are R0 = 2.05kΩ, R2 = 

5.248kΩ, R3 = R5 = 1kΩ, R11 = R12 = 0.557kΩ, R1 = 8.11kΩ, 
C2 = 105.9nF, C4 = 9.79nF, V0 = 2V and f = 1.273kHz, so the 
normalized parameters take the following values a = 0.25, b = 
1, ε = 0.18, ω = 0.8 and B = 20. The phase portrait of x2 vs. x1 
is shown in Fig. 3, where we can see that the circuit has a 
chaotic behavior. 

 

 
Fig. 3 Εxperimental phase portrait of x2 vs. x1 for a = 0.25, b = 
1, ε = 0.18, ω = 0.8 and B = 20 (Horiz. x1: 1V/div., Vert. x2: 
5V/div.) 

III. THE COUPLED SYSTEM 

The system of two identical Duffing circuits bidirectionally 
or two – way coupled via a linear resistor RC is shown in Fig. 
4. The state equations of the system of Fig. 4 has the form of 
(5) – (8), or the form of (9) – (10), where, 1 C2x = υ , 2 C4x = υ , 

' '
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C 0
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factor. 
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We have chosen the following values of the normalized 

parameters, a = 0.25, b = 1, ε = 0.18, ω = 0.8 and B = 20, so 
the two coupled circuits are in chaotic steady state, as we saw 
before. The two coupled circuits have also different initial 
conditions and we study the dynamics of the system, as the 
coupling coefficient ξ is increased from zero (uncoupled 
circuits). 

IV. CHAOTIC SYNCHRONIZATION 

Considering the case, that the two coupled circuits are 
identical and are driven by signals of the same amplitude, we 
have studied the phenomenon of chaotic synchronization as 
the coupling factor ξ is increased. The bifurcation diagram x1 
– 1x ′  versus ξ is shown in Fig. 5. When the difference x1 – 1x ′  

becomes equal to zero, this means that the two circuits are in 
chaotic synchronization.  
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Fig. 4 Τwo Duffing circuits bidirectionally coupled via a 
linear resistor RC 

 

A. The Case B = 20 
In Figs.6 – 14 we can see the experimental results from the 

coupled system for various values of the coupling resistor RC. 
The system has a variety of dynamical behavior, as we saw at 
the bifurcation diagram (Fig. 5).We observe that the system 
appears phase – locked states of period – 1, period – 2, e.t.c. 
in different ranges of values of the coupling factor ξ (Figs. 6, 
8, 9, 12). Also, the system passes from chaotic states (Figs. 7, 
10, 11, 13) to a chaotic synchronization (Fig. 16) as we expect 
form the bifurcation diagram. The phenomenon of chaotic 
synchronization appears for ξ 0.48> . So, the coupled 

circuits confirmed the theoretical results we took from the 
simulation of the dynamical system, as we saw in Figs. 6, 11, 
12, 14.  

 

 
 
Fig. 5 Τhe bifurcation diagram x1 - 1x ′  versus ξ for a = 0.25,   

b = 1, ε = 0.18, ω = 0.8 and B = 20 
 

    
  (a) 

 

         
   (b) 

Fig. 6 (a) Experimental phase portrait x1΄ versus x1 
(Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.) and (b) Theoretical 
phase portrait x1΄ versus x1, for RC = 182kΩ (ξ = 0.011). The 
system is in period – 2 
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Fig. 7 Experimental phase portrait x1΄ versus x1 for RC = 54kΩ 
(ξ = 0.035). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). The 
system is in a chaotic state 
 

 
Fig. 8 Experimental phase portrait x1΄ versus x1 for RC = 41kΩ 
(ξ = 0.08). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). The 
system is in period-1 state 
 

 
Fig. 9 Experimental phase portrait x1΄ versus x1 for RC = 
5.2kΩ (ξ = 0.22). (Horiz.VC2 1V/div., Vert. VC2΄: 1V/div.). 
The system is in a period – 1 state  
 

 
Fig. 10 Experimental phase portrait x1΄ versus x1 for RC = 5kΩ 
(ξ = 0.23). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). The 
system is in a chaotic state 
 

    
    (a) 

 

          
    (b) 

Fig. 11 (a) Experimental phase portrait x1΄ versus x1 
(Horiz.VC2 1V/div., Vert. VC2΄: 1V/div.) and (b) Theoretical 
phase portrait x1΄ versus x1, for RC = 1.3kΩ (ξ = 0.38). The 
system is in a chaotic state 
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(a) 

 

       
(b) 

Fig. 12 (a) Experimental phase portrait x1΄ versus x1 
(Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.) and (b) Theoretical 
phase portrait x1΄ versus x1, for RC = 1kΩ (ξ = 0.4). The 
system is in period – 1 state 
 

 
Fig. 13 Experimental phase portrait x1΄ versus x1 for RC = 
260Ω (ξ = 0.47). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 
The system is in a chaotic state 
 

 
(a) 

 

         
 (b) 

Fig. 14 (a) Experimental phase portrait x1΄ versus x1 
(Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.) and (b) Theoretical 
phase portrait x1΄ versus x1, for RC = 170Ω (ξ = 0.48). The 
system is in a chaotic synchronization 

B. The Case B = 27 
In Fig. 15, the bifurcation diagram x1 - x1΄ versus ξ is 

shown for B = 27. As we can observe, a phase – locked state 
of period – 2 is created in the ranges of values 0.017 < ξ < 
0.022 and 0.387 < ξ < 0.392 (Fig. 17). In the range of values 
0.212 < ξ < 0.229 we can see a period – 3 state (Fig. 18). 
Chaotic synchronization is observed for ξ > 0.444 (Fig. 20). 
Also, in Figs. 16 and 19 we can see the chaotic behavior of the 
system. Finally we conclude that the system has exactly the 
same experimental behavior as we expect from the bifurcation 
diagram. 
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Fig. 15 The bifurcation diagram x1 – x1΄ versus ξ for a = 0.25, 
b = 1, ε = 0.18, ω = 0.8 and B = 27 
 

 
Fig. 16 Experimental phase portrait x1΄ versus x1 for RC = 
406kΩ (ξ = 0.005). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 
The system is in a chaotic state 
 

 
Fig. 17 Experimental phase portrait x1΄ versus x1 for RC = 
98.5kΩ (ξ = 0.02). Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 
The system is in a period – 2 state 
 

 
Fig. 18 Experimental phase portrait x1΄ versus x1 for RC = 
5.2kΩ (ξ = 0.22). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 
The system is in a period – 3 state 

 

 
Fig. 19 Experimental phase portrait x1΄ versus x1 for RC = 
2.7kΩ (ξ = 0.3). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 
The system is in a chaotic state 
 

 
Fig. 20 Experimental phase portrait x1΄ versus x1 for 
RC=560Ω (ξ = 0.45). (Horiz.VC2: 1V/div., Vert. VC2΄: 
1V/div.). The system is in a chaotic synchronization 

C. The Case B = 28.2 
In Fig. 21, the bifurcation diagram x1 – x1΄ versus ξ is 

shown for B = 28.2. As we can observe, a phase-locked state 
of period – 1 is created in various ranges of values: 0.0187 < ξ 
< 0.191, 0.286 < ξ < 0.297 and 0.368 < ξ < 0.401 (Figs. 23, 
24, 25). In Fig. 22 we can see an example of the chaotic 
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behavior of the system. Also in Fig. 26 we can observe the 
chaotic synchronization of the system when the coupling 
coefficient is greater of 0.402. Finally we conclude again that 
the system has exactly the same experimental behavior as we 
expect from the bifurcation diagram. 

 

 
Fig. 21 The bifurcation diagram x1 – x1΄ versus ξ for a = 0.25, 
b = 1, ε = 0.18, ω = 0.8 and B = 28.2 
 

 
Fig. 22 Experimental phase portrait x1΄ versus x1 for RC = 
200kΩ (ξ = 0.01). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 
The system is in a chaotic state 
 

 
Fig. 23 Experimental phase portrait x1΄ versus x1 for RC = 
6.75kΩ (ξ = 0.189). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 
The system is in a period-1 state 

 
Fig. 24 Experimental phase portrait x1΄ versus x1 for RC = 
3.1kΩ (ξ = 0.286). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 
The system is in a period – 1 state 
 

 
Fig. 25 Experimental phase portrait x1΄ versus x1 for RC = 
1.2kΩ (ξ = 0.387). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 
The system is in a period – 1 state 
 

 
Fig. 26 Experimental phase portrait x1΄ versus x1 for RC = 
960Ω (ξ = 0.405). (Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 
The system is in a chaotic synchronization 

V. CONCLUSION 

In this paper we have studied the dynamics of two 
resistively coupled nonlinear Duffing – type electrical 
oscillators. The two circuits are identical, having chaotic 
dynamical behavior, as we have found out from both 
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theoretical and experimental results. We experimentally 
confirmed the expected behavior of the system for various 
values of the coupling resistor RC. We have shown periodic 
and chaotic states, in different ranges of values of the coupling 
factor ξ. Finally, we observed a chaotic synchronization when 
the factor ξ 0.48> .  
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