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Abstract—In the present paper, we consider the problem of 

parameter estimation of wideband polynomial phase signals (PPS) 
impinging on a uniform linear array antenna. The parameters of 
interest are the polynomial phase coefficients and the direction of 
arrival of the signal. The principle of estimation is based on the 
introduction of an exact but unfortunately nonlinear state space 
modelization, of the wideband PPS, which compels us to use the 
extended Kalman filter (EKF) instead of the usual Kalman filter. 
Furthermore, we propose a solution to the problem of initialization of 
the EKF since the initial conditions are assumed to be unavailable. 
The proposed solution is based on the use of the high-order 
ambiguity function, generally used to estimate PPS, and the Cramer-
Rao bounds. Under this solution, the numerical simulations show that 
the use of the EKF improves existing methods in terms of statistical 
performances since the EKF-based estimators exhibit high 
performances.  
 

Keywords—Cramer-Rao bound, direction of arrival, Extended 
Kalman filter, high-order ambiguity function, parameter estimation, 
wideband polynomial phase signal. 

I. INTRODUCTION 

he problem of parameter estimation of polynomial phase 
signal (PPS) occurs in many engineering applications 

such  as radar, communications and seismology. Moreover, 
PPS waveforms can be intentionally transmitted in 
multisensor systems. For example, frequency modulated (FM) 
signal waveforms are widely used for pulse-compression in 
radar and sonar [10] [12]. Both cases of constant-amplitude 
and time-varying amplitude PPS have attracted much attention 
in the literature [2-3] [11] [16]. Recently with the 
development of the technologies, there has been a growing 
interest in estimating wideband PPS impinging on a sensor 
array [5-[6] [8] [14-15].   

In [6], a new form of the maximum likelihood (ML) 
estimator of signal parameters is introduced. However, since 
the proposed estimator is computationally intensive an 
approximate technique called the chirp beamformer is 

proposed. This approach requires solving a three-dimensional 
(3-D) optimization problem and therefore enjoys essentially 
simpler implementation than that entailed by the exact ML. In 
[8], the application of the high-order instantaneous moment 
(HIM) transforms the PPS array signal into stationary joint 
angle-frequency estimation (JAFE) problem which is based on 
the use of the ESPRIT algorithm [7-8]. In fact, it has been 
shown in [8] that it is possible to jointly estimate two 
parameters of the signal: the highest order phase coefficient 
(HOC) and the direction of arrival (DOA). In the following, 
we call this approach “joint angle highest order coefficient 
estimation” (JAHOCE). In [4-5] [14-15], the proposed 
approaches suffer from problems. In fact, in [4-5] the method 
is basically restricted by short sliding data window lengths. In 
[14], the approach assumes linear FM signals with known 
central frequency. Finally, in [15] the iterative approach may 
lead to strongly biased DOA estimates [4] and its convergence 
is not guaranteed [6]. 
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In the present paper, we address the problem of parameter 
estimation of wideband PPS affected by additive noise and 
impinging on a sensor arrays. The parameters of interest are 
the polynomial phase coefficients and DOA of the signal. The 
principle of estimation is based on the introduction of an exact 
but unfortunately nonlinear state model, of the wideband PPS, 
which compels us to use, for the first time to the best of our 
knowledge, the extended Kalman filter (EKF) instead of the 
Kalman filter usually used in the linear case [9]. We should 
emphasize that the EKF has already been used to only 
estimate narrowband PPS as reported in [1]. Furthermore, since 
the initial conditions of the state model are assumed to be 
unavailable, we also propose a solution to the problem of 
initialization of the proposed filter. Under this solution, the 
numerical simulations show that the proposed EKF improves 
JAHOCE in terms of statistical performances. In fact the 
EKF-based estimators exhibit high performances since our 
proposed method exploits implicitly the double of the initial 
number of snapshots.  

Our paper is organized as follows. The array signal model 
used in the underlying problem is presented in Section II. 
Based on this model, we introduce the state space 
modelization of the wideband PPS in section III. Then, section 
IV presents the EKF-based estimators. In section V, we 
provide the solution to the problem of initialization of the 
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EKF. Simulation results are presented in Section VI. They 
show that the use of the EKF improves existing methods, in 
particular JAHOCE, in terms of statistical performances since 
the EKF-based estimators exhibit high performances. Finally, 
section VII concludes this paper. 

II. ARRAY SIGNAL MODEL 

Let a wideband PPS s(n) impinges, from an unknown DOA 
θ,  on a  uniform  linear  array   (ULA)  antenna  of L sensors. 
Then, the L × 1 vector array outputs is given by [6] [8] 
 

y(n)  =  a(θ , n) s(n)  +  w(n),      n = 0,…, Ne − 1        (1) 
 

where  
a(θ , n)   is the L × 1 time-varying steering vector 
w(n) is the L × 1 vector of complex circularly 

Gaussian zero-mean temporally and spatially 
white noise with  known variance σ2

Ne is the number of snapshots 
s(n) is the PPS waveform given by [6] [8] 
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where 

A    is the amplitude of the PPS (A > 0) 
{ai}i=0,…,N are the phase coefficients 
N is the degree of the polynomial phase 

assumed to be known in the following 
∆ is the sampling period 

The time-varying steering vector a(θ , n) is given by [6] [8] 
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where 

f(n)  is the instantaneous frequency, of the signal, 
assumed to be constant during the time necessary 
for a wave to travel across the array aperture. It is 
given by  
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ψ is given by 
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c
d

=                                 (5) 

 
where  

d    is the spacing between two adjacent sensors 
c is the propagation speed in the medium. 

III. STATE SPACE MODELIZATION 

Let x(n) be the vector of the unknown parameters to be 
estimate 
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Thanks to this vector, we can represent the signal (1) by the 
following exact but nonlinear state model  
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where  

yl,1(n)  =  Re{yl(n)} 
yl,2(n)  =  Im{yl(n)} 

with 
yl(n) is the lth row of y(n) 
wl(n) is the lth row of w(n) 

and  
     

( )( ) ( ) (( )){ }nxnxnxg ll Φ= cos11,
                                     (8) 
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                                     (9) 
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In order to obtain the (N + 3) unknown parameters {A, θ, 

a0, …, aN}, we should estimate the state vector x(n) given by 
(6). This will be done in the present paper by the EKF. In fact, 
the use of the Kalman filter is impossible since the proposed 
state model presents a non linear observation equation.  

However and fortunately, this model is characterized by an 
evolution matrix equals to identity. This property reduces 
significantly, in the process of implementation, the number of 
operations (multiplications and additions) in the equations of 
the EKF.  

Furthermore, the EKF allows us to obtain at each time (n∆) 
the unknown parameters at a time. This property is very useful 
for tracking problems. 
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IV. EXTENDED KALMAN FILTER BASED ESTIMATORS 

The following algorithm summarizes the EKF and proposes 
the EKF-based estimators, of the (N + 3) unknown 
parameters, given Ne noisy observations y(n). 

 
Algorithm 1 

1) Initial Conditions (n = 0) 
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2) Update equations 
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3)Prediction equations 
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4) n = n + 1.  If  n  ≤  Ne − 1   go to step 2) 
5) EKF-based estimators 
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where in particular 

I is the (2L × 2 L) identity matrix 
x(•) is the estimated state vector 
K(n) is the Kalman gain 
J(•)  is the Jacobean of [g1,1(•),  g1,2(•), …,  gL,1(•),  

gL,2(•)]T. 

V. SOLUTION TO THE PROBLEM OF INITIALIZATION 

The EKF needs the initial conditions of the model. As, 
these ones are not available, we should propose a solution to 
solve this problem. However, before addressing this aspect we 
should 
1) See the effect of demodulation of the output of each 

sensor after obtaining the DOA θ and the HOC aN thanks 
to JAHOCE proposed in [8]. 

2) Recall the high-order ambiguity function (HAF) generally 
used to estimate PPS. 

3) Present the Fisher information matrix (FIM) which is 
necessary to obtain the CRB of each parameter. 

A. Effect of demodulation  
Let z(n) be the following signal  
 

z(n) = y(n) – w(n). 
 

The lth row of z(n) is given by 
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The multiplication of zl

 (n) by 
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leads to the following PPS 
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which is characterized by a polynomial phase of degree N − 1 
and with a HOC aN−1. 

B. High-order ambiguity functions 
The HAF is generally used to estimate constant amplitude 

PPS [12]. This tool can also be used to estimate time-varying 
amplitude PPS [2-3] [11] [16]. The HAF of order Q, of a 
complex signal v(n) is defined as follows [12] 
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where  

I2k{v(n)}  = v(n) 
I2k+1{ v(n)} = v*(n) 
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Main property of the HAF  
For a complex signal u(n) given by (23), we can easily 

show the following interesting result [12] 
                

   
( ) ( )

( )τθ
τ θ

,,maxarg
!1

1
121 uP

N
a NNN −−−

∆−
=          (25) 

 
Thus, we can see that the HOC aN−1, of the PPS given by (23), 
can be easily obtained from the abscissa of the peak of the 
modulus of PN−1(u, θ,τ).  

Generally, for a PPS (with degree M and Ne samples) 
affected by an additive white noise (which is complex, 
circularly, Gaussian and zero-mean) the authors have shown 
in [12] that the optimal value of the parameter τ  (which 
ensures the lowest value for the variance of the estimation of 
the HOC aM) is almost equals to Ne/M. This value is taken in 
all the following. 

C. Cramer-Rao Bounds 
Using the properties of the additive noise w(n), we can 

easily show that the FIM, noted F, of  the set P of the (N + 3) 
unknown parameters  P = [A, θ, a0, …, aN]T, is given by the 
following expression 
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where = [0,0,...,0]0  (dim( 0 ) = 1 × (N+ 2) ) and  
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where f(n) is given by (4), ψ is given by (5) and    
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The CRB’s of  P are given by 
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D. Solution to the problem of initialization 
The following algorithm proposed the solution of the 

problem of initialization of the EKF.  
 

Algorithm 2 
1) Estimation step 

1.a) Estimate aN
  and  θ  thanks to JAHOCE of [8] 
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1.d) Choose τ = Ne/(m − 1) [12] and do  
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1.e) m= m− 1. If m > 1 go to step 1.d) else do 
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1.f) l = l+1. If l ≤ L go to step 1.c) else do 
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2) Initialization step  
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where var{•} is the theoretical variance (TV) of the 
corresponding estimator and the parameters {λi}i =1,…,N+3 are 
positive numbers ≥ 1. 

From (40), we see clearly that the initial matrix Pp(0) needs 
the TV of each estimator. However, those TV are too much 
difficult to derive and this point is beyond the scope of this 
paper. To overcome this problem, we can choose Pp(0) 
according to the following matrix  

      

  (41) 
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where crb{•} denotes the CRB of the corresponding 
parameter and {µi}i =1,...,N+3 ≥ 1. µi = 1 (respectively µi >> 1) 
means that the ith component of xi(0) is efficient (respectively 
is far from the true value to be estimate).  

In order to get an idea about the coefficient µi, we can 
evaluate the ratio κi of the empirical variance (EV), of the ith 
estimator, to its corresponding CRB then we can choose µi = 
αiκi with α i≥ 1 since the EV is not necessary equal to the TV 
and also with αi ≤ B (B is a small positive number) to 
guarantee that  
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Remark 1:  In algorithm 2, the total number, of available 

temporal snapshots, has essentially doubled from Ne to 2 Ne. 
In fact, the estimation step uses Ne snapshots, to obtain the 
initial state vector xp(0), and the EKF operates on the same Ne 
snapshots. We should emphasize that this data extension (off-
line method) will give a significant improvement of the 
estimation of the (N + 3) unknown parameters {A, θ, a0, …, 
aN} as it will be seen in the next section. 

Remark 2:  From (26), we see that crb{A} is independent 
from the unknown parameters (the variance σ2, of the additive 
noise, is assumed to be known), whereas the others crb{•} can 
depend on the unknown values of the parameters. To 
overcome this problem we can replace these unknown values 
by their estimate in the CRB expressions. 

Remark 3:  For on-line estimation, we apply the estimation 
step of algorithm 2 on the first Nr (Nr < Ne) snapshots, to 
obtain the initial state vector xp(Nr), then we start the EKF 
from n  = Nr with Pp(Nr) = diag{µ1cb{A}, µ2cb{θ}, µ3cb{ 
a0},…, µN+3cb{aN}} where crb{•} is the CRB evaluated on 
the first Nr snapshots.   

 

VI. NUMERICAL EXAMPLE 

In the present section, we first begin by the evaluation of 
the statistical performances of the estimation step of the 
algorithm 2 in order to obtain the ratios {κi }i=1,…,N+3. Then, we 
present the statistical performances of the EKF-based 
estimators. The SNR is defined as SNR = A2 / σ2.  

For the numerical simulations, we consider a quadratic 
phase signal (QPS) impinges, from a DOA θ assumed to be 
unknown, on ULA antenna of L sensors with the following 
parameters 

 

A = 1       
N = 2,       
a0 = 0.2π, a1 = 400π

, 
a2 = 200π

, 
Ne = 256       
∆ = 0,004s       
L = 10       
θ = 40°       
d = 1.5, c = 1500    

 
Remark 4: In the estimation step (algorithm 2), we 

incorporate in the algorithm JAHOCE only the temporal 
smoothing with the r-factor temporal smoothing r = 32 instead 
of r = 64, without incorporating the spatial smoothing and the 
forward-backward averaging. We should emphasize that with 
r = 32 or r =64, we obtain practically the same performances. 

A. Statistical performances of estimation step (algorithm2) 
In order to evaluate the ratios {κi}i =1,…,5 we evaluate the EV 

of the estimators θ and a2 (obtained by JAHOCE of [8]) and 
the estimators (37) and (38) by carrying out 1000 independent 
realizations of Monte-Carlo.  

The following table summarizes some values of {κi}i =1,…,5. 
It shows that the estimator (38), of the amplitude A, is efficient 
from SNR ≥ 0 dB whereas the other estimators, in particular 
θ, are not efficient even for high SNR. 

 

SNR (dB) κ1 κ2 κ3 κ4 κ5

0 1 156.4 79.4 2.9 2.23 

2 1.03 121.6 18.1 2.47 1.77 

4 1.05 116.4 14.6 2.19 1.61 

6 1.01 93.2 10.8 1.94 1.55 

8 1.01 103.9 11.9 2.08 1.54 

10 1.03 98.3 11.7 1.91 1.36 

12 1.07 94.6 10.6 2.1 1.45 

14 1.03 88.6 10.4 1.78 1.23 

16 1.03 91.5 10.8 1.73 1.19 

20 1.04 85.5 12.3 1.94 1.3 

25 1.01 93.2 19.3 1.77 1.29 

Table I. Ratio of the empirical variance to CRB 
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B. Statistical performances of the EKF-based estimators 
In order to evaluate the statistical performances of the 

proposed EKF-based estimators, we vary the SNR from 0 dB 
to 25 dB and carry out 1000 independent realizations of 
Monte-Carlo. For each SNR we choose, in equation (41), {µ i 
=1.5κi } i =1,…,5.  

 

0 5 10 15 20 25
10

−7

10
−6

10
−5

10
−4

10
−3

SNR(dB)

EKF
Estima.Step(Algo2)
CRB

 
 
Fig. 1 statistical performances of the EKF-based Estimators: CRB 

and EV of A vs SNR 
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Fig. 2 statistical performances of the EKF-based Estimators: CRB 

and EV of θ vs SNR 

It should be noted that in all the figures, the CRB’s appear 
in solid lines, whereas the EV’s, of the EKF-based estimators, 
are represented by (- +) and the EV’s, of the estimators 
obtained in the estimation step (algorithm 2), are represented 
by (- -*). 

From all the figures, the obtained results show that the 
proposed EKF-based estimators exhibit performances which 
reach the CRB for low enough SNR. Therefore, our method 
outperforms, in terms of statistical performances, the 
JAHOCE method proposed in [8] for only estimating the 
DOA θ of the wideband PPS and the HOC aN of the 
polynomial phase with degree N. 

Furthermore, from Fig. 1 we should emphasize that the 
EKF-based estimator, of the amplitude A, performs as well as 
the estimator (38) from SNR ≥ 0 dB. In fact, since this last 
estimator is efficient from SNR ≥ 0 dB (see Table 1) then the 
use of the EKF-based estimator, for estimating A, will not 
improve the performances in comparison with the proposed 
method in [8].   
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Fig. 3 statistical performances of the EKF-based Estimators: CRB 
and EV of a0 vs SNR 

 
The obtained results, which illustrate the high and very 

interesting performances of the EKF-based estimators 
proposed in this work, are due to the fact that the proposed 
method exploits implicitly the double of the initial number of 
snapshots. In fact, firstly the proposed step of initialization 
operates on Ne snapshots and provides an initial state vector 
xp(0), nearest to the true values of the unknown parameters 
{A,θ, a0, …, aN} for low enough SNR, and secondly the EKF 
uses the same temporal snapshots to improve the 
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performances of the estimation step proposed in the algorithm 
2. 
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Fig. 4 statistical performances of the EKF-based Estimators: CRB 

and EV of a2 vs SNR 
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Fig. 4 statistical performances of the EKF-based Estimators: CRB 

and EV of a1 vs SNR 

VII. CONCLUSION 

In the present paper, we have considered the problem of 
estimating the parameters of wideband polynomial phase 
signals (PPS) impinging on a uniform linear array antenna and 
affected by additive noise. The unknown parameters of interest are 
the polynomial phase coefficients and the direction of arrival of the 
signal. The principle of estimation is based on the introduction 
of an exact but nonlinear state model of the wideband PPS.  
However and fortunately, this model is characterized by an 
evolution matrix equals to identity. This state space 
modelization compels us to use the extended Kalman filter 
(EKF) instead of the usual Kalman filter. To the best of our 
knowledge, the EKF has never been used to solve such kind 
of problems. Furthermore, since the EKF needs the initial 
conditions, of the state model, which are not available, we 
have proposed a solution based on the use of the JAHOCE, 
the HAF and the CR bounds. Under this initialization, which 
provides an initial state vector nearest to the true values of the 
unknown parameters, the numerical simulations show, for 
wideband QPS, that the proposed EKF-based estimators 
exhibit high performances and outperform in terms of 
statistical performances the proposed method in [8]. These 
results are due to the fact that our proposed method exploits 
implicitly the double of the initial number of snapshots. 
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