
 

 

  
Abstract— This paper presents the implementation of a 

segmentation process to extract the moving objects from image 
sequence taken from a static camera used for real time vision tasks. 
Various aspects of the underlying motion detection algorithm are 
explored and modifications are made with potential improvements of 
extraction results and hardware efficiency. The whole system is 
implemented on a single low cost FPGA chip, capable of real-time 
segmentation at a very high frame rate that reaches to 1130 fps. In 
addition, to achieve real-time performance with high resolution video 
streams, dedicated hardware architecture with streamlined data flow 
and memory access reduction schemes are developed. Data flow 
reduction of 38.6% is achieved by processing only one distribution at 
time through the hardware. Also, substantial memory bandwidth 
reduction of 60% is achieved by utilizing distribution similarities in 
succeeding neighboring pixels as well as word length reduction. 
 

Keywords— Hardware optimization, Motion detection, Real-time 
implementation.  

I. INTRODUCTION 

HE motion detection is an essential processing component 
for many video applications such as video surveillance, 
military reconnaissance, robot navigation, collision 

avoidance, and path planning. Most of these applications 
demand a low power, compact, light weight, and high speed 
computation platform for processing image data in real time. 
There are three conventional approaches to motion detection: 
temporal differencing [1]; optical flow analysis [2], [3]; and 
background subtraction [4-6]. Motion detection by 
background subtraction can be divided into adaptive and non-
adaptive background methods. Non-adaptive methods need 
off-line initialization; errors in the background accumulate 
over time. A common method of adaptive backgrounding is to 
average the frames over time [7]. This creates an approximate 
background. This is effective where objects move 
continuously  and  the  background  is visible for  a  
significant  portion  of  time, it is not robust for scenes with  
many moving objects. It cannot handle a multimodal 
backgrounds caused by the repetitive motion of the 
background.  
    Stauffer algorithm [8], [9] is representative of an adaptive 
method which uses a mixture of normal distributions to model 
a multimodal background image sequence. This method deals 
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robustly with slowly-moving objects as well as with repetitive 
background motions of some scene-elements.  Repetitive 
variations are learned and in that way, a model for the 
background distribution is preserved.  A practical 
implementation of Stauffer algorithm in [10] provides values 
for all model parameters. With a large number of calculations 
due to the pixel-wise processing of each frame, Stauffer 
algorithm [8] could only achieve a low frame rate, far from 
real-time requirements. Hence, in this work we use a fast 
motion detection algorithm based on a multi-modal 
distribution to extract the moving objects by modeling each 
pixel as a mixture of three (or larger) distributions with a small 
number of calculations to achieve a high frame rate for real-
time requirements.  
    A few high-performance implementations of motion 
detection algorithms exist, and the fastest of these involve the 
use of special hardware features to achieve their high 
performance. Implementations based on general-purpose 
microprocessors have had to be of low computational 
complexity in order to achieve processing speeds above a few 
frames per second, and exclude algorithms of moderate or 
high computational complexity. A solution to implement 
complex algorithms at frame rates is to build custom 
hardware. The downside of this approach is that design of 
custom hardware has typically been a lengthy and expensive 
process. It may take months to develop and verify a design, 
and Application-Specific Integrated Circuits (ASICs) incurs 
costs ranging from hundreds to hundreds of thousands of 
dollars. There is an option available that bridges the gap 
between the ease of design associated with software and the 
performance associated with hardware. The advent of 
reconFigurable logic hardware in the form of Field-
Programmable Gate Arrays (FPGAs) allows designs to be 
quickly developed and prototyped at relatively low cost [11].  
    In recent years, different schemes have been proposed to 
implement motion detection algorithms and achieve real-time 
computation. Using a pipeline image processor, Correia and 
Campilho [12] propose a design which can process the 
Yosemite sequence of 252×316 size in 47.8ms. FPGAs have 
been used to process larger images at faster speed. An 
algorithm proposed by Horn and Schunck [13] was 
implemented [14]. It is an iterative algorithm where the 
accuracy depends largely on the number of iterations. The 
classical Lucas and Kanade approach was also implemented 
[15] for its good tradeoff between accuracy and processing 
efficiency. Two step search block matching algorithm [16] 
was first implemented and then ported onto an Altera NiosII 
processor [17] where some hardware-based support was used 
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to meet application timing requirements. A fast and accurate 
motion estimation algorithm [18] was modified for FPGA 
hardware implementation [19]. This design is able to process 
images of size 640×480 at 64 frames per second (fps).   
    This paper describes a low cost and less area 
implementation of a fast motion detection algorithm to extract 
the moving objects from image sequence of size 768 x 576 
pixels at a very high frame rate that reaches to 1130 frames 
per second in a single FPGA chip which is adequate for most 
real-time vision applications. 13.4% area optimization and 
38.6% data flow reduction are achieved to enhance the 
computational complexity. Furthermore, a word length and 
memory access reduction schemes are implemented, resulting 
in more than 60% memory bandwidth reduction. This paper is 
organized as follows. In section 2, the algorithm is formulated 
and our suggestions are introduced. In section 3, the hardware 
implementation of the design is discussed. In section 4, 
Different optimization schemes are proposed and discussed. 
Conclusion is given in section 5. 
 

II. ALGORITHMS  

    The adaptive-background method for motion detection [8] 
is applied to the frame pixels.  To achieve this, each pixel of 
the reflectance component is modeled as a mixture of K (three 
to five) Gaussian distributions (each pixel has K of mean-
values, variance-values and weights-values maintained at time 
t).  At any given time t, the history of a particular pixel {x0, 
y0} is:  
 

t}i1:i),y,{I(x}X,...,{X 00t1 ≤≤=  
 

where I is the image sequence. The probability of observing 
the given value of a current pixel is: 
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where ωk,t is an estimated weight of the kth Gaussian in the 
mixture at time t, µk,t is its mean value, Σk,t is its covariance 
matrix (or the variance  in  the  case  of  monochromatic  
image, which  is our case), and η is a Gaussian probability 
density function: 
    

 

( )
( )

( ) ( )tt1T
tt µXµX

2
1

2
1

2
nt e

2π

1µ,,Xη
−∑−− −

∑
=∑

              
 

    For each new pixel, the intensity value is thus checked 
against the existing Gaussian distributions, until the match is 
found. The matching criterion is defined as a pixel's value 
lying within 2.5 standard deviations interval from the mean of 
a current distribution. The mean and variance parameters of 
the distribution matching are updated as: 
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where ρ is the learning factor and α  is the learning rate. The 
weights of all distributions are updated as: 
  

( ) ( )tk,1tk,tk, Mαωα1ω +−= −  
            

where Mk,t=1 for the matching model and Mk,t=0  for the 
remaining models. If none of the K distributions matches the 
current pixel value, the least probable distribution is replaced 
with a distribution having the current value as its mean, an 
initialized high variance, and a low weight. The next step is to 
sort all the components in the mixture in the decreasing order 
of ratios (ω/σ).  It is possible to set a threshold T, which will 
separate distributions representing the background. The pixels 
that do not fit the background distributions are considered to 
belong to the moving objects.  
    There are several problems for implementing the Stauffer 
algorithm [8] such as a heavy use of square roots and squares 
in the equations, floating point calculations, and the need for 
evaluating exponential for the density function calculation. So, 
the VHDL code is hard to be synthesizable for this algorithm 
and the requirements for real time (video rate) are not suitable 
to be achieved by this algorithm. Hence, we propose a fast and 
efficient algorithm as in [20] to extract the moving objects in 
each video frame for software and hardware implementation. 
In the proposed method, each pixel is modeled as mixture of 
three distributions (k=3) as in Stauffer's method but each 
distribution is represented only by mean-value and weight-
value maintained at time t. The mixture here is ordered in 
decreasing order of weight (ω) values. Each pixel is checked 
against the distributions, until the match is found. The 
matching condition is achieved if the variation of the pixel 
within R% (matching ratio, 10% to 40%) from its mean value.    
   

/* Check_Distribution_Condition */   
( 1 - R% ) µk,t-1  ≤  Xt ≤ ( 1 + R% ) µk,t-1                             (8) 
  

    For the matching distribution, we store the current pixel as 
the processed pixel value XP,t for the next time t+1. 
                  
/* Match_Update */ 
XP,t   =  Xt                                                                             (9) 
    

    Also, we can apply the temporal differencing as proposed 
by Arseneau, S. and Cooperstock, J. [21] where the pixel is 
considered foreground pixel if |Xt  - Xt-1| > T where T is the 
threshold value. But, we replace the previous pixel value Xt-1 
by the previous processed pixel value XP,t-1 for time t-1. 
 

/*Check_Foreground_Condition */        
| Xt – XP,t-1 |  >  T                                                               (10) 
  
    We found that the adaptive value for T as the half of R% 
from the pixel mean value gave good results than fixed 
threshold value. The weight parameter of the matching 
distribution for foreground pixel will be updated as: 
 

/* Foreground_Match_Update */  
ωk,t =(1-α) ωk,t-1                                                                 (11) 
   
while the mean and weight parameters for none foreground 
pixel will be updated as: 
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/* Background_Match_Update */    
ωk,t  = ( 1-α ) ωk,t-1 +  α                                               (12)         
µk,t  = ( 1-α ) µk,t -1  + α Xt              '                          (13) 
 

where we select α as the learning factor as proposed by P. 
Wayne and Johann [10]. If the current pixel is not matched 
with any distribution, this pixel will be classified as 
foreground pixel. The mean of the third distribution of that 
pixel will be replaced by its intensity value and its weight will 
be selected as lower value than other distributions. Also, the 
processed pixel will be equal to the value of the mean of the 
first distribution. 
  
 

/* None_Match_Update */   
ω3,t = Low,   µ3,t = Xt,   XP,t =  µ1,t-1                                 (14) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.1. frames 16 (left) and 37 (right) from the lab sequence (a) and its 
corresponding foreground image obtained by Stauffer (b), modified 

Stauffer (c) and proposed (d) algorithms with R%=20% 

A. Experimental Results 
The software version is implemented in Matlab scripts to 

detect the moving objects for 768 x 576 frames using a 2GHz 
P4, 256MB RAM computer. Figure 1 shows the results of 
applying Stauffer algorithm [8], modified Stauffer algorithm 
[10] and our algorithm on the frames 16 and 37 respectively 
where a person moves quickly and a robot moves slowly in the 
lab. The effect of rapid lighting change is appeared in the 
results of Stauffer algorithm and a homomorphic filter can be 
used as pre-processing operator to extract the foreground 
pixels as in [6]. This pre-processing operator is not required 
for the extraction of foreground pixels using our algorithm due 
to applying the temporal differencing on the matching 
distribution. Post-processing operators can be applied to 
remove noisy pixels and fill the holes inside the blobs on the 
results of all algorithms. 
    The experimental results of average elapsed time per frame 
have been calculated by applying the Stauffer and the 
proposed algorithms. The results are T1=121.5849 S/F, 
T2=1.8816 S/F, and T3=1.0996 S/F where T is the average 
elapsed time in seconds per frame (S/F). T1 is the time if we 
apply Stauffer algorithm [8], T2 if we apply the modified 
Stauffer algorithm as in [10], and T3 if we apply our proposed 
algorithm. The comparison results are D1 = 99% and D2 = 
42% where the reduction ratio D is defined as the ratio at 
which the average elapsed time per frame T is reduced by 
applying our proposed algorithm: Di = (Ti- T3) / Ti; i=1, 2. D1 
is the ratio if we apply Stauffer algorithm and D2 if we apply 
modified Stauffer algorithm. It can be seen that the time is 
optimized by applying our algorithm compared to that 
generated with the other algorithms. Figure 2 shows the results 
of applying the proposed algorithm on the frames 54 and 187 
respectively in another environment. Note that the first person 
moves quickly while the second person that appears in frame 
187 moves slowly. Results show the enhanced performance of 
the proposed algorithm with less computation cost and higher 
frame rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.2. frames 54 (left) and 187 (right) from the second sequence (a) 
and its corresponding foreground image obtained by the proposed 

algorithm (b) with R%=30% 
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Two major features make the proposed algorithm a good 

candidate for hardware implementation. First, it is primarily 
composed of linear operations that can be easily implemented 
in hardware. Operations such as addition and multiplication 
can be represented efficiently in terms of number of logic 
blocks required, and can be computed in few, or even one, 
clock cycles. Second, there is no iteration or any explicit 
coarse-to-fine control strategy. This property makes the real 
time flow of data possible through the hardware. In the next 
sections, we will describe the implementation of the proposed 
algorithm and the modifications applied to the implemented 
architecture. 

 

III. HARDWARE IMPLEMENTATION 

Some implementations of active vision components are the 
same to provide easy interconnection and real time operation. 
The input and output memories, that can be accessed at the 
same time, are the most important parts of this hardware 
structure [22]. The other element is always an FPGA (or 
several), that holds the vision algorithm and the memories 
addressing and control tasks. Here, single-pixel multiple-
distributions (SPMD) architecture is presented for the 
proposed motion detection algorithm to extract the foreground 
images in real time, taking advantage of the data and logical 
parallel opportunities offered by FPGA architecture. The 
system uses input memory to access the captured frame pixels, 
output memory to store the processed pixels, and input-output 
memory to read and store distribution parameters as shown in 
Fig.3. 

 

 
 

 
 
 
 
 
 
 
 
 

 

 
Fig.3. block diagram of the system 

 

A. Pixel-based Architecture 
Stauffer algorithm [8] and the proposed algorithm are pixel 

level processing for each frame to classify if this pixel as 
foreground pixel or not. The required system must be able to 
process images of size 768 x576 (442368 pixels) at real time 
rate (25-30 fps).  Generally, it is required to process 442368 x 
25 pixels per second. So, any saving or speeding up in the 
implementation of a single pixel architecture will be magnified 
442368 x 25 times. Figure 4 shows SPMD architecture in the 
form of pipeline and parallel processing to achieve maximum 
speed up. A control signal rst initializes the distribution values 
and parameters of the algorithm. Ready_in_pixel is active 
when the data from camera (frame memory) and distributions 
values included the previous processed pixel value 
(distributions memory) are ready in the input. Pixel_in (range 
0 to 255) and Foreground (0 or 255) signals represent pre- and 
post-processing intensity value of the current pixel.   
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Frame 
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Frame 
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Fig.4. the structure of SPMD architecture 
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 Mean_in1,2,3, Weight_in1,2,3, Previous_in, Mean_out1,2,3, 
Weight_out1,2,3  and Previous_out signals are pre- and post-
processing distributions and processed pixel values. The 
Ready_out_pixel is active when the output data and 
parameters are ready in output. Each block in the shown 
architecture' is responsible to satisfy one or some equations in 
the proposed algorithm. The fixed point data representation is 
used here vs. floating point representation for means and 
weights calculations. Main block starts the operation with the 
first clock signal. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig.5. DISTRIBUTION_MATCHING_CHECKER block (a), 

TEMPORAL_DIFFERENCE (b), MEAN_VALUE_UPDATING 
block (c), and WEIGHT_VALUE_UPDATING block (d) 

 
There are MEAN_VALUE_UPDATING, WEIGHT_ 

VALUE_UPDATING, DISTRIBUTION_MATCHING 
_CHECKER and TEMPORAL_DIFFERENCE blocks for 
each distribution. These blocks are implemented together to 
perform the pipeline and parallel operation to achieve the 

maximum speed up. Figure 5 shows the functions of these 
blocks. D_match signal is assigned as one when the current 
pixel satisfies the corresponding distribution condition. 
F_match signal is assigned as one when the current pixel 
satisfies temporal differencing condition.  Mean_out and 
Weight_out signals represent the new mean and weight values 
in the corresponding distribution for the current pixel to be 
applied in time t+1. 

FORGROUND_EXTRACTION block outputs a 
foreground signal as one if the current pixel value is matched 
with any foreground matching condition or not matched with 
any distribution condition. DISTRIBUTION_UPDATING_ 
CONTROL block, see Fig.6, outputs D_case (updating type) 
for three distributions. New processed pixel value is obtained 
by PROCESSED_PIXEL_UPDTING block, see Fig.7. 
REORDER_DISTRIBUTIONS block is used to order 
distributions in decreasing order of weights. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.6. DISTRIBUTION_UPDATING_CONTROL block (a) and its 

corresponding operation 
 

 
 
 
 
 
 
 
 

 

Fig.7. PROCESSED_PIXEL_UPDTING block (a) with its 
corresponding operation (b) 

 
 

B. Experimental Results 
The implemented SPMD architecture using low cost 

available Spartan-II development system with Xilinx chip 
2s200fg456 has 54.1 MHz maximum frequency and uses 209 
CLB slices with 8.89% utilization. Hence, ten pixels can be 
processed in parallel and this means that 500 M Pixels / 
second (10 x 50 MHz) can be processed. This system is able 
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to process images of size 768 x 576 (442368 pixels) at 1130 
frames per second. This rate can be reduced due to access data 
with the external memories but it is guaranteed to process 
images in the real time or faster. To speed up this system, the 
bigger area and higher performance FPGA chip or more than 
one FPGA chip can be used. For instance, the implementation 
in Xilinx chip 2v1000fg456 has 95.5 MHz maximum 
frequency and 4.12% CLB slices utilization. The output 
foreground signals from the implemented system are the same 
results that as obtained by the implemented software version. 

IV. OPTIMIZATION SCHEMES  

A. Word length Reduction 
Slow background updating requires large dynamic range for 

each parameter in the distributions. This is due to the fact that 
parameter values are changed slightly between frames, but 
could accumulate over time. In this section, parameter word 
length reduction is investigated for potential memory 
bandwidth reduction. According to (13), the mean of each 
distribution is updated using a learning factor α. The 
difference of mean between current and previous frame is 
derived from the following equation; 
 

∆µ = µk,t - µk,t -1  = α ( Xt - µk,t -1 )                                    (15) 
 

    Given a small value for α, e.g. 0.0001, a unit difference 
between the incoming pixel and the current mean value results 
in a value of 0.0001 for ∆µ. In practice, the bits for fractional 
parts should be somewhere in the range of 10-14 bits.  To be 
able to record this slight change, 18 bits have to be used for 
the mean value, where 10 bits accounts for the fractional part 
and 8 bits are used for the integer one. Fewer bits can be 
achieved by ignoring small deviations of the incoming pixel 
from current mean, while picking up only large ones. The 
extreme case is when only the largest deviation is picked, e.g. 
where the incoming pixel is in the range of the matching 
ratio R% off the current mean. Larger than that, the incoming 
pixel will be not match the current distribution. With an upper 
bound for the matching range, a very small fractional value 
is derived for ∆µ.  
    To reduce the number of bits that is needed for each 
distribution, a word length reduction scheme is proposed. 
From equation 15, a small positive or negative number is 
derived depending on whether the incoming pixel is larger or 
smaller than the current mean. Instead of adding a small 
positive or negative fractional number to the current mean, a 
value of 1 or -1 is added. The overshooting caused by such 
coarse adjustment could be compensated by the update in the 
next frame, e.g. without illumination variation, the mean value 
will fluctuate with a magnitude of 1.The proposed parameter 
updating scheme keeps track of the relatively fast value 
changes in the dynamic scene while fluctuates around a 
constant value in the latter static scene. However, with the 
primary goal to reduce word length, the proposed scheme 
results in limited improvements to the segmentation results. 
Nearly no visual difference can be observed in the segmented 

results from the proposed and normal schemes. With a 
proposed parameter updating, only integers are needed for 
mean specification, which effectively reduce the word length 
from 18 down to 8 bits in each distribution.  
     For the SPMD architecture, over 38% word length 
reduction and less hardware complexity are achieved by using 
the proposed updating scheme compared with the normal 
updating scheme. Thus, the proposed scheme enhance the 
algorithmic performance while at the same time reduce both 
memory bandwidth and computational complexity. 

B. Area Optimization 
The updated distributions have to be ordered by 

REORDER_DISTRIBUTIONS block for use in the next 
frame. In order to reduce hardware complexity found in 
parallel ordering network, while still maintaining the speed, a 
specific feature in the algorithm is explored. By observing that 
only one distribution is updated at a time and all distributions 
are initially ordered, the ordering of three (or k) distributions 
can be changed by rearranging an updated distribution among 
two (or k-1) ordered distributions. The architecture for the 
ordering network (k=3) is shown in Fig.8.  
 
 
 

 
 
 
 
  

Fig.8. the ordering network 
 
 
    From the Figure all unmatched ordered distributions are 
compared with the updated one (3 in the Figure) based on 
weights values. After this modification, the implemented 
SPMD architecture uses only 181 CLB slices with the same 
speed. This results in 13.4% ([209-181] ÷209) more reduction 
in the area of the previous proposed SPMD architecture [20].  

C. Data Flow Reduction 
Dedicated hardware architecture, with a streamlined data 

flow reduction scheme, is implemented to address the 
computation capacity and chip input-output pins bottlenecks. 
This is a large improvement to the previous proposed SPMD 
architecture [20] which is shown in Fig.4. In this part, a 
thorough description of the whole system architecture with 
data flow reduction scheme is given. 
    Each pixel has a series of corresponding distributions, 
where are stored on off chip memories due to its size. The 
processing blocks of all distributions for a single pixel are 
implemented together in SPMD architecture, as shown in 
Fig.4, to achieve a very high frame rate but this requires a 
heavy computation capacity and input-output pins for the 
parameters (mean µ and weight ω values) of the distributions. 
The data flow can be reduced if only one distribution is 
processed at a time and all distributions are processed in 
pipeline through the same architecture. Here, off chip frame 
distributions memory is divided into four banks as shown in 
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Fig.8. Bank0 stores the processed pixel value (Xp) and the 
order code (Co) for the current processing pixel. The code Co 
represents the decreasing order of distributions according to 
weights (ω) and through it the distribution parameters are 
streamed into FPGA in pipeline. Bank1, Bank2, and Bank3 
store the three distribution parameters. Only one of the three 
banks is enabled by R1, R2, R3 signals depending on the code 
Co as shown in Fig.9 and the selected parameters (Ps) will be 
flowed with FPGA. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. organization of distributions memory 
 
 
 

 
 
 
 
 
 
 
 

Fig.9. Distribution selection and pipeline order 
 
 
 

A simplified conceptual block diagram of that single-pixel 
single-distribution (SPSD) architecture is given in Fig.10 to 
illustrate the data flow within the system. It consists of 
Control_Unit, Matching_Unit, Decoder_Unit, and 
Output_Unit blocks. The signals with the same names in 
SPMD architecture have the same functions. 

 

 

Fig.10. the structure of SPSD architecture 

A Control_Unit as shown in Fig.11 consists of two blocks. 
Mul_Clk_Unit block generates three different clocks/enables 
(clk2,3,4) from the input clock clk1 as shown in Fig.12. 
Switch_RAM block generates enable signals (R1,R2,R3) for 
memory banks depending on the 3-bit code signal (C_in1,2,3) 
to order the entrance of selected distributions. The pipeline 
operation of the SPSD architecture requires four different 
clocks/enables. clk1, clk2, and clk3 signals are used to enter 
the selected mean (M_sel) and weight (W_sel) data from the 
first, second, and third enabled distribution memory bank 
respectively.  

 

 
Fig.11. Control_Unit block 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12. clocks/enables signals 
 
 
Output_Unit block as shown in Fig.13 consists of six 

blocks. In Updating_Control block, clk2, clk3, and clk4 are 
used to generate a new mean (M_new) and weight (W_new) 
data for the first, second, and third enabled distribution 
memory bank respectively. Mean1_reg stores the mean value 
of the first selected distribution. Two Match_reg blocks store 
D_match and F_match signals for the first and second selected 
distributions with clk2 and clk3 signals respectively. While 
with clk4 signal: Processed_Clk block generates new 
processed pixel (Previous_out) data and Fourground_Clk 
block generates the foreground decision value.  
     A Matching_Unit block as shown in Fig.14 consists of 
Distribution_Matching_ Checker and Temporal_Difference 
blocks with the same functions that are previously discussed 
for SPMD architecture. A Decoder_Unit block as shown in 
Fig.15 consists of three blocks. Two W_reg blocks store 
weight values for the first and second selected distributions 

 

  FPGA 

  

 R1           R2        Ps         R3     

  Bank1   Bank3   Bank0 

Xp 
& 
Co 

µ1 
& 
ω1 

µ2 
& 
ω2 

µ3 
& 
ω3 

  Bank2 

 

Code 
C1  C2  C3 

Distribution 
Sel. Order 

 0     0    0 
 0     0    1 

   1     2     3 
   1     3     2 

 0     1    0 
 0     1    1 

   2     1     3 
   2     3     1 

 1     0    0 
 1     0    1 

   3     1     2 
   3     2     1 

 Clk1

Clk2

Clk3

Clk4 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 84



 

 

with clk2 and clk3 signals respectively. Reorder_Clk 
generates the code Co (C_out1,2,3) signals that represents the 
decreasing order of the updated weights (W_up1,2,3) as 
shown Fig.9 and Ready_out_pixel signal to end the current 
pixel processing.    
 

 
Fig.13. Output_Unit block 

 
 
 
 

 
  
 
 
 
 

 
Fig.14. Matching_Unit block 

 
 
 
 

 
 
 
 
 
 
 
 

 

Fig.15. Decoder_Unit block 
 
 

The implemented SPSD architecture using available 
Spartan-II development system with Xilinx chip 2s200fg456 
has 69.5 MHz maximum frequency and uses 75 CLB slices 
with 3.19% utilization. The SPSD architecture has higher 
speed and lower area than SPMD architecture. So, this system 

is able to process images of size 768 x 576 at the same frame 
rate as SPMD architecture with 38.6% reduction in number of 
input-output pins.  

D. Memory Access Reduction 
To reduce heavy memory access incurred by accessing off 

chip memory banks that store one frame of distributions, an 
encoder and decoder blocks are designed by utilizing 
distribution similarities in succeeding neighboring pixels as 
shown in Fig.16. This is covered in this part. 

 
 
 

 
 
 
 
 
 
 
 
 

Fig.16. similarity decoder/encoder 
 
 
We classify “similar” distributions in the following way: 

from the definition of a matching process, each distribution 
can be simplified as a two dimensional rectangle (mean and 
weight dimensions). The center of the rectangle is mean value 
whereas the border to the center is specified by the matching 
ratio R% off that mean. One way to measure the similarity 
between two distributions is to check how much of the two 
rectangles that overlap. If the overlap volume takes up certain 
percentage of both rectangles, they are regarded as “similar”. 
The whole idea is illustrated in Figure 17. The reason for such 
criteria lies in the fact that a pixel that matches one 
distribution will most likely match the other, if they have 
enough overlapping volume. The percentage is an overlapping 
ratio parameter that can be set to different values among 
different situations. 

 
 
 
 
 
 
 

Fig.17. distribution similarity as modeled by rectangle 
overlapping 

 
 
In the architecture, two similar distributions are treated as 

equivalent. By only saving non overlapping distributions 
together with the number of equivalent succeeding 
distributions, memory bandwidth is reduced. Various 
overlapping ratios are selected to evaluate the efficiency for 
memory bandwidth reduction. With a low value where less 
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overlapping distributions are regarded as the same, more 
savings could be achieved. However, more noise is generated 
due to increasing mismatches in the matching block. 
Fortunately, such noise is found non-accumulating and 
therefore can be reduced by the morphological filtering. The 
background pixels exhibit high similarity within neighboring 
pixels. With foreground objects entering the scene, part of 
distributions are replaced, which results in the decrease of 
number of similar distributions. The trends will continue until 
it reaches a certain point where most pixel locations contain a 
foreground distribution. The decrease will flattens out in the 
end. Figure 18 shows the results for different overlapping 
ratios and achieved memory bandwidth reductions in lab 
sequence. In this implementation, an overlapping ratio of 0.8 
is selected, combined with word length reduction scheme, a 
memory bandwidth reduction of over 60% is accomplished.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.18. memory bandwidth reduction over overlapping ratio 
 
 

V. CONCLUSION 

High computation demand makes it difficult to use motion 
detection algorithm for real-time applications using general 
purpose processors. In this paper, a low cost and area efficient 
FPGA-based implementation of a fast motion detection 
algorithm has been presented to extract the moving objects 
from image sequence of size 768 x 576 pixels at a very high 
frame rate that reaches to 1130 fps which is adequate for most 
real-time vision applications. It has been shown that the area 
of the SPMD architecture [20] was reduced by 13.4% by 
modifying the REORDER_DISTRIBUTIONS block.  

Dedicated hardware architecture, with a streamlined data 
flow and memory bandwidth reduction schemes, has been 
implemented to address the computation capacity and memory 
bandwidth bottlenecks.  Data flow reduction of 38.6% has 
been achieved by using the proposed SPSD architecture in 
comparison to SPMD architecture [20] to enhance the 
computational complexity. Also, a word length and memory 
access reduction schemes have been proposed for the 
architectures, resulting in more than 60% memory bandwidth 
reduction. 
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