
A Gigabit IP Core for Embedded Systems

Nicholas Tsakiris and Greg Knowles

Abstract— In embedded systems a common requirement is
to provide some form of communication between the system
and a server. In the case of IPTV (Internet protocol TV),
the purpose is for streaming content, in other applications
it is for sending blocks of data between the two machines
for processing. This paper provides a solution in the form
of an IP based Gigabit Ethernet connection with a specially-
designed IP layer implemented directly in hardware. The IP
core implements the ICMP, UDP and the new UDP-Lite
standards, it was designed in VHDL and after testing and
synthesis, found to use approximately 1000 slices of the Xilinx
Spartan 3 FPGA, and runs at full Gigabit ethernet speed (125
MHz), [3], [4], [5], [6], [11], [7].

Keywords— Ethernet, IP, UDP-Lite, ICMP

I. I NTRODUCTION

In complex, embedded systems a common require-
ment is to provide some form of communication between
the system and a server. Whether the purpose is for
streaming content, or simply sending blocks of data
between the two machines for processing, the decision to
implement this communication should be made in such
a way that the chosen solution satisfies a number of
important features. Ideally it should be fast, affordable,
feasible and upgradeable, and the more ubiquitous the
chosen communications platform is, the less likely it is
to have any significant flaws and also facilitates an easier
and more robust implementation.

There are many different connection standards avail-
able for this task, each with particular hardware and soft-
ware requirements. Some may require special hardware
to connect to a computer using proprietary connectors
or boards, which increases the cost and reduces the
flexibility of any solution. Other options may provide
only limited access to the internal structure of the inter-
face, limiting the ability of the developer to modify the
interface to suit their needs. There may be an extra cost
to provide the code for the interface, separate from any
supplied hardware, which can also tax design budgets.

Nicholas Tsakiris is with the School of Computer Science, Engi-
neering and Mathematics at Flinders University, in Adelaide, Aus-
tralia, email:tsak0011@flinders.edu.au

Greg Knowles is with the School of Computer Science, Engineer-
ing and Mathematics at Flinders University, in Adelaide, Australia,
(phone: 618-8201-5041), email:gknowles@infoeng.flinders.edu.au.
Manuscript Received May 3, 2007; Revised November 28, 2007

This paper provides a solution in the form of an
IP based Gigabit Ethernet connection with a specially-
designed IP layer implemented directly in hardware to
facilitate the connection. Based on the Ethernet standard,
we are able to provide a means of communication that
is widely used with modern networked computers, but
without the added cost of most other commercial IP
solutions. Keeping the design clean and simple was
critical in creating the interface code, as the overall goal
has been to provide an interface which is cheap, open,
robust and efficient, retaining the flexibility a developer
might require to modify the code to their needs.

For reasons of efficiency, the implementation uses only
the following protocols for communication: ICMP (also
known as a “ping”), UDP and UDP-Lite. The Finite
State Machines which control operation of the interface
are covered in depth, with an explanation of their inter
connectivity and how they fit in the data-flow between
the computer and the server.

Error correction and reliability to ensuring the quality
of data are discussed. We use – tags, which are values
inserted into the payload of each packet to detect any
missing or out-of-sequence packets. We also use check-
sums/CRC values to evaluate packet integrity. The IP
core is able to recover gracefully from severe situations
such as truncated or corrupted packets without affecting
the rest of the network stack. It is also capable of
dealing with multiple packets at the same time without
corruption.

The IP core was designed in VHDL and after testing
and synthesis, used approximately 1000 slices, running
at just over 125 MHz on a Xilinx Spartan 3 FPGA
(XC3S5000). The design is sufficiently small (around
3%) to allow for other, more size able programs to run on
the same FPGA with the remaining space, and the system
is capable of working at full speed with the Gigabit
Ethernet standard. The final design was fully verified
on a SPARTAN3 prototyping board.

Finally, the conclusion covers the key aspects of the
design which distinguishes itself from other commercial
IP implementations, namely, speed, cost, flexibility and
an open architecture. There are a few improvements
which could be made to the design however, such as
adding full ARP support to simplify the configuration of
the interface, an automatic payload flush function which

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 347

would simplify the sending of large blocks of packets
back to a computer in certain situations, and TCP support
for the cases where it might be useful.

II. T HE IP CORE

A. Finite State Machines

Implementation of the IP core is separated into three
distinct Finite State Machines (FSMs). One to read an
incoming packet (fsmread), one to build a packet for
transmission (fsmpackgen) and one to actually perform
the packet transmission (fsmsend). These three FSMs
are documented in the following sections.

The flow of data between the FSMs and the other
layers of the design is represented by the following
diagram:

PHY

fsm_packgen fsm_sendfsm_read

toplevel

Fig. 1. fsmread state flowchart

Data begins at the PHY (Physical Layer), which is
connected to the toplevel component (the interface to the
ethernet layer). Depending on the settings in the toplevel,
as well as the protocol of the incoming packet, there
are three potential paths for the data to take. From the
toplevel:

1) [Mirror] - Data progresses fromfsm read...
fsm packgen... fsm send... toplevel and streams the
output back to the PHY. The payload data sent to
the PHY is always identical to the packet received;
this mode is used for self-test.

2) [Typical] - Data progresses fromfsm packgen...
fsm send... top level and streams the output back
to the PHY. In this path the fsmread component
is bypassed, and in fact the PHY is not used to
trigger the FSMs at all. This path is triggered by
the system to send and receive data from the server,
and therefore the payload content is constructed as
necessary and as such, provides the typical use of
the interface for the majority of data transfers.

3) [Storage] - Data is read usingfsm read and pro-
gresses no further. In this path the latter two FSMs
are totally bypasses and no return packet is sent.
This path is used for storing payload data for
extraction by another component of the system.

To save space we will only describe in detail the op-
eration of the first of these state machines, FSMREAD.
The others operate in a similar fashion.

B. FSM READ

The purpose of fsmread is to parse and process an
incoming packet. The direction of the data flow, for the
purposes of clarifying the context of an incoming packet,
is from the serverto the core. As we are dealing with
only a small selection of protocols and virtually anything
could be transmitted down the wire, the FSM needs to
be able to correctly interpret the packet, deal with it as
appropriate and also deal with any packets which do not
match the required protocol set (Figure 5).

When the interface begins execution, the fsmread
code will initialize and hold in a waiting state. The FSM
waits for the RXDV signal to go high before proceeding
any further. This signal is controlled by the Ethernet
PHY of the network and is raised when a packet is
received by the layer. At this point the FSM will begin
checking for the ethernet preamble:

55 55 55 55 55 55 55 D5

Once a packet’s preamble is verified, the FSM can
begin the real work of processing the packet contents.
The first stage is to analyze the header information of
the packet. All header data is saved to the RAM1 block;
this data can then be quickly and easily accesses by the
various components of the code. All the RAM’s used
are dual port (simultaneous read and write) Xilinx Block
RAM’s. At a certain point in the header the IP protocol
will be specified. If the protocol number matches any
of the implemented protocols the system can handle,
the state continues processing as normal. Otherwise, we
reject the packet by advancing to a waiting state which
will only advance once RXDV goes low. This bypasses
the rest of the packet since its of a form we do not need
to deal with.

After reading the entirety of the packet header, the
system begins to read the payload (application) data,
which is where the useful content of the packet is
located. The data is saved to the FIFO1 block. Once
all the data has been processed, a CRC is calculated
against the packet and matched to the FCS (Frame
Check Sequence) supplied by the packet; if these two
are identical, the packet was sent uncorrupted and so

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 348

the content is considered sane. If the values are different
however, a control signal is raised to represent a packet
failure.

The states in fsmread are commented below:
Preinit1 - Preinit2 - Preinit3
These three states, executing one after the other, have

the purpose of providing a clean reset to the FSM. They
are executed upon power-on of the system and are also
executed when a packet has completed being processed
by fsm read. They set important control signals to their
default values so that future packets are not corrupted by
unknown signal states. Each of the preinit states perform
the same task, but by using three states instead of one
we can ensure total confidence in the state of the signals
once a packet is received.

Waitforpacket
A holding state which remains dormant until both the

RXDV and dcmlock signals go high. When RXDV goes
high, this means the Ethernet layer has received a new
packet containing valid data (note - valid in the case
of being able to be understood by the Ethernet layer;
corrupted data would fail checksum calculations later on
in the FSM). dcmlock represents the state of the clock
signal, when dcmlock goes high can the system operate
with confidence that the clocking signals are stable.

SDFpreamble
Preceeding the actual packet content is the preamble

and SDF (Start Frame Delimiter). This is represented by
the 55 55 55 55 55 55 55 D5 sequence which exists
in every packet, the 55s acting as the premable and
the D5 as the SDF. If something else interrupts this
sequence or cannot be finished for whatever reason, the
packet is considered damaged and control is moved to
the Holduntilfinished state.

SDFfinalcheck
Assuming the previous state ran with success, the

system keeps counting through the necessary number of
bytes in the packet until it reaches the point where the
SDF (D5) should exist. If it does, the system proceeds
as normal, otherwise the packet is considered damaged
and control is moved to theHolduntilfinished state.

Striptoram
Satisfied the packet is readible enough to pass initial

testing, the system uses this state to store the packet’s
header information (both IP plus the protocol’s header)
into RAM1. Several fields are also copied from the
packet into registers for use later, such as the specific
packet protocol, the length of the data, any checksums
present depending on the protocol, and any protocol-
specific fields which are important. Another check is
performed in this state as well - if the scanned protocol
number does not match one implemented by the system

(eg. the packet might be TCP which the network code has
no handler), the packet is ignored and control is moved
to theHolduntilfinished state.

Striptofifo
Once RAM1 has stored the packet header data, control

now moves to the striptofifo state which has the task of
storing the payload data into FIFO1.

Blankstate
Modifies the Ethernet checksum stream by zeroing out

the existing checksum data. This is required when cal-
culating the received Ethernet checksum - the checksum
already embedded in the packet must be cleared during
this calculation.

Finalise
A single clock cycle holding state.
CheckCRC ETH
Performs a comparison between registers

crc output ETH and crc output ETH FCS. If they are
identical, this means the calculated Ethernet checksum
is identical to the embedded Ethernet checksum, and so
the packet was received without any corruption. At this
point there are three things the FSM could do: (1) If
the received packet was ICMP, the fsmpackgen FSM
needs to be activated to produce a response (standard
ping operation); (2) If the received packet was UDP and
toggleUDPbounce was not enabled, fsmread would
move to the reboot state and begin anew, waiting for
further packets to receive; (3) If the received packet was
UDP and toggleUDPbounce was active, fsmpackgen
would be activated to produce a mirrored version of
the packet (mainly for debugging). If however, the
Ethernet checksums were different, this means the
packet is corrupted somehow and cannot be trusted to
hold correct data. In this case the FSM reboots without
triggering fsmpackgen, regardless of protocol.

Reboot
This state calls a special register which orders the FSM

to execute a reset. Control restarts at Preinit1.
Holduntilfinished
If the packet failed any of the preamble, SDF or valid

protocol tests, control is moved here. This state simply
waits until the packet has run through the system, but
does not capture any of its data. Once the packet has
cleared and RXDV goes low, the system is rebooted.

C. FSM PACKGEN

This FSM is responsible for generating packets to be
sent back to the computer. Depending on the nature of
the packets to be sent, it will have to copy the contents
of RAM1 and FIFO1 from fsmread to its internal
components buffers, RAM2 and FIFO2.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 349

When the interface begins execution, the fsmpackgen
code will initialize and hold in a waiting state. The FSM
waits for an activation signal from either fsmread or
toplevel (the interface to the external FPGA code) - if
it comes from the former, execution requires a mirrored
packet to be sent; if it comes from the latter, FIFO2 in
packgen will already be filled with the required payload
so no extra copying needs to be performed. There are two
paths of execution the system can take for that matter:

1) ICMP and UDP (mirror mode) - copy ram1 to
ram2 and fifo1 to fifo2

2) UDP (regular mode) and UDP-Lite - copy ram1 to
ram2 but leave fifo2 untouched, since it will have
the necessary payload installed from a previous
access

Once these tasks are completed the FSM progresses to
completing the calculation of the CRCs for each packet
and injecting them in the relevant fields of the packet.
The overall task for the FSM is then completed, and
while fairly simple it’s an important part of the conjoined
FSMs used to transmit data back to a computer. The
FSM is then reset and waits for another trigger to begin
operation.

D. FSM SEND

This FSM is responsible for the actual transmission
of packets from the system to the computer which were
prepared by fsmpackgen. Both of these FSMs work to-
gether - fsmsend is always executed after fsmpackgen,
and fsmsend cannot be triggered from any other source
other than fsmpackgen. The specific fields are some-
times different between the various protocols in use,
but the header lengths are identical to all packets which
makes the FSM simpler to implement. Once the payload
has been sent, the Ethernet checksum is sent to finalize
the packet, the FSM is reset and waits for another trigger
by fsm packgen.

III. P IPELINING

Pipelining is a design technique in which code and/or
data used by a system can be restructured in such as way
as to reduce the amount of time necessary to process it.
In the context of FPGAs, pipelining involves running the
various Finite State Machines inparallel, stacked one
on top of each other, instead of a conventionalserial
execution. Effective use of pipelining can be extremely
beneficial to applications such as cryptography, data
processing [8], [9] or computer architecture [10], where
a variation in encryption/decryption technique can cause
a massive change in the time needed to perform the
operation.

To better describe the operation and effectiveness of a
pipelined architecture, observe the follow diagram which
shows the flow of the system for a single ICMP packet
received by the board (Figure 2).

Fig. 2. The time-line for processing one ICMP packet

The block represents the passage of time for each re-
ceived packet (from the left flowing to the right), and
each segment of a block represents the passage of time
for that particular FSM. Every packet has to be parsed by
fsm read, a return formulated by fsmpackgen and finally
transmitted fsmsend. The time taken for each FSM is
similar, since the received and returned packets have
identical lengths and data. Let’s assume that instead of
waiting a predetermined amount of time before sending
ping packets, the pings are configured to send a new
ping as soon as it is considered safe to do so - the aim
is to send packets as quickly as possible without there
being any loss or congestion in the system. This rate will
be shown to vary between serial and parallel (pipelined)
execution.

Once the first packet is received and returned to the
computer, the next one is sent immediately, and once that
is returned to the computer the final packet can be sent.
Serial execution is simple to understand and apply, but
the rate of packet transmission is very slow. Only one
FSM is in operation at any given time, but this need not
be the case, as they are capable of working independently
on another packet separate from another.

Three sequential ICMP packets under parallel
(pipelined) execution would run as in Figure 3. In
this scenario, the computer is sending ping packets
one after the other, as soon as it can, without waiting
for a responding return pong from the board. This is
achievable with a pipelined architecture because once
the first packet is read by the board, execution moves to
fsm packgen AND fsmread - packgen works on creating
a return for the first packet while fsmread busies itself
with reading the second packet. What is most interesting
is that when the first packet has reached the fsmsend
part for transmission, the second packet is working with
fsm packgen and the system will have begun sending
the third packet for reading by fsmread. At this point
all three FSMs are working separate from each other on
separate packets. Over time the return packets will be
sent in sequence until the third and final packet is sent.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 350

Fig. 3. The time-line of three ICMP packets processed in parallel
(pipelined)

With serial execution, assuming roughly the same length
of time per FSM, it takes 9 units of time to process three
ping packets. With pipelined execution, it takes only 5
units of time. So, by ensuring the design is pipelined
instead of serial, we are able to cut the total time (ping
and pong) of three ICMP packets by nearly half. With
this implementation, pipelining does not increase the
speed at which the FSMs operate, but rather organizes
the data such that several FSMs can operate on different
data chunks at the same time.

IV. RAM SWITCHING BUFFERS

An issue can arise when dealing with pipelined data -
data corruption by subsequent packets. If the computer
sends a packet to the board, and while the board is in one
of the latter FSMs the computer sends another packet
(as is allowed under a pipelined architecture), there is
the potential for packet data from the first packet to be
overwritten by that of the second packet.

For example, let’s say the computer sends an ICMP
packet along with a UDP packet. For the first packet, the
board will read the header & payload data, store them
into RAM1 and FIFO1 respectively, then move onto
fsm packgen to perform a RAM1-RAM2 and FIFO1-
FIFO2 copy. During the copy, the UDP packet is received
by the board, and so fsmread performs its duty and reads
the incoming UDP packet. Now, the information in this
packet is totally different to the prior ICMP packet -
the headers are different, and the payload data is most
certainly different. Hence, we run into several problems:

1) If fsm packgen is performing a RAM copy at the
time the new packet is being read, the header data
of the new packet might be copied into RAM2
along with that of the original packet. This would
result in the transmitted packet having a combina-
tion of ICMP and UDP header fields, which would
be seen as garbage by the receiving computer and
discarded.

2) If fsm packgen is performing a FIFO copy at the
time the new packet is being read, and the header

data of the new packet specifies a payload length
that’s different to the previous packet (as a result of
the RAM copying scenario in point 1), the payload
data might not be copied entirely or too much data
might try to be copied regardless of whether there’s
anything in the source FIFO or not. This would
result in the transmitted packet having not only
an incorrect amount of payload data as well as a
corrupted header.

3) If we’re very unlucky and fsmpackgen encom-
passes both RAM and FIFO copy stages, the
entire resulting packet is corrupted and worse, the
system is considered unstable since the RAM will
have corrupted data which can’t be relied up for
future packets created from scratch, and the FIFO
will almost certainly be useless since the state of
the data stored in it will not be known. At this
point all future packets are likely to be transmitted
corrupted, and so the only solution is to reset the
board.

To combat the issue of data corruption by packets
overloading each other, there are three possible solutions:

1) Take extra control over the way the computer sends
out packets, so that there sufficient time between
subsequent packets to allow for smooth operation
without packet crowding. This solution however is
totally undesirable - it would be the slowest, since
no pipelining would be allowed. It would also
involve extra work in configuring the computer
to allow for this brief pause between packets,
which may not be easy to accomplish particularly
if kernel hacking was required.

2) Block fsmread from accepting new packets if it
is not safe to do so. For example, fsmread would
not begin reading new packets if fsmpackgen
was running, because the potential for packgen to
corrupt the transmitted packet would exist if the
data contained in fsmread was being modified at
the same time as the copying. This solution, again,
is totally undesirable, since it would mean the
board would sometimes miss packets being sent
by the computer.

3) Double the size of the RAMs, so that each RAM
can store the header data oftwo packets instead
of just one, and switch the addressing between
them as necessary. It isn’t possible to do the same
with FIFOs since they do not have an accessible
addressing mechanism, but this is not an issue if
the headers remain correct, since the payload data
can be added to the end of the FIFO even during
a copy process without damage, as each packet’s

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 351

length is now stored correctly. This is the option
which has been implemented, as it allows for the
pipelined architecture without packet corruption.

The diagram in Figure 6 shows the path of three se-
quential packets, all of them in UDP mirrored mode so
that they are sent back immediately. Once one packet
has been sent, the next one is fired off straight away.
Each row in the diagram represents the time-line of a
packet, the first row being the first packet and so on.
Each row is split into three sections - the first represents
the activity for fsmread, the second for fsmpackgen
and the third for fsmsend. The purpose of the diagram
is to show the operation of the RAMs and FIFOs and
the RAM switching buffers, and what components are
running during the relevant stages of each packet. The
diagram shows why the system is not vulnerable to
packet corruption:

• There never occurs a situation where the same
storage area in a RAM is used more than once at
any given time. There are times where the same
RAM is both read and written at the same time,
but due to the switching buffer, the read and write
are to opposite halves of the RAM, and so do not
corrupt each other.

• Although there are many cases where the FIFOs are
being read and written at the same time, this is not
a problem. The nature of the FIFO (First In, First
Out) means that whatever data is being written, will
only be read once the data in “front” of it has been
read. In other words, simply reading at the same
time as writing won’t damage the integrity of the
data, since the IO operations occur atopposite sides
of the FIFO’s internal storage.

V. UDP-LITE

UDP-Lite is a new implementation of the UDP pro-
tocol which simplifies the hardware implementation.
This is due to the relationship between the checksum
calculations required by the protocols and what happens
to a FIFO when it is read.

Every packet that’s sent needs to have correct check-
sums in their checksum fields. If the checksums are
incorrect or missing, the recipient will generally consider
the packet to be corrupted and discard it. Some protocols
may use checksum fields which don’t exist in others,
but regardless of the protocol in use there are always
at least three checksums that need to be calculated -
two of those are always the Ethernet checksum and
the IP checksum. The Ethernet checksum represents the
contents of the entire packet (excluding the preamble),
while the IP checksum covers only the IP header of a

packet, but not the payload. For UDP packets there is a
third checksum field, the UDP checksum, which covers
the UDP header plus the payload. For ICMP packet the
third checksum field is the ICMP checksum, with similar
specifications. Correct operation of the IP core requires
all available checksums for transmitted packets to be
perfectly correct, otherwise the packet won’t be picked
up by the computer and data will be lost.

For ICMP and UDP (mirrored) checksums, the IP
and ICMP/UDP checksums for the transmitted packet
are easy to calculate since they are identical to those
from the received packets (the order of the headers are
often switched around but the data contents are identical,
since they’re just copies of the same payloads). Ethernet
checksums are calculated during the sending of a packet,
working the same regardless of protocol or how packgen
was triggered (either externally or internally), and so
do not pose any problems. However, when sending a
UDP packet on its own without being triggered from
fsm read, all necessary checksums have to be calculated
because the payload data won’t match the previously-
copied checksums.

To calculate the UDP checksum, the UDP payload
data needs to be read, however whenever a FIFO is
read, the last element read is permanently removed
from the FIFO itself, so unlike RAM it’s not possible
to simply parse the payload for checksum information
without removing the entire payload itself. To fix this
problem, there are simple and not-so-simple solutions.
One would be to replace the FIFO with RAM, which
would allow reading without data destruction, but this
would be slower and potentially cause problems with
achieving the speed requirements of the system. Another
solution, the one which was decided upon, is to use a
new protocol called UDP-Lite.

UDP-Lite is very similar to regular UDP but with
one difference - the UDP checksum’s “coverage” (the
amount of the UDP header and data that the checksum
has to correctly match) can be varied. In the UDP header,
the length field is replaced by a “coverage” field. This
means it’s possible to set a coverage such that the UDP
checksum only covers the header component and NOT
the payload. Hence only the RAM needs to be scanned
and the FIFO can remain untouched. In any case, the
Ethernet checksum guarantees that the whole packet is
correct, so that there is no loss of reliability in dropping
the extra checksum of the UDP data. Further, UDP-Lite
allows jumbo packets up to 64KB. This protocol has
gained support in most modern operating systems, so
there are no significant disadvantage to using it compared
with standard UDP.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 352

VI. RELIABILITY AND ERRORCORRECTION

Reliability, in the context of computer network pro-
tocols, is a measure of how capable a protocol is in
ensuring data is delivered correctly to the intended
recipient(s).[1] The system utilizes UDP and UDP-Lite
for most of its communication, but these are considered
to be unreliable protocols because they do not guarantee
that a packet will be correctly sent and received. They
do allow for checksumming of the header and payload,
but do not support any additional features for ensuring
a packet goes where it’s suppose to. This is unlike
TCP which uses flags and additional packets to confirm
receipt of packets. For this reason, there existed a need
to create effective reliability support for the system, such
that if packets were missed or sent/received out of order,
the system can recover and deal with the situation in a
graceful manner.

Tags are a simple but effective way of providing the
ability to detect missing packets from a data stream, as
well as determine if packets were sent out of order in
the steam. A tag is a small piece of data inserted into the
beginning (or end) of the payload of each packet - the
tag consists of a number which increments in subsequent
packets. Tags are effectively transparent and considered
part of the regular payload data, which provides the
flexibility to use tags or not without requiring extra logic
to process them (Figure 4).

One example of where the tag system is implemented
is in ATA over Ethernet, a network protocol developed
by the Brantley Coile Company, designed for accessing
ATA storage devices over Ethernet networks. AoE does
not rely on network layers above Ethernet, such as IP,
UDP, TCP, etc, but it does implement the tag system on
packets and provides a look-up table on both sides of the
system to determine where all the packets are located,
and can effect a resolution if a particular packet is
missing/corrupted from a read request, for example. This
means the tag system for reliability and error correction
has already proved itself in a commercial setting, [2].

Fig. 4. Fragment of a packet with tag added to beginning of payload

VII. C ONCLUSIONS

The IP core was designed in VHDL and after testing
and synthesis, the final results show the interface code

uses approximately 1000 slices, running at just over
125 MHz on a Xilinx Spartan 3 FPGA (XC3S5000-5).
The design is sufficiently small to allow for other, more
size able programs to run on the same FPGA with the
remaining space, and the system is capable of working at
full speed with the Gigabit Ethernet standard. The final
design was fully verified on a SPARTAN3 prototyping
board.

The use of the UDPLite protocol was found to
considerably simplify the hardware design. This new
protocol is mean for large volume IP transmissions, as in
the case of IPTV, and allows up to 64KB jumbo packets.
By avoiding the need for a full UDP checksum at the
end of the packet, the storage was considerably reduced
and the pipelining of the design made much simpler.

REFERENCES
[1] R. Wilkov, Analysis and Design of Reliable Computer Net-

works, IBM Thomas J. Watson Research Center, Yorktown
Heights, 1972.

[2] S. Hopkins, and B. Coile, AoE (ATA over Ethernet),
http://www.coraid.com/documents/AoEr10.txt, 2006.

[3] Zhan Bokai, Yu Chengye,“TCP/IP Offload Engine (TOE) for
an SOC System”,Institute of Computer & Communication
Engineering, National Cheng Kung University, 2005.

[4] Cisco Systems,History of Ethernet, 2006
[5] DARPA Internet Program, RFC 793 - Transmission Control

Protocol (Version 4), http://tools.ietf.org/html/rfc792, 1981.
[6] DARPA Internet Program, RFC 792 - Internet Control Message

Protocol, http://tools.ietf.org/html/rfc792, 1981.
[7] Network Working Group, RFC 3828 - UDP Lite,

http://tools.ietf.org/html/rfc3828, 2004.
[8] G. Knowles and P. Gardner-Stephen, “DASH, DASH-H: A

software and hardware for sequence alignment”,WSEAS Trans-
actions on Biology and Biomedicine, 2006, pp.37-42.

[9] G. Knowles and P. Gardner-Stephen, “DASH: A New High
Speed Genomic Search and Alignment Tool”,WSEAS Trans-
actions on Biology and Medicine, 2004, pp. 59-64.

[10] J. Van Beurden,G Roberts and G.Knowles, “An Extended CAP
File Structure to Support a High-Performance Implementation
of Embedded Java”,WSEAS Transactions on Computers, 2004,
pp. 128-135.

[11] Anthony Cataldo, “Alcatel preps Gigabit Ethernet core for
Altera FPGAs”,EE Times, 2001.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 353

p r e i n i t 1p r e i n i t 2p r e i n i t 3w a i t f o r p a c k e tS D F p r e a m b l e
S D F f i n a l c h e c k

s t r i p t o r a m
s t r i p t o f i f o

b l a n k s t a t e

R X D V = ‘ 1 ’ a n d d c m l o c k = ‘ 1 ’p a c k e t d a t a = “ 0 1 0 1 0 1 0 1 ”c o u n t 3 = 3 ?p a c k e t d a t a ! = “ 0 1 0 1 0 1 0 1 ” N O Y E Sp a c k e t d a t a = “ 1 1 0 1 0 1 0 1 ”c o u n t 4 < 6 ?Y E SN O p a c k e t d a t a ! = “ 1 1 0 1 0 1 0 1 ”
r a m p o s i t i o n = 2 5 ?r a m p o s i t i o n = 4 2 ?N ON O I P P r o t o c o l = " 0 0 0 0 0 0 0 1 " o r " 0 0 0 1 0 0 0 1 " ?Y E S I P P r o t o c o l = " 0 0 0 0 0 0 0 1 " o r " 0 0 0 1 0 0 0 1 " ?Y E S N ON OY E S

Y E SI P P r o t o c o l = " 0 0 0 1 0 0 0 1 " ?c o u n t 2 = u n s i g n e d (P A K l e n g t h) c 2 8 ?N O c o u n t 2 = u n s i g n e d (U D P t o t a l l e n g t h) c 8 ?Y E S N OY E SN O Y E Sc o u n t = 3f i n a l i s ec h e c k C R C _ E T Hr e b o o th o l d u n t i l f i n i s h e dR X D V = ‘ 0 ’
Fig. 5. FSMREAD state flowchart

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 354

Fig. 6. Timing diagram of three UDP packets in mirrored mode

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 355

