
 

 

  
Abstract: - Verifying a pipelined Micro-Architectural (MA) 
implementation against an Instruction-Set-Architecture (ISA) 
specification is a common approach which still requires considerable 
efforts because there is no meaningful point where the 
implementation state and the specification state can be compared 
easily. An alternative approach consists of verifying a pipelined 
micro-architectural implementation against a sequential multi-cycle 
implementation. Because both models are formalised in terms of 
clock cycles, all synchronous intermediate states represent useful 
points where the comparison could be achieved easily. Also, because 
both models relate to the MA level, there is no need for a data 
abstraction function, only a time abstraction function is needed to 
map between the times used by the two models. A major advantage 
of this elegant choice is the ability to carry out the proof by induction 
within the same specification language rather than by symbolic 
simulation through a proof tool which remains very tedious. 
Furthermore, by decomposing the state, the overall proof 
decomposes systematically into a set of verification conditions more 
simple to reason about and to verify. The proposed proof 
methodology is illustrated on both the pipelined and the superscalar 
pipelined MIPS processors within Haskell framework. 

Keywords: - Formal specification, Formal verification, Micro-
architectures, State functions.  

I. INTRODUCTION 

OST proof approaches attempt to validate processor 
micro-architectural implementations against their 

corresponding ISA specifications. However, if a sequential 
MA implementation (which reveals the state after completing 
each instruction) could be easily verified against an ISA 
specification through a commutative diagram, this is not the 
case for a pipelined MA implementation because of latency of 
pipeline events. At any time, there may be several partially 
executed instructions in the pipe, that make it difficult to 
define  a data abstraction function to map the partial results 
into a meaningful visible state. In other words, it is impossible 
to find a meaningful point where the comparison between the 
pipelined MA implementation and the ISA specification can 
be made easily. Burch and Dill [1] solved such problem by 
simulating the effect of completing every instruction in the 
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pipe before doing the comparison. So, the natural way to 
complete every instruction is to flush the pipe. After flushing, 
they project the synchronised implementation state to the 
specification state to extract only the observables. In their 
original work, they proved the pipeline correctness diagram 
by symbolically simulating the pipelined machine design in 
their logic of uninterpreted functions with equalities. 

Although the flushing method enhanced verification 
techniques by using an automated decision procedure, it 
presents on the other hand many drawbacks which are clearly 
stated in many papers [2, 3]. Particularly, it makes the size of 
the abstraction function and the number of examined cases 
very large for deeper pipelines. The technique has been 
extended thereafter by many researchers to handle more 
complex designs such as superscalar [3, 4], and Out Of Order 
execution [5, 6] designs. Unfortunately, the same correctness 
criterion (proving the commutative diagram with respect to an 
ISA specification) has been adopted by the extenders, and 
consequently the same drawbacks persist. Moreover, as new 
implementation features are introduced, such variants are 
flawed. Other notions of correctness such as the one step 
theorem [7, 8] and Well-founded Equivalence Bisimulation 
[9], also, have been used to verify complex processor designs. 
Both approaches prove the commutative diagram with respect 
to an ISA specification. 

This work suggests verifying a pipelined implementation 
against a sequential multi-cycle implementation rather than 
against an ISA specification. Because both models are 
formalised in terms of clock cycles, all synchronous 
intermediate states represent useful points where the 
comparison between the two models could be achieved easily. 
Furthermore, because both models relate to the MA level, 
there is no need for a data abstraction function (which remains 
very difficult to define for most approaches), only a time 
abstraction function is needed to map between the times used 
by the two models. One positive consequence of this elegant 
choice is the ability to carry out the proof by induction within 
the same specification language rather than by symbolic 
simulation through a proof tool which remains very tedious. 

To practically show the usefulness of our approach, we 
have applied it to RISC processors within a functional 
framework. RISC architectures are well structured and so, 
they can be hierarchically built from the core architecture 
implementing the basic instruction set to highly optimised 
architectures [10].  Therefore, they suit elegantly the 
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incremental design approach. On the other hand, functional 
frameworks provide beside their formal semantics definition 
(to support formal reasoning), powerful features (function 
composition, higher order functions, parallelism, 
polymorphism, etc) that demonstrated their viability with 
respect to complex hardware designs [11], [12],[13]. 

 

II. DESIGN APPROACH 

Our view of formal verification of microprocessors follows 
the vertical-horizontal layered design approach depicted in 
figure 1. The highest level represents the Instruction-Set-
Architecture (ISA) Specification that describes the semantics 
of the processor’s operations. The Micro-Architectural (MA) 
level represents the top level design implementing the ISA 
specification: It describes the structural features of the micro-
architectures implementing the processor’s operations. All 
MA designs (which could be hierarchically built one over the 
other) represent different implementations for the same ISA 
specification. In this work, we will be interested on three MA 
designs; the Sequential MA design (SMA), the pipelined MA 
design (PMA), and the superscalar MA design (SSMA). The 
SMA design whose proof could be easily performed against 
an ISA specification represents the reference core architecture 
over which will be hierarchically developed both the PMA 
and the SSMA designs, and against which will be verified as 
well (unlike other approaches where the PMA and the SSMA 
designs are proved against an ISA specification). The lower 
layers represent successive refinements.  

In our context, all MA designs will be modelled in terms of 
state functions (representing state machines) within a functional 
framework using the functional language Haskell [14]. 

 

 
 Fig.1.The layered Vertical-Horizontal design approach 
 

III. PRELIMINARIES 

A. State function 

Let S be a non empty set, called the state space. A state 
function with an initial state c::S, and a next-state function: f :: 
S → S, is recursively defined as follows: 

 F :: (Int, S) → S 
 F(0, c)  =  c 
 F((n+1), c) = f (F(n,c)) 
 
Because the next state is always a function of the previous 
state, a system modelled by the notion of state function is 
deterministic. The transition between two adjacent observable 
states is called a step. For instance, F(n,c) represents the state 
after n steps, given an initial state c, and a next-state function f. 
Its value is given by: F(n,c)= f n ( c) 
 
B. State decomposition  
The distributed aspect of a machine state space over its 
components requires decomposing the state and the next-state 
functions into coordinates.  
Let S = ),...,( 1 kSS be the state space distributed over k 

components (the observables) where iS  is the state of the 
thi component, for 1 ≤ i ≤ k. Thus, the state and the next-state 

functions will be decomposed as follows:  
F(n, 1c ,.., kc ) = (F 1 (n, 1c ,.., kc ),….,F k (n, 1c ,.., kc )) 
And 
f ( 1c ,…, kc )  = ( 1f  ( 1c ,..., kc ),…, kf ( 1c ,..., kc ) 

where,  
F i  :: (Int, S) → Si  
F i (0, 1c ,…, kc ) = ic  

F i (n, 1c ,.., kc )= if (F1 ((n-1), 1c ,.., kc ),...,F k ((n-1), 1c ,.., kc )) 

And if :: S → iS ,   for  1 ≤  i  ≤  k 

In this way, each coordinate F i computes only the 
thi component of the state function F, and each coordinate if  

computes only the thi component of the next-state function f . 

C. The observational aspect of the state function 

Redefining F i as follows: 

F i (n, 1c ,…, kc ) = 

if (F 1 ((n-1), 1c ,.., kc ),...,F k ((n-1), 1c ,.., kc )) 

       = if (F ((n-1), 1c ,…, kc )) 
Then, 

F(n, 1c ,.., kc ) = (F 1 (n, 1c ,.., kc ),...,F k (n, 1c ,.., kc )) 

= ( 1f (F ((n-1), 1c ,.., kc )),.., kf (F ((n-1), 1c ,.., kc ))) 

Taking the initial state into account, F will be redefined more 
precisely as follows: 

F :: (Int, S) → S 

F(0, kcc 0
1
0 ,..., )  =   ( kcc 0

1
0 ,..., ) 

F(n, kcc 0
1
0 ,..., )  =  let   nc1  = 1f  (F ((n-1), kcc 0

1
0 ,..., )) 
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            ⋮   

              
n
kc  = kf (F ((n-1), kcc 0

1
0 ,..., )) 

            in ( k
nn cc ,...,1 ) 

Rewriting F in such a form reveals many important 
advantages, in particular: 

- It suits naturally the parallel computations: All the fi 
coordinates operate in parallel. 

- It fits adequately the notion of observational equivalence 
(very useful for complex systems, where someone is interested 
to just some observations among many others) 

- It fits also the incremental design approach: If we extend 
the design by extra observables, we just have to define extra 
next-state functions.   

IV. MODELLING THE MA-STEP 

At the micro-architectural level the notion of step, called MA-
step, will be implemented in terms of clock cycles. To be able 
to observe the evolution of the state at each cycle, the MA-
Step function will be decomposed as follow: 

ma = [f1,  f2
 o (f1,…,f1

s), … , fs
 o…o (f1,…,f1

s)]     (m1) 

In such form, only the fi coordinates are transformers, while 
all others are selectors (to read from one stage interface and 
write into the next). In this way, all the component states 
which are computed by the fi coordinates throughout the 
different stages are captured as depicted in figure 2. To be 
realistic, we have limited the observation to only one 
observable by stage. For example, the multi-cycle MIPS 
machine [15] updates the PC state at fetch stage, the memory 
state at memory access stage, and the register file state at write 
back stage. A functional implementation is shown in figure 3.  
 

 
Fig. 2. MA-Step decomposition capturing the intermediate states 

 

 
               Fig. 3.  MA-Step Implementation capturing the intermediate states 

 

V. MODELLING THE SEQUENTIAL MA MACHINE 

A sequential MA machine will be defined by a recursive 
state function that returns the MA state after executing n 
instructions (by applying MA-step n times). 

SMA:: (Int, W) → W 
SMA(0, c0

1,…,c0 
s ) = (c0

1,…,c0 
s) 

SMA (n, (c0
1,…,c0 

s)) = ma(SMA((n-1), c0
1,…,c0 

s)) 
By infolding the ma function, the SMA definition rewrites as 
follows: 

 
Fig. 4. Functional Specification of the SMA model 

VI. MODELLING THE PIPELINED MA MACHINE 

Because the instruction level is not observable (instructions 
are overlapped), the PMA model will be formalised at the 
program level but still in terms of clock cycles. It starts 
naturally from a flushed state, fills progressively the pipe and 
then proceeds interminably (unlike the flushing approach), as 
depicted in figure 5. 

 

 
Fig. 5. Pipelined Model diagram 
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 Again, the key solution for constructing the PMA model 
consists of decomposing the PMA state. Let S, be the number 
of pipelining stages, fi, for 1≤ i ≤ S, be the component 
function that performs the functionality of the stage i, and 

W=(W1,…,Ws), be the PMA state distributed over S 
observables. Therefore, the construction of the PMA model 
consists of two steps: 
- The first step is an irregular computation: It allows to 
progressively filling the pipe till cycle S-1. Thus, given an initial 
state: 

scc 0
1
0,..., , the state at  cycle S-1, is computed as follows: 

PMA ((s-1), scc 0
1
0,..., ) = [(fs-1,…,f1) o…o (f2, f1) o f1]( scc 0

1
0,..., ) 

 
- The second step which starts from the cycle S, is a regular 
computation: It allows to recursively compute the PMA state 
by repeatedly applying the next state function: f=(f1,…,fs), 
which establishes automatically after S cycles. So, the PMA 
state at cycle k≥S,  is computed as follows: 

PMA(k, scc 0
1
0 ,..., ) = (f1,…,fs ) (PMA((k-1), scc 0

1
0 ,..., )) 

Figure 6 shows the functional implementation of this regular form 

 
Fig. 6. Functional Specification of the PMA model for k≥S 
 
VII. VERIFICATION OF THE PIPELINED MA MACHINE 

A. Synchronisation diagram 
Because both the PMA and the SMA models are formalised in 
terms of clock cycles, all synchronous intermediate states 
represent useful points where the comparison could be 
achieved easily. Indeed, at the end of each clock cycle, a PMA 
design with S stages reveals S partial results; each one relates 
to an instruction within the pipe. So, we can construct a 
variant of the SMA model - called Component SMA Model - 
which simulates the effect of computing the same results 
sequentially as shown in figure 7. 

 

Fig 7. Synchronisation between pipelined and sequential models 
 
In case of no stalls, the synchronization is performed using the 
following time function:  

tn(k,j) =(k-j)*s +j  (t1) 

This means that we need (k-j)*S clock cycles to execute (k-j) 
instructions sequentially by the SMA model, and we need j 
clock cycles over, to reach the desired sequential state. 
In case of stalls, the time function rewrites as follows: 

ts(k,j,e) =((k-j)-e)*s +j  (t2) 

where e, is the number of stalls 

B. CSMA Model for a pipelined MA design 
The CSMA model that we propose here, inputs the same clock 
cycle k, as the PMA model, unlike the SMA model which 
inputs the number of instructions to execute (see sect 4). For 
each clock cycle k≥s, it constructs S terms (upon the SMA 
model); each one computes a partial result for one instruction 
within the pipe as shown in figure 8. 

 
Fig. 8. Functional Specification of the CSMA model for  k≥S 
 

C. Correctness criterion 
Proving the correctness of the PMA model with respect to the 
CSMA model requires proving the following equation: 

∀   k :: Int,  ∀ 1
0c :: W1, … sc0 :: Ws 

PMA(k, scc 0
1
0 ,..., )   = CSMA(k, scc 0

1
0 ,..., ) 

The proof of such equation decomposes systematically to the 
proof of the following equations: 

   f1 (PMA ((k-1), scc 0
1
0,..., )) = f1 (SMA((k-1), scc 0

1
0,..., )   (e1) 

   ⋮ 

∧  fs (PMA((k-1), scc 0
1
0,...,))=(fs o...o (f1,..,f1

s))(SMA((k-s), scc 0
1
0,..., )) (es) 

 

D. Discussion 
• The above equations are separately provable by induction 
over clock cycles. This avoids the use of symbolic evaluation 
which remains very tedious and insufficient for complex 
designs [16] 
• Also, such equations can be instantiated for any particular 
architecture by just specifying the stage functions fi.  Hence, 
the proof methodology scales well as designs get complex. 
• The number of equations to prove depends to the number 
of observables. This means that, we can limit the proof only to 

CSMA(k, scc 0
1
0 ,...,  ) =  

 Let  1
kc   =f1(SMA((k-1), scc 0

1
0 ,..., ) 

          ⋮   
          s

kc = (fs o, ..,o (f1,…f1
s)) ( SMA((k-s), scc 0

1
0 ,..., )) 

 in  ( s
kk cc ,...,1 ) 

ikik-s+1

Cycle k≥s

fsf1 fs f1 

fs 

f1 

s
kc

. .  
1
kc

tn(k,s) = (k-s)*s +s 

1
0c

 

 
⋮ 
 
 
 

sc0

tn(k 1) = (k-1)*s +1

PMA(k, scc 0
1
0 ,..., )   =  

 let   1
kc  = 1f  (PMA ((k-1), scc 0

1
0 ,..., )) 

          ⋮   
        s

kc  = fs (PMA ((k-1), scc 0
1
0 ,..., )) 

   in ( s
kk cc ,...,1 ) 
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some observations on which someone is interested. This is 
very useful for complex pipelined designs involving many 
observations. 
 

VIII. MODELLING THE SUPERSCALAR MA MACHINE 

Superscalar designs extend pipelined designs by replicating 
pipeline stages such that to issue multiple instructions per 
cycle. In this work, we will limit ourselves only to in-order 
execution designs where instructions are issued in there 
original program order and results are written in the same 
order as well (the application of our methodology to out-of-
order execution designs is still at hand). In this way, a SSMA 
model will be built upon a PMA model as follows: 
Let W=((W1

1 ,…,W1
s),…,(Wn

1,…,Wn
s)), be the SSMA state 

distributed over n pipelines (each one with S stages), and 
PMAi  for 1 ≤ i ≤ n, be the function that performs the 
functionality of the pipeline i. Thus, given an initial state: 
(( 1

0
11
0 ,..., scc ),…,( snn cc 0

1
0 ,..., )), the state of a SSMA design at 

clock cycle k≥S, results from combining the states computed 
by the different pipelines as follows: 

 
Fig. 9. Functional Specification of the SSMA model for k≥S 

IX. VERIFICATION OF THE SUPERSCALAR MA MACHINE 

A. Synchronisation diagram 
The synchronisation diagram for a SSMA model generalises 
the synchronization diagram used for the PMA model. Fig. 11 
depicts such synchronisation for a superscalar design involving 
an arbitrary number of pipelines. 
Let ji

kc  = fj(PMAi((k-1), sii cc 0
1
0 ,..., ),  be the SSMA component 

state produced by the stage function fj, of the pipeline i, at cycle k ≥S 

 In case of no stalls, the time function is defined as follows: 
tn(k,j,i)=(n*(k-j) +(i-1))*s +j   (t3) 

  where n, is the number of pipelines. The corresponding sequential 
state is computed as follows: 

j
ijkts ),,(  = (fj o … o ( 1f ,…,f1

s))(SMA((n*(k-j) +(i-1)), sii cc 0
1
0 ,..., )) 

 In case of stalls, the synchronization is performed using the 
following time function: 

ts(k,j,i,e)=(n*(k-j)+(i-1))-e)*s +j  (t4) 
where e, is the number of stalls.  
 
 
 
B. CSMA model for a superscalar MA design 

 The component sequential model for a superscalar design 
will be built over the CSMA model used for a pipelined 
design. We call it; CSSMA model. It inputs the same 
parameters as the SSMA model, and outputs the expected state 
against which the SSMA model will be compared. Figure 10 
shows such model for. k≥ S 

 
Fig. 10. Functional Specification of the CSSMA model for  k≥S 
 
C. Correctness criterion 

Proving the correctness of the SSMA model with respect to the 
CSSMA model requires proving the following equation: 
 
∀  n, k :: Int, ∀ 11

0c ::W1
1 ,…, 1

0
sc :: W1

s,     nc1
0 ::Wn

1,…, snc0 :: Wn
s 

SSMA(n, k,( 1
0

11
0 ,..., scc ),..,( snn cc 0

1
0 ,..., ))  = 

       CSSMA(n, k, ( 1
0

11
0 ,..., scc ),…,( snn cc 0

1
0 ,..., )) 

 The proof of such equation decomposes systematically to 
the proof of the following equations: 

 PMA1(k, 
1

0
11
0 ,..., scc ) = CSMA1(k, 

1
0

11
0 ,..., scc ) 

         ⋮ 

∧  PMAn(k, snn cc 0
1
0 ,..., ) = CSMAn(k, snn cc 0

1
0 ,..., ) 

Now, we can use the definitions of the PMA and the CSMA 
models given so far to resolve such equations. 

CSSMA (n, k, ( 1
0

11
0 ,..., scc ),…,( snn cc 0

1
0 ,..., )) = 

 let   ( 111,..., s
kk cc ) = CSMA1(k, 

1
0

11
0 ,..., scc ) 

          ⋮ 

       ( sn
k

n
k cc ,...,1 ) = CSMAn(k, snn cc 0

1
0 ,..., ) 

 in    (( 111,..., s
kk cc ), …,( sn

k
n

k cc ,...,1 )) SSMA(n, k, ( 1
0

11
0 ,..., scc ),…,( snn cc 0

1
0 ,..., )) =   

 let   ( 111,..., s
kk cc ) = PMA1(k, 

1
0

11
0 ,..., scc ) 

            ⋮ 

         ( sn
k

n
k cc ,...,1 ) = PMAn(k, snn cc 0

1
0 ,..., ) 

 in    (( 111,..., s
kk cc ), …,( sn

k
n

k cc ,...,1 )) 
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Fig 11. Synchronisation between superscalar and sequential models 
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X. CASE STUDY 

As a case study, we applied the proposed proof 
methodology to the formal verification of two examples: the 
pipelined and the dual issue superscalar pipelined MIPS 
processors with respect to the non-pipelined version. All 
functional models (PMA, SMA, SSMA, and CSMAs models) 
were developed within Haskell framework. The correctness 
proof was carried out manually (the proof is amenable to 
mechanisation) by induction and was limited only to three 
observations: The PC, The Memory and the register file states. 
Therefore, three equations (each one relates to an observable) 
have been stated. For each case, three types of instructions 
(Register-type, Memory-type, and branch-type) have been 
reasoned about and proved. Throughout the proof process, 
different types of hazards (particularly branch hazards) were 
discussed as well. The methodology gives each time the right 
result. For each case the models are executed to compare the 
results. Further details are given below. 

 
A. Definition of the MA State 

The observation is limited to three components: The program 
counter, the register file, and the data memory (the instruction 
memory remains unchanged). Such components are typed as 
follows: 

type Word = [Bit],   type PC = Word,   type RegFile = 
[Word],   type Dmem = [Word],   type Imem = [Word] 

The MA-state includes beside the observables, the pipeline 
registers which temporarily hold information between the 
different stages. 

type PipeFD = (PC, IR) 
type PipeDE = (PC, IR, RA, RB, RI) 
type PipeEM = (IR, RB, Aluout, Cond) 
type PipeMW = (IR,  Aluout, Lmd) 
type MA_state = (PipeFD, PipeDE, PipeEM, PipeMW,  PC, 
        RegFile, Dmem, Imem) 

 
B. Specification of  the MA Stages 

The interfaces specifications of the different stages are given 
below. 

fe :: MA_state →  PipeFD 
de:: MA_state → PipeDE 
ex:: MA_state → PipeEM 
me:: MA_state → (Dmem, PipeMW) 
wb:: MA_state → RegFile 

To simulate a pipelined design, we also need selector 
functions to copy the remaining unchanged component states 
(which are needed later) from one pipe to the next. 

fs:: MA_state  →  (PipeDE, PipeEM, PipeMW) 
ds:: MA_state →  (PipeFD, PipeEM, PipeMW)  
es:: MA_state →  (PipeFD, PipeDE, PipeMW) 
ms:: MA_state →  (PipeFD, PipeDE, PipeEM) 
ws:: MA_state → ( PipeFD, PipeDE, PipeEM, PipeMW) 

C. Pipelined model 

We will limit ourselves only to the regular phase (for k≥ 5) 
involving all stages which are clocked in parallel. Of course, 
the system begins first by progressively filling the pipes 
before to stabilise. At the end of clock cycle k, the PMA 
model shows five partial results each one relates to a separate 
instruction within the pipe. 
pma :: (Int, MA_state) →  MA_state 
pma(k, fd, de, em, mw,  pc rf,, dm, im) =              
Let   (pc’, ir1) = fe(pma((k-1), fd, de, em, mw, pc rf, dm,im)) 
  (pc2,ir2,ra,rb,ri)=de(pma((k-1),fd,de,em, mw, pc, rf, dm,im))  
  (ir3,rb2,aluout,cond)=ex(pma((k-1),fd,de, em, mw, pc,rf, dm,im)) 
  (dm’,ir4,aluout2,lmd)=me(pma((k-1),fd,de,em,mw,pc,rf,dm,im)) 
  rf ‘ = wb(pma ((k-1),fd, de, em, mw, pc,rf, dm,im))  
in   ( fd’  = (pc’, ir1),   de’ = (npc2, ir2, ra, rb, ri),   
        em’ = (ir3, rb2, aluout, cond’),   mw’ = (ir4, aluout2, lmd),   

        pc’, rf ’, dm’, im ) 

D. Sequential Model 

The sequential model returns the state after executing k 
instructions 
sma :: (Int, MA_state) →  MA_state  
sma (k, fd, de, em, mw ,pc, rf, dm,im) =   
let    (pc’ ir1) =  
                 fe (sma((k-1), fd, de, em, mw, pc,rf, dm,im))  
         (npc2,ir2,ra,rb,ri )= 
   (de.(fe,fs))(sma((k-1),fd,de,em,mw,pc,rf,dm, im)) 

        (ir3, rb2, aluout, cond) =  
  (ex . (de,ds).(fe,fs)) (sma((k-1),fd,de,em,mw,pc,rf, dm,im)) 

        (dm’, ir4, aluout2, lmd) = 
           (me .(ex, es) . (de,ds) . (fe,fs)) (sma((k-1),fd,de,em,mw, pc,rf,dm,im)) 

         rf ’= 
   (wb. (me,ms). (ex,es). (de,ds). (fe,fs))(sma((k-1),fd,de,em,mw,pc,rf,dm,im)) 

in ( fd’   = (pc’, ir1),   de’ =(npc2, ir2, ra, rb, ri),  
       em’ = (ir3, rb2, aluout, cond’), mw’ =  (ir4, aluout2, lmd), 
       pc’, rf ’, dm’, im ) 
 
E. Component Sequential model 

The CSMA model which is defined in terms of the SMA 
model returns the same five partial results computed by the 
PMA model. At clock cycle k, each stage i, computes the 
partial result relating to the instruction  (k+1)-i. The 
specification of the CSMA model simulating the pipelining 
computation of the MIPS processor is given below. 

csma :: (Int, MA_state) →  MA_state  
csma (k, fd, de, em, mw, pc, rf, dm, im ) = 
Let   (pc’ ir1) = 
    fe(sma((k-1), fd, de, em, mw,pc, rf, dm im)) 
      (npc2, ir2, ra, rb, ri )  = 
    (de . (fe, fs)) (sma((k-2), fd, de, em, mw, pc,rf,dm, im)) 
       (ir3, rb2, aluout, cond) = 
    (ex . (de, ds) . (fe,fs)) (sma((k-3), fd, de, em, mw, pc,rf,dm, im)) 
       (dm’, ir4, aluout2, lmd) =  
            (me . (ex,es) . (de,ds) . (fe,fs)) (sma((k-4),fd,de,em, mw, pc,rf,dm,im)) 
        rf ’ = 
 (wb . (me,ms) . (ex,es) . (de,ds) . (fe,fs)) (sma((k-5),fd,de,em,mw,pc,rf,dm,im)) 
in    ( fd’  =  (pc’, ir1),   de’ = (npc2, ir2, ra, rb, ri),  
         em’  = (ir3, rb2, aluout, cond),    mw’ = (ir4, aluout2, lmd), 

         pc’, rf ’, dm’, im ) 
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F. Correctness criterion 

According to section 7.3, the correctness proof of the 
pipelined MIPS processor is ensured if the following 
equations are satisfied: 

 fe(pma((k-1), ma_state)) =  
    fe(sma((k-1), ma_state)                      (a1) 

∧  de(pma((k-1), ma_state)) =  
   (de . (fe, fs)) ( sma((k-2), ma_state))     (a2) 

∧  ex(pma((k-1),ma_state))= 
   (ex . (de, ds) . (fe,fs))(sma((k-3),ma_state))         (a3) 

∧  me(pma((k-1), ma_state))= 
   (me . (ex,es) . (de,ds) . (fe,fs))(sma((k-4),ma_state))  (a4) 

∧  wb(pma((k-1), ma_state)) =  
  (wb . (me,ms) . (ex,es) . (de,ds).(fe,fs)) (sma((k-5),ma_state))  (a5) 
 

Although it is possible to prove the functionalities of all 
stages, we will limit the correctness proof only to three 
observations: The program counter, the register file, and the 
memory. Therefore, we also need to project out the pc and the 
memory states, after being updated by the fetch and memory 
stages respectively. Such projection function is omitted for the 
register file state as it is the only component state that can be 
observed at the write back stage. 
 
projPc :: MA_state → PC 
projMr :: MA_state → Dmem 
 
In case of absence of hazards or in case of presence of hazards 
that could be resolved using forwarding mechanisms (no 
stalls), the correctness proof of the pipelined MIPS processor 
is ensured if the following equations are satisfied. 
 
 projPc(fe(pma((k-1), ma_state)))  = 
        projPc (fe(sma((k-1), ma_state)))    (b1) 

∧  projMr(me(pma((k-1),ma_state))) =  
        projMr ((me. (ex,es). (de,ds). (fe,fs))(sma((k-4),ma_state)))   (b2) 

∧  wb(pma ((k-1),ma_state))  =  
       (wb . (me,ms). (ex,es). (de,ds). (fe,fs))(sma((k-5),ma_state))   (a5) 

In case of taken branch (requiring stalls) the verification 
condition of the PC state rewrites as follows 

projPc(fe(pma((k-1), ma_state)))  =   
      projPc (fe(sma(((k-1)-i), ma_state)))    (b3) 
 
Where, i, is the number of clock cycles for which the system 
must be stalled. 
 
Notice that, the equations (b1) and (b2) are consequent of the 
equations (a1) and (a4). If (a1) and (a4) are satisfied then (b1) 
and (b2) follow systematically.  
 
 Now, it becomes easier to reason about each verification 
condition separately.  Furthermore, we can reason either about 
individual instructions or about groups of instructions such as 
register-type, memory-type, or branch-type instructions 
 

G. Correctness proof 
 
The proof will be carried out by induction over clock cycles. 
The base case is implicit because both models start from the 
same initial state. So, we will consider only the inductive case. 
To ease the proof we will consider for each stage function 
only the input parameters which are necessary for the 
computation of the corresponding output state (the remaining 
parameters are necessary only for the correct typing of the 
stage functions) 

- Pc state 

• R-type and M-type instructions: To compute the next PC 
For these types of instructions, the fetch stage function of the 
pipelined model requires as active parameter, only the result 
previously produced by the same stage as shown in figure 12. 

 
Now, we assume that equation (a1) holds for cycle k, and we 
try to prove it for cycle k+1, as well. 
 
fe (pma(k, ma_state)) =  
fe(fe(pma(k-1),ma_state))    definition of pma (one active parameter)              
          = fe(fe (sma(k-1), ma_state))    inductive case 

          = fe (sma(k, ma_state))    definition of sma 
Consequently, 

projPc(fe (pma(k, ma_state))) = projPc (fe (sma(k, ma_state))) 

Which, quickly terminates the proof 

• Branch Instructions: For the branch instructions, the fetch 
stage activity depends on the result produced by the execute 
stage (see [23],  p.A33). 

Let   (ir3’, rb’,aluout’,cond’ ) = ex(pma((k-1), ma_state)) 

 Two cases will be discussed 

-   Case 1:  cond = False (untaken Branch) 
In this case the execution continues in sequence, and the PC is 
updated (incremented) using only the fetch stage result. 
Therefore the proof is straightforward because this case is 
similar to the one discussed above. 

Case 2: cond = True (taken branch)   
In this case, the pc is updated using the execute stage result 
(as active parameter) of cycle k. Hence, 
 
fe(pma(k,ma_state)) 

    = fe(ex(pma(k-1),ma_state))     definition of pma 

    = fe ((ex . (de,ds) . (fe,fs)). (sma((k-3),ma_state)))  inductive case 

    = fe(sma((k-2),ma_state))  sma with time function t2, (2 stalls) 

Consequently,  
projPc(fe (pma(k, ma_state)))  = projPc(fe( sma((k-2), ma_state))) 

This means that we need to stall for two cycles before to 
update the pc with the branch address (the two last 
instructions are ignored as shown in figure 13). According to 
the equation (b3), the approach gives us the right result. 
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Fig 12. Correctness diagram of the fetch stage for R-type and M-type 
 

 
 Fig 13. Correctness diagram of fetch stage for  taken branch   
             In this case the system  Stalls for 2 cycles 

 
- Data memory state 

• R-type instructions: For R-type instructions, the memory-
access stage function inputs as active parameter only the 
execute stage result and just passes it from the EX/MEM 
pipeline register to the MEM/WB pipeline register. So, the 
proof is very easy. 

• M-type instructions: The memory stage inputs the execute 
stage and the memory stage results. 

me (pma(k, ma_state))  

 = me [me(pma((k-1),ma_state)),  ex(pma((k-1), ma_state)) 

= me[(me.(ex,es).(de,ds).(fe,fs)) (sma((k-4),ma_state)), 1st parameter 
          (ex.(de,ds).(fe,fs)) (sma((k-3),ma_state))]   2d parameter 
 
= me[(es.(de,ds).(fe,fs))(sma((k-3),ma_state)),       1st parameter at end 
        (ex.(de,ds).(fe,fs))(sma((k-3),ma_state))]    2d parameter, the same 
 
= me[((ex,es) .(de,ds).(fe,fs))(sma((k-3),ma_state))]   factoring 

Consequently, 
projMr(me (pma(k, ma_state))) = 
 projMr((me.( ex,es) .(de,ds).(fe,fs)) (sma((k-3),ma_state))) 

which establishes the proof 
 

 

- Register file state 

• R-type and load instructions: The write-back stage activity 
is the same for both R-type and load instructions [23, p.A32]. 
It inputs two active parameters: the result produced by the 
memory stage of the same instruction and the result produced 
by the write-back stage of the previous instruction, and 
updates the register file. 
 
wb(pma(k,ma_state) 

= wb [me (pma((k-1),ma_state)),  wb( pma ((k-1),ma_state))] 
 
= wb [(me.(ex,es).(de,ds).(fe,fs)) (sma((k-4), ma_state)),      1st param 
   (wb.(me,ms).(ex,es).(de,ds).(fe,fs))(sma((k-5),ma_state))]  2d param 

 
 = wb [(me.(ex,es).(de,ds).(fe,fs)) (sma((k-4), ma_state)),  1st param, same 
           (ms.(ex,es).(de,ds).(fe,fs)) (sma((k-4),ma_state))]   2d param,at end  

 
= wb [((me,ms).(ex,es).(de,ds).(fe,fs)) (sma((k-4), ma_state))]  factoring 

 
which terminates the proof. 

XI. CONCLUSIONS 

A methodological approach for the formal specification and 
verification of RISC processor micro-architectures within a 
functional framework has been presented. The approach brings 
many contributions with respect to previous works 
- It produces accurate functional MA models (representing 
functional programs) that could be used for both formal 
verification and simulation (real designs are validated by 
mixing these two techniques [17], [18], [19]). Moreover, by 
decomposing the state, the overall proof decomposes 
systematically into a set of verification conditions more simple 
to reason about and to verify. In particular, we can reason 
about the inter-instruction dependency such as the different 
types of hazards that can occur during the execution, unlike the 
flushing technique where such reasoning is impossible. 
Furthermore, it is possible to reason either about individual 
instructions or about groups of instructions such as register-
instructions, memory-instructions and branch-instructions 
- Because both the reference and the pipelined models relate 
to the MA level, there is no need for a data abstraction 
function, only a time abstraction function is used to map 
between the times used by the two models. Moreover, such 
synchronization requires few cases with respect to those used 
by alternative approaches [2, 4].  
- The ability to instantiate the set of equations for any 
particular architecture, offers a better scalability for the 
verification of future highly-optimised designs  
- The key strength of the proposed proof methodology is the 
ability to carry out the proof by induction over clock cycles, 
within the same specification language rather than by symbolic 
evaluation through a proof tool which still requires 
considerable efforts 
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