

Abstract— This paper presents the implementation of a

segmentation process to extract the moving objects from image
sequence taken from a static camera used for real time vision tasks.
Various aspects of the underlying motion detection algorithm are
explored and modifications are made with potential improvements of
extraction results and hardware efficiency. The whole system is
implemented on a single low cost FPGA chip, capable of real-time
segmentation at a very high frame rate that reaches to 1130 fps. In
addition, to achieve real-time performance with high resolution video
streams, dedicated hardware architecture with streamlined data flow
and memory access reduction schemes are developed. Data flow
reduction of 38.6% is achieved by processing only one distribution at
time through the hardware. Also, substantial memory bandwidth
reduction of 60% is achieved by utilizing distribution similarities in
succeeding neighboring pixels as well as word length reduction.

Keywords— Hardware optimization, Motion detection, Real-time
implementation.

I. INTRODUCTION

HE motion detection is an essential processing component
for many video applications such as video surveillance,
military reconnaissance, robot navigation, collision

avoidance, and path planning. Most of these applications
demand a low power, compact, light weight, and high speed
computation platform for processing image data in real time.
There are three conventional approaches to motion detection:
temporal differencing [1]; optical flow analysis [2], [3]; and
background subtraction [4-6]. Motion detection by
background subtraction can be divided into adaptive and non-
adaptive background methods. Non-adaptive methods need
off-line initialization; errors in the background accumulate
over time. A common method of adaptive backgrounding is to
average the frames over time [7]. This creates an approximate
background. This is effective where objects move
continuously and the background is visible for a
significant portion of time, it is not robust for scenes with
many moving objects. It cannot handle a multimodal
backgrounds caused by the repetitive motion of the
background.
 Stauffer algorithm [8], [9] is representative of an adaptive
method which uses a mixture of normal distributions to model
a multimodal background image sequence. This method deals

Manuscript received April 5, 2008; Revised version received Aug.1, 2008.

This work was supported by Department of Electronics, Communications, and
Computer, Faculty of Engineering, Helwan University, Egypt.

Authors are with department of electronics, communications, and
computer, faculty of engineering, Helwan university, Cairo, Egypt.

robustly with slowly-moving objects as well as with repetitive
background motions of some scene-elements. Repetitive
variations are learned and in that way, a model for the
background distribution is preserved. A practical
implementation of Stauffer algorithm in [10] provides values
for all model parameters. With a large number of calculations
due to the pixel-wise processing of each frame, Stauffer
algorithm [8] could only achieve a low frame rate, far from
real-time requirements. Hence, in this work we use a fast
motion detection algorithm based on a multi-modal
distribution to extract the moving objects by modeling each
pixel as a mixture of three (or larger) distributions with a small
number of calculations to achieve a high frame rate for real-
time requirements.
 A few high-performance implementations of motion
detection algorithms exist, and the fastest of these involve the
use of special hardware features to achieve their high
performance. Implementations based on general-purpose
microprocessors have had to be of low computational
complexity in order to achieve processing speeds above a few
frames per second, and exclude algorithms of moderate or
high computational complexity. A solution to implement
complex algorithms at frame rates is to build custom
hardware. The downside of this approach is that design of
custom hardware has typically been a lengthy and expensive
process. It may take months to develop and verify a design,
and Application-Specific Integrated Circuits (ASICs) incurs
costs ranging from hundreds to hundreds of thousands of
dollars. There is an option available that bridges the gap
between the ease of design associated with software and the
performance associated with hardware. The advent of
reconFigurable logic hardware in the form of Field-
Programmable Gate Arrays (FPGAs) allows designs to be
quickly developed and prototyped at relatively low cost [11].
 In recent years, different schemes have been proposed to
implement motion detection algorithms and achieve real-time
computation. Using a pipeline image processor, Correia and
Campilho [12] propose a design which can process the
Yosemite sequence of 252×316 size in 47.8ms. FPGAs have
been used to process larger images at faster speed. An
algorithm proposed by Horn and Schunck [13] was
implemented [14]. It is an iterative algorithm where the
accuracy depends largely on the number of iterations. The
classical Lucas and Kanade approach was also implemented
[15] for its good tradeoff between accuracy and processing
efficiency. Two step search block matching algorithm [16]
was first implemented and then ported onto an Altera NiosII
processor [17] where some hardware-based support was used

FPGA-Based Real-Time Video-Object
Segmentation with Optimization Schemes

M.M. Abutaleb, A. Hamdy, and E.M. Saad

T

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 78

to meet application timing requirements. A fast and accurate
motion estimation algorithm [18] was modified for FPGA
hardware implementation [19]. This design is able to process
images of size 640×480 at 64 frames per second (fps).
 This paper describes a low cost and less area
implementation of a fast motion detection algorithm to extract
the moving objects from image sequence of size 768 x 576
pixels at a very high frame rate that reaches to 1130 frames
per second in a single FPGA chip which is adequate for most
real-time vision applications. 13.4% area optimization and
38.6% data flow reduction are achieved to enhance the
computational complexity. Furthermore, a word length and
memory access reduction schemes are implemented, resulting
in more than 60% memory bandwidth reduction. This paper is
organized as follows. In section 2, the algorithm is formulated
and our suggestions are introduced. In section 3, the hardware
implementation of the design is discussed. In section 4,
Different optimization schemes are proposed and discussed.
Conclusion is given in section 5.

II. ALGORITHMS

 The adaptive-background method for motion detection [8]
is applied to the frame pixels. To achieve this, each pixel of
the reflectance component is modeled as a mixture of K (three
to five) Gaussian distributions (each pixel has K of mean-
values, variance-values and weights-values maintained at time
t). At any given time t, the history of a particular pixel {x0,
y0} is:

t}i1:i),y,{I(x}X,...,{X 00t1 ≤≤=

where I is the image sequence. The probability of observing
the given value of a current pixel is:

()tk,tk,t

K

1k
tk,t ,µ,Xηω)P(X ∑∗= ∑

=

where ωk,t is an estimated weight of the kth Gaussian in the
mixture at time t, µk,t is its mean value, Σk,t is its covariance
matrix (or the variance in the case of monochromatic
image, which is our case), and η is a Gaussian probability
density function:

()
()

() ()tt1T
tt µXµX

2
1

2
1

2
nt e

2π

1µ,,Xη
−∑−− −

∑
=∑

 For each new pixel, the intensity value is thus checked
against the existing Gaussian distributions, until the match is
found. The matching criterion is defined as a pixel's value
lying within 2.5 standard deviations interval from the mean of
a current distribution. The mean and variance parameters of
the distribution matching are updated as:

() ()t1tt Xρµρ1µ +−= −

() () ()tt
T

tt
2

1t
2
t µXµXρσρ1σ −−+−= −

()kkt σ,µXαηρ =

where ρ is the learning factor and α is the learning rate. The
weights of all distributions are updated as:

() ()tk,1tk,tk, Mαωα1ω +−= −

where Mk,t=1 for the matching model and Mk,t=0 for the
remaining models. If none of the K distributions matches the
current pixel value, the least probable distribution is replaced
with a distribution having the current value as its mean, an
initialized high variance, and a low weight. The next step is to
sort all the components in the mixture in the decreasing order
of ratios (ω/σ). It is possible to set a threshold T, which will
separate distributions representing the background. The pixels
that do not fit the background distributions are considered to
belong to the moving objects.
 There are several problems for implementing the Stauffer
algorithm [8] such as a heavy use of square roots and squares
in the equations, floating point calculations, and the need for
evaluating exponential for the density function calculation. So,
the VHDL code is hard to be synthesizable for this algorithm
and the requirements for real time (video rate) are not suitable
to be achieved by this algorithm. Hence, we propose a fast and
efficient algorithm as in [20] to extract the moving objects in
each video frame for software and hardware implementation.
In the proposed method, each pixel is modeled as mixture of
three distributions (k=3) as in Stauffer's method but each
distribution is represented only by mean-value and weight-
value maintained at time t. The mixture here is ordered in
decreasing order of weight (ω) values. Each pixel is checked
against the distributions, until the match is found. The
matching condition is achieved if the variation of the pixel
within R% (matching ratio, 10% to 40%) from its mean value.

/* Check_Distribution_Condition */
(1 - R%) µk,t-1 ≤ Xt ≤ (1 + R%) µk,t-1 (8)

 For the matching distribution, we store the current pixel as
the processed pixel value XP,t for the next time t+1.

/* Match_Update */
XP,t = Xt (9)

 Also, we can apply the temporal differencing as proposed
by Arseneau, S. and Cooperstock, J. [21] where the pixel is
considered foreground pixel if |Xt - Xt-1| > T where T is the
threshold value. But, we replace the previous pixel value Xt-1
by the previous processed pixel value XP,t-1 for time t-1.

/*Check_Foreground_Condition */
| Xt – XP,t-1 | > T (10)

 We found that the adaptive value for T as the half of R%
from the pixel mean value gave good results than fixed
threshold value. The weight parameter of the matching
distribution for foreground pixel will be updated as:

/* Foreground_Match_Update */
ωk,t =(1-α) ωk,t-1 (11)

while the mean and weight parameters for none foreground
pixel will be updated as:

 (1)

 (2)

 (3)

 (4)

 (5)

(7)

(6)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 79

/* Background_Match_Update */
ωk,t = (1-α) ωk,t-1 + α (12)
µk,t = (1-α) µk,t -1 + α Xt ' (13)

where we select α as the learning factor as proposed by P.
Wayne and Johann [10]. If the current pixel is not matched
with any distribution, this pixel will be classified as
foreground pixel. The mean of the third distribution of that
pixel will be replaced by its intensity value and its weight will
be selected as lower value than other distributions. Also, the
processed pixel will be equal to the value of the mean of the
first distribution.

/* None_Match_Update */
ω3,t = Low, µ3,t = Xt, XP,t = µ1,t-1 (14)

Fig.1. frames 16 (left) and 37 (right) from the lab sequence (a) and its
corresponding foreground image obtained by Stauffer (b), modified

Stauffer (c) and proposed (d) algorithms with R%=20%

A. Experimental Results
The software version is implemented in Matlab scripts to

detect the moving objects for 768 x 576 frames using a 2GHz
P4, 256MB RAM computer. Figure 1 shows the results of
applying Stauffer algorithm [8], modified Stauffer algorithm
[10] and our algorithm on the frames 16 and 37 respectively
where a person moves quickly and a robot moves slowly in the
lab. The effect of rapid lighting change is appeared in the
results of Stauffer algorithm and a homomorphic filter can be
used as pre-processing operator to extract the foreground
pixels as in [6]. This pre-processing operator is not required
for the extraction of foreground pixels using our algorithm due
to applying the temporal differencing on the matching
distribution. Post-processing operators can be applied to
remove noisy pixels and fill the holes inside the blobs on the
results of all algorithms.
 The experimental results of average elapsed time per frame
have been calculated by applying the Stauffer and the
proposed algorithms. The results are T1=121.5849 S/F,
T2=1.8816 S/F, and T3=1.0996 S/F where T is the average
elapsed time in seconds per frame (S/F). T1 is the time if we
apply Stauffer algorithm [8], T2 if we apply the modified
Stauffer algorithm as in [10], and T3 if we apply our proposed
algorithm. The comparison results are D1 = 99% and D2 =
42% where the reduction ratio D is defined as the ratio at
which the average elapsed time per frame T is reduced by
applying our proposed algorithm: Di = (Ti- T3) / Ti; i=1, 2. D1
is the ratio if we apply Stauffer algorithm and D2 if we apply
modified Stauffer algorithm. It can be seen that the time is
optimized by applying our algorithm compared to that
generated with the other algorithms. Figure 2 shows the results
of applying the proposed algorithm on the frames 54 and 187
respectively in another environment. Note that the first person
moves quickly while the second person that appears in frame
187 moves slowly. Results show the enhanced performance of
the proposed algorithm with less computation cost and higher
frame rate.

Fig.2. frames 54 (left) and 187 (right) from the second sequence (a)
and its corresponding foreground image obtained by the proposed

algorithm (b) with R%=30%

 (a)

 (b)

 (c)

 (d)

 (a)

 (b)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 80

Two major features make the proposed algorithm a good

candidate for hardware implementation. First, it is primarily
composed of linear operations that can be easily implemented
in hardware. Operations such as addition and multiplication
can be represented efficiently in terms of number of logic
blocks required, and can be computed in few, or even one,
clock cycles. Second, there is no iteration or any explicit
coarse-to-fine control strategy. This property makes the real
time flow of data possible through the hardware. In the next
sections, we will describe the implementation of the proposed
algorithm and the modifications applied to the implemented
architecture.

III. HARDWARE IMPLEMENTATION

Some implementations of active vision components are the
same to provide easy interconnection and real time operation.
The input and output memories, that can be accessed at the
same time, are the most important parts of this hardware
structure [22]. The other element is always an FPGA (or
several), that holds the vision algorithm and the memories
addressing and control tasks. Here, single-pixel multiple-
distributions (SPMD) architecture is presented for the
proposed motion detection algorithm to extract the foreground
images in real time, taking advantage of the data and logical
parallel opportunities offered by FPGA architecture. The
system uses input memory to access the captured frame pixels,
output memory to store the processed pixels, and input-output
memory to read and store distribution parameters as shown in
Fig.3.

Fig.3. block diagram of the system

A. Pixel-based Architecture
Stauffer algorithm [8] and the proposed algorithm are pixel

level processing for each frame to classify if this pixel as
foreground pixel or not. The required system must be able to
process images of size 768 x576 (442368 pixels) at real time
rate (25-30 fps). Generally, it is required to process 442368 x
25 pixels per second. So, any saving or speeding up in the
implementation of a single pixel architecture will be magnified
442368 x 25 times. Figure 4 shows SPMD architecture in the
form of pipeline and parallel processing to achieve maximum
speed up. A control signal rst initializes the distribution values
and parameters of the algorithm. Ready_in_pixel is active
when the data from camera (frame memory) and distributions
values included the previous processed pixel value
(distributions memory) are ready in the input. Pixel_in (range
0 to 255) and Foreground (0 or 255) signals represent pre- and
post-processing intensity value of the current pixel.

Proposed

Algorithm

Frame
Distributions

Memory

Captured
Frame

Memory

Foreground
Frame

Memory

Fig.4. the structure of SPMD architecture

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 81

 Mean_in1,2,3, Weight_in1,2,3, Previous_in, Mean_out1,2,3,
Weight_out1,2,3 and Previous_out signals are pre- and post-
processing distributions and processed pixel values. The
Ready_out_pixel is active when the output data and
parameters are ready in output. Each block in the shown
architecture' is responsible to satisfy one or some equations in
the proposed algorithm. The fixed point data representation is
used here vs. floating point representation for means and
weights calculations. Main block starts the operation with the
first clock signal.

Fig.5. DISTRIBUTION_MATCHING_CHECKER block (a),

TEMPORAL_DIFFERENCE (b), MEAN_VALUE_UPDATING
block (c), and WEIGHT_VALUE_UPDATING block (d)

There are MEAN_VALUE_UPDATING, WEIGHT_

VALUE_UPDATING, DISTRIBUTION_MATCHING
_CHECKER and TEMPORAL_DIFFERENCE blocks for
each distribution. These blocks are implemented together to
perform the pipeline and parallel operation to achieve the

maximum speed up. Figure 5 shows the functions of these
blocks. D_match signal is assigned as one when the current
pixel satisfies the corresponding distribution condition.
F_match signal is assigned as one when the current pixel
satisfies temporal differencing condition. Mean_out and
Weight_out signals represent the new mean and weight values
in the corresponding distribution for the current pixel to be
applied in time t+1.

FORGROUND_EXTRACTION block outputs a
foreground signal as one if the current pixel value is matched
with any foreground matching condition or not matched with
any distribution condition. DISTRIBUTION_UPDATING_
CONTROL block, see Fig.6, outputs D_case (updating type)
for three distributions. New processed pixel value is obtained
by PROCESSED_PIXEL_UPDTING block, see Fig.7.
REORDER_DISTRIBUTIONS block is used to order
distributions in decreasing order of weights.

Fig.6. DISTRIBUTION_UPDATING_CONTROL block (a) and its

corresponding operation

Fig.7. PROCESSED_PIXEL_UPDTING block (a) with its
corresponding operation (b)

B. Experimental Results
The implemented SPMD architecture using low cost

available Spartan-II development system with Xilinx chip
2s200fg456 has 54.1 MHz maximum frequency and uses 209
CLB slices with 8.89% utilization. Hence, ten pixels can be
processed in parallel and this means that 500 M Pixels /
second (10 x 50 MHz) can be processed. This system is able

Enable Operation

1
0

Check_Distribution_Condition
Disable

 (a)

D_match Operation

1
0

Check_Foregound_Condition
Disable

 (b)

D_case Update Type
0 1
1 1
Else

Background_Match_Update
None_Match_Update

No Change

D_case Update Type
0 1
1 0
1 1
Else

Background_Match_Update
Foregound_Match_Update

None_Match_Update
No Change

 (c)

 (d)

D_match
3 2 1

F_match
3 2 1

Update Type Distrib.
Number

- - 1 - - 0
- - 1

Background_Match_Update
Foregound_Match_Update

1

- 1 0 - 0 -
- 1 -

Background_Match_Update
Foregound_Match_Update

2

1 0 0 0 - -
1 - -

Background_Match_Update
Foregound_Match_Update

3

0 0 0 - - - None_Match_Update 3

 (a)

 (b)

D_match
3 2 1

Update Type

0 0 0
Else

None_Match_Update
Match_Update

 (a) (b)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 82

to process images of size 768 x 576 (442368 pixels) at 1130
frames per second. This rate can be reduced due to access data
with the external memories but it is guaranteed to process
images in the real time or faster. To speed up this system, the
bigger area and higher performance FPGA chip or more than
one FPGA chip can be used. For instance, the implementation
in Xilinx chip 2v1000fg456 has 95.5 MHz maximum
frequency and 4.12% CLB slices utilization. The output
foreground signals from the implemented system are the same
results that as obtained by the implemented software version.

IV. OPTIMIZATION SCHEMES

A. Word length Reduction
Slow background updating requires large dynamic range for

each parameter in the distributions. This is due to the fact that
parameter values are changed slightly between frames, but
could accumulate over time. In this section, parameter word
length reduction is investigated for potential memory
bandwidth reduction. According to (13), the mean of each
distribution is updated using a learning factor α. The
difference of mean between current and previous frame is
derived from the following equation;

∆µ = µk,t - µk,t -1 = α (Xt - µk,t -1) (15)

 Given a small value for α, e.g. 0.0001, a unit difference
between the incoming pixel and the current mean value results
in a value of 0.0001 for ∆µ. In practice, the bits for fractional
parts should be somewhere in the range of 10-14 bits. To be
able to record this slight change, 18 bits have to be used for
the mean value, where 10 bits accounts for the fractional part
and 8 bits are used for the integer one. Fewer bits can be
achieved by ignoring small deviations of the incoming pixel
from current mean, while picking up only large ones. The
extreme case is when only the largest deviation is picked, e.g.
where the incoming pixel is in the range of the matching
ratio R% off the current mean. Larger than that, the incoming
pixel will be not match the current distribution. With an upper
bound for the matching range, a very small fractional value
is derived for ∆µ.
 To reduce the number of bits that is needed for each
distribution, a word length reduction scheme is proposed.
From equation 15, a small positive or negative number is
derived depending on whether the incoming pixel is larger or
smaller than the current mean. Instead of adding a small
positive or negative fractional number to the current mean, a
value of 1 or -1 is added. The overshooting caused by such
coarse adjustment could be compensated by the update in the
next frame, e.g. without illumination variation, the mean value
will fluctuate with a magnitude of 1.The proposed parameter
updating scheme keeps track of the relatively fast value
changes in the dynamic scene while fluctuates around a
constant value in the latter static scene. However, with the
primary goal to reduce word length, the proposed scheme
results in limited improvements to the segmentation results.
Nearly no visual difference can be observed in the segmented

results from the proposed and normal schemes. With a
proposed parameter updating, only integers are needed for
mean specification, which effectively reduce the word length
from 18 down to 8 bits in each distribution.
 For the SPMD architecture, over 38% word length
reduction and less hardware complexity are achieved by using
the proposed updating scheme compared with the normal
updating scheme. Thus, the proposed scheme enhance the
algorithmic performance while at the same time reduce both
memory bandwidth and computational complexity.

B. Area Optimization
The updated distributions have to be ordered by

REORDER_DISTRIBUTIONS block for use in the next
frame. In order to reduce hardware complexity found in
parallel ordering network, while still maintaining the speed, a
specific feature in the algorithm is explored. By observing that
only one distribution is updated at a time and all distributions
are initially ordered, the ordering of three (or k) distributions
can be changed by rearranging an updated distribution among
two (or k-1) ordered distributions. The architecture for the
ordering network (k=3) is shown in Fig.8.

Fig.8. the ordering network

 From the Figure all unmatched ordered distributions are
compared with the updated one (3 in the Figure) based on
weights values. After this modification, the implemented
SPMD architecture uses only 181 CLB slices with the same
speed. This results in 13.4% ([209-181] ÷209) more reduction
in the area of the previous proposed SPMD architecture [20].

C. Data Flow Reduction
Dedicated hardware architecture, with a streamlined data

flow reduction scheme, is implemented to address the
computation capacity and chip input-output pins bottlenecks.
This is a large improvement to the previous proposed SPMD
architecture [20] which is shown in Fig.4. In this part, a
thorough description of the whole system architecture with
data flow reduction scheme is given.
 Each pixel has a series of corresponding distributions,
where are stored on off chip memories due to its size. The
processing blocks of all distributions for a single pixel are
implemented together in SPMD architecture, as shown in
Fig.4, to achieve a very high frame rate but this requires a
heavy computation capacity and input-output pins for the
parameters (mean µ and weight ω values) of the distributions.
The data flow can be reduced if only one distribution is
processed at a time and all distributions are processed in
pipeline through the same architecture. Here, off chip frame
distributions memory is divided into four banks as shown in

 Ordered

 Ordered

 Updated

 1

 2

 3

1

 Max

 Min

 Max

 Min 2

3

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 83

Fig.8. Bank0 stores the processed pixel value (Xp) and the
order code (Co) for the current processing pixel. The code Co
represents the decreasing order of distributions according to
weights (ω) and through it the distribution parameters are
streamed into FPGA in pipeline. Bank1, Bank2, and Bank3
store the three distribution parameters. Only one of the three
banks is enabled by R1, R2, R3 signals depending on the code
Co as shown in Fig.9 and the selected parameters (Ps) will be
flowed with FPGA.

Fig.8. organization of distributions memory

Fig.9. Distribution selection and pipeline order

A simplified conceptual block diagram of that single-pixel
single-distribution (SPSD) architecture is given in Fig.10 to
illustrate the data flow within the system. It consists of
Control_Unit, Matching_Unit, Decoder_Unit, and
Output_Unit blocks. The signals with the same names in
SPMD architecture have the same functions.

Fig.10. the structure of SPSD architecture

A Control_Unit as shown in Fig.11 consists of two blocks.
Mul_Clk_Unit block generates three different clocks/enables
(clk2,3,4) from the input clock clk1 as shown in Fig.12.
Switch_RAM block generates enable signals (R1,R2,R3) for
memory banks depending on the 3-bit code signal (C_in1,2,3)
to order the entrance of selected distributions. The pipeline
operation of the SPSD architecture requires four different
clocks/enables. clk1, clk2, and clk3 signals are used to enter
the selected mean (M_sel) and weight (W_sel) data from the
first, second, and third enabled distribution memory bank
respectively.

Fig.11. Control_Unit block

Fig.12. clocks/enables signals

Output_Unit block as shown in Fig.13 consists of six

blocks. In Updating_Control block, clk2, clk3, and clk4 are
used to generate a new mean (M_new) and weight (W_new)
data for the first, second, and third enabled distribution
memory bank respectively. Mean1_reg stores the mean value
of the first selected distribution. Two Match_reg blocks store
D_match and F_match signals for the first and second selected
distributions with clk2 and clk3 signals respectively. While
with clk4 signal: Processed_Clk block generates new
processed pixel (Previous_out) data and Fourground_Clk
block generates the foreground decision value.
 A Matching_Unit block as shown in Fig.14 consists of
Distribution_Matching_ Checker and Temporal_Difference
blocks with the same functions that are previously discussed
for SPMD architecture. A Decoder_Unit block as shown in
Fig.15 consists of three blocks. Two W_reg blocks store
weight values for the first and second selected distributions

 FPGA

 R1 R2 Ps R3

 Bank1 Bank3 Bank0

Xp
&
Co

µ1
&
ω1

µ2
&
ω2

µ3
&
ω3

 Bank2

Code
C1 C2 C3

Distribution
Sel. Order

 0 0 0
 0 0 1

 1 2 3
 1 3 2

 0 1 0
 0 1 1

 2 1 3
 2 3 1

 1 0 0
 1 0 1

 3 1 2
 3 2 1

 Clk1

Clk2

Clk3

Clk4

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 84

with clk2 and clk3 signals respectively. Reorder_Clk
generates the code Co (C_out1,2,3) signals that represents the
decreasing order of the updated weights (W_up1,2,3) as
shown Fig.9 and Ready_out_pixel signal to end the current
pixel processing.

Fig.13. Output_Unit block

Fig.14. Matching_Unit block

Fig.15. Decoder_Unit block

The implemented SPSD architecture using available
Spartan-II development system with Xilinx chip 2s200fg456
has 69.5 MHz maximum frequency and uses 75 CLB slices
with 3.19% utilization. The SPSD architecture has higher
speed and lower area than SPMD architecture. So, this system

is able to process images of size 768 x 576 at the same frame
rate as SPMD architecture with 38.6% reduction in number of
input-output pins.

D. Memory Access Reduction
To reduce heavy memory access incurred by accessing off

chip memory banks that store one frame of distributions, an
encoder and decoder blocks are designed by utilizing
distribution similarities in succeeding neighboring pixels as
shown in Fig.16. This is covered in this part.

Fig.16. similarity decoder/encoder

We classify “similar” distributions in the following way:

from the definition of a matching process, each distribution
can be simplified as a two dimensional rectangle (mean and
weight dimensions). The center of the rectangle is mean value
whereas the border to the center is specified by the matching
ratio R% off that mean. One way to measure the similarity
between two distributions is to check how much of the two
rectangles that overlap. If the overlap volume takes up certain
percentage of both rectangles, they are regarded as “similar”.
The whole idea is illustrated in Figure 17. The reason for such
criteria lies in the fact that a pixel that matches one
distribution will most likely match the other, if they have
enough overlapping volume. The percentage is an overlapping
ratio parameter that can be set to different values among
different situations.

Fig.17. distribution similarity as modeled by rectangle
overlapping

In the architecture, two similar distributions are treated as

equivalent. By only saving non overlapping distributions
together with the number of equivalent succeeding
distributions, memory bandwidth is reduced. Various
overlapping ratios are selected to evaluate the efficiency for
memory bandwidth reduction. With a low value where less

 3

 2

 3

 2

 Similar

 Decoder

 FPGA RAM
 Banks

M_sel, W_sel

 Encoder

M_new, W_new

 Overlap
ω1

ω2

 µ1 µ2

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 85

overlapping distributions are regarded as the same, more
savings could be achieved. However, more noise is generated
due to increasing mismatches in the matching block.
Fortunately, such noise is found non-accumulating and
therefore can be reduced by the morphological filtering. The
background pixels exhibit high similarity within neighboring
pixels. With foreground objects entering the scene, part of
distributions are replaced, which results in the decrease of
number of similar distributions. The trends will continue until
it reaches a certain point where most pixel locations contain a
foreground distribution. The decrease will flattens out in the
end. Figure 18 shows the results for different overlapping
ratios and achieved memory bandwidth reductions in lab
sequence. In this implementation, an overlapping ratio of 0.8
is selected, combined with word length reduction scheme, a
memory bandwidth reduction of over 60% is accomplished.

Fig.18. memory bandwidth reduction over overlapping ratio

V. CONCLUSION

High computation demand makes it difficult to use motion
detection algorithm for real-time applications using general
purpose processors. In this paper, a low cost and area efficient
FPGA-based implementation of a fast motion detection
algorithm has been presented to extract the moving objects
from image sequence of size 768 x 576 pixels at a very high
frame rate that reaches to 1130 fps which is adequate for most
real-time vision applications. It has been shown that the area
of the SPMD architecture [20] was reduced by 13.4% by
modifying the REORDER_DISTRIBUTIONS block.

Dedicated hardware architecture, with a streamlined data
flow and memory bandwidth reduction schemes, has been
implemented to address the computation capacity and memory
bandwidth bottlenecks. Data flow reduction of 38.6% has
been achieved by using the proposed SPSD architecture in
comparison to SPMD architecture [20] to enhance the
computational complexity. Also, a word length and memory
access reduction schemes have been proposed for the
architectures, resulting in more than 60% memory bandwidth
reduction.

REFERENCES
[1] C. Anderson, P. Burt, and G. van der Wal, "Change detection and

tracking using pyramid transformation techniques", in Proceedings of
SPIE. Intelligent Robots and Computer Vision, vol. 579, pp. 72-78,
1985.

[2] J. Barron, D. Fleet, and S. Beauchemin, "Performance of optical flow
techniques", International Journal of Computer Vision, vol. 12, pp. 42-
77, 1994.

[3] K. Belda, J. Böhm, "Range-space predictive control for optimal robot
motion", NAUN JOURNAL of CIRCUITS, SYSTEMS and SIGNAL
PROCESSING, Issue 1, Vol. 1, pp. 1-7, 2007.

[4] A. Kasinski and A. Hamdy, "Efficient Separation of mobile objects on
the scene from the sequence taken with an overhead camera". Proc. Int.
Conf. on Computer Vision and Graphics, Zakopane, vol. 1, pp. 425-430,
2002.

[5] Y. Ivanov, A. Bobick, and J. Liu, "Fast Lighting Independent
Background Subtraction". Technical Report no. 437, MIT Media
Laboratory, 1997.

[6] A. Kasinski and A. Hamdy, "Robust Classification of Moving Objects
Based on Rigidity Criterion using Region Growing of Optical Flow
Fields," Advanced Concepts for Intelligent Vision Systems, Ghent,
Belgium, pp.180-187, Sep.2003.

[7] G. Halevy and D. Weinshall, "Motion of disturbances: detection and
tracking of multi-body non-rigid motion", Machine Vision and
Applications, vol. 11, Issue 3, pp. 122-137, 1999.

[8] C. Stauffer and W.E.L. Grimson, "Learning Patterns of Activity Using
Real-Time Tracking". IEEE Trans. vol. 22, no. 8, pp. 747-757, 2000.

[9] W.E.L. Grimson, C. Stauffer, R. Romano, and L. Lee, "Using adaptive
tracking to classify and monitor activities in a site". Computer Vision
and Pattern Recognition (CVPR), p. 22, June 1998.

[10] P. W. Power and J.A. Schoonees, "Understanding Background Mixture
Models for Foreground Segmentation". Imaging and Vision Computing
New Zealand, Auckland, NZ, pp.267-271, Nov 2002.

[11] A. Raabe, B. Bartyzel, G. Zachmann, J. K. Anlauf, "Hardware
Accelerated Collision Detection -- An Architecture and Simulation
Results", WSEAS TRANSACTIONS on SYSTEMS, Issue 5, Vol. 3, pp.
2025-2030, July 2004.

[12] M. Correia, A. Campilho, “Real-time implementation of an optical flow
algorithm”, Proc. ICIP, Vol. 4, pp. 247-250, 2002.

[13] B. Horn, B. Schunck, “Determining optical flow”, Artificial Intelligence,
vol. 17, pp. 185-203, 1981.

[14] J. L. Martín, A. Zuloaga, C. Cuadrado, J. Lázaro, U. Bidarte, “Hardware
implementation of optical flow constraint equation using FPGAs”,
Computer Vision and Image Understanding, Vol.98, pp. 462-490, 2005.

[15] J. Díaz, E. Ros, F. Pelayo, E. M. Ortigosa, S. Mota, “FPGA-based real-
time optical-flow system”, IEEE Trans. Circuits and Systems for Video
Technology, Vol. 16, no. 2, pp. 274-279, Feb 2006.

[16] Yu, N., Kim, K., Salcic, Z. "A New Motion Estimation Algorithm for
Mobile Real-Time Videoand Its FPGA Implementation". IEEE
TENCON-2004, Chiang Mai, Thailand, 21-24, 2004.

[17] Joseph Poh. "Smart camera – an intelligent vision sensor", Dept. of
Electrical and Computer Engineering ELECTENG/COMPSYS/
SOFTENG Conference, Sept. 2005.

[18] G. Farnebäck, “Fast and accurate motion estimation using orientation
tensors and parametric motion models”, Proc. ICPR, vol.1, pp.135–139,
2000.

[19] Z.Y. Wei, D.J. Lee, B.E. Nelson, and M.A. Martineau, “A fast and
accurate tensor-based optical flow algorithm implemented in FPGA”,
IEEE Workshop on Applications of Computer Vision, pp.18-23, Austin,
Texas, USA, Feb. 2007.

[20] E.M. Saad, A. Hamdy, and M.M. Abutaleb, “ReconFigurable Hardware
Implementation of a Fast and Efficient Motion Detection Algorithm”,
10th WSEAS Int. Conf. MMACTEE'08, Sofia, Bulgaria, pp.40-45, May
2008.

[21] Arseneau, S. and Cooperstock, J.R. "Real-Time Image Segmentation for
Action Recognition". Proc. IEEE PACRIM, Pacific Rim Conference on
Computers, Visualization and Signal Processing, Victoria, pp.86-89,
Aug. 1999.

[22] Cobos, P., Monasterio F., "FPGA Board for Real Time Vision
Development Systems", 4th IEEE International Caracas Conference on
Devices, Circuits and Systems (ICCDCS), pp: 1-6, 2002.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 86

