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Maximal Invariant Sets of Multiple Valued Iterative
Dynamics in Disturbed Control Systems

Byungik Kahng

Abstract— Invariant set theory is an important tool in the control
theory. It has rich history that goes back over a century, yet it is still
an active research topic both in pure mathematics and theoretical
engineering. It is easy to reduce a traditional discrete-time control
dynamical system to an iterative dynamics of one endomorphism
in the phase space. It is not easy to do the same in the presence
of the disturbance. The purpose of this paper is to show that we
can overcome this difficulty using the dynamics of multiple valued
maps. First, we show that the dynamics of disturbed control systems
can be modeled by the multiple valued iterative dynamics. Second,
we define and study the invariant sets, the maximal invariant sets,
and the positively maximal invariant sets of the multiple valued
iterative dynamical systems. Finally, as an application, we study the
reachability problem of the maximal positively invariant sets of the
multiple valued iterative dynamical systems.

Keywords— Multiple valued dynamics, Control dynamical system
with disturbance, Maximal invariant set, Reachability, Controlability.

I. INTRODUCTION

THE invariant set theory of iterative dynamical systems is
an important topic in both pure and applied mathematics.

It is a classical topic that is as old as the dynamical systems
theory itself. See, for instance, [1] for the pure-mathematical
treatment of the invariant set theory in conjunction to classical
Lyapunov theory, which goes back to late 1800s. The history
of its applications to engineering is also rich. See, for example,
[10] for the survey of the invariant set theory written in
engineering perspective.

Recently, the invariant set theory came back as an active
research topic again, particularly in control and automation
theory [3], [9], [10], [14], [16], [18], [20], [21], [22], [23],
[26], [27], [28], [29], [31], [30], [32], and also, to a certain
degree, in robotics1 [8], [11], [12].

The specific problem that this article is most interested in
is the study of the maximal invariant sets of discrete-time
control dynamical systems. This is an important branch of
the invariant set theory with lots of applications [10]. Not
only does it appear in relatively dated problems like Model
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Predictive Control [21], [23], but also, in more up to date
topics such as Hybrid Systems [9], [22], [30], [31], [32] and
Control Systems with Disturbance [16], [20], [26], [28], [29].

The resurgence of the maximal invariance is also visible
in pure mathematics. The invariant sets and the invariant
properties have been (and still are) considered important topics
all over the pure mathematics. However, most of the pure
mathematical research had been concentrated upon the study
of specific invariant sets related to specific invariant properties,
rather than as a whole. It is relatively recent development that
one began to study the latter aspect of the invariant set theory
in pure mathematics.

The classical results about the maximal invariance in con-
junction to Lyapunov theory depend heavily upon the topo-
logical structure of the dynamical system (Theorem VII.1,
for instance) [1]. In recent years, however, a number of
significant progresses were made for the invariant set theory
of discontinuous dynamical systems, which is still in primitive
state by and large [4], [5], [6], [7], [13], [17], [18], [17], [19],
[24], [25].

The purpose of this article is the continuation of [19], which
was the author’s first attempt to connect the invariant set theory
of pure mathematics and that of control theory. [19] did not
consider disturbed control systems. Consequently, the control
dynamical systems discusses in [19] were somewhat dated, in
the viewpoint of engineering. We aim to improve this aspect
by including the disturbance.

The dynamical system that we are particularly interested in
is the discrete-time control dynamical system with disturbance.
As we will see in Section II, it is not difficult to reduce a
classical discrete-time time-invariant control dynamical system
(II.1) to an iterative dynamical system of one endomorphism
(II.2). It is not easy to do the same when there is disturbance.
We will overcome this difficulty by re-expressing the control
dynamical systems with disturbance as the multiple valued
iterative dynamical systems (Section IV). And then, we define
the maximal invariant sets (Definition V.1) and the locally
maximal positively invariant sets (Definition VI.3) for the
multiple valued iterative dynamical systems.

As an application, we study a reachability problem (aka
controlability problem) of the locally maximal positively in-
variant set (Section VIII). This is slightly different from the
classical reachability/controlability problems, although closely
related. Instead of looking for the set of reachable states
from a given set of initial states, or searching for the set of
initial states that produce the desired final states, we study the
conditions to design the control dynamical systems that the
locally maximal positively invariant sets are reachable. Also,
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we will rely heavily upon the infinite-step reachabillity, rather
than the traditional N -step reachability. Because we are trying
to reach sets instead of points, the discrete time dynamical path
from the starting set to the desired set (the locally maximal
positively invariant set) involve the iterative images and the
set operations. Also, by concentrating upon the infinite-step
reachabillity, we will investigate the conditions under which
the traditional N -step reachability problems and the resulting
approximation schemes are theoretically valid.

II. THE INVARIANT SET THEORY OF DISCRETE TIME
CONTROL DYNAMICAL SYSTEMS WITH NO DISTURBANCE

LET X be a set, which we will call the phase space.
Let us call the elements of X , the states. Let U be a set,

whose elements we will call the control variables. A discrete-
time time-invariant control dynamical system is an iterative
dynamical system given by a pair of maps,{

F : (xk, uk) 7→ xk+1,

G : xk 7→ uk,
(II.1)

where xk ∈ X (the k-th state of the system) and uk ∈ U (the
control input) [21]. The map F : X ×U → X represents the
dynamics of this system. The map G : X → U is called the
feedback control law [10], [21]. Given initial state x0 ∈ X ,
the sequence (x0, x1, x2, · · · ) is called the (forward) orbit of
x0.

Due to the time-invariance, the input variable uk depends
only on the current state xk. Therefore, the feedback control
map G : xk → uk is well defined, in this case. Hence, we can
reduce the control dynamical system (II.1), as the iterative
dynamics of one endomorphism, f : X → X , where

f : x→ F (x,G(x)). (II.2)

Consequently, the control invariant sets and the positive
control invariant sets of the system (II.1) can be expressed
in terms of the iterated function system of the endomorphism
(II.2) as follows.

Definition II.1. Let X be a non-empty set (phase space) and
f : X → X be an endomorphism. We say S ⊂ X is invariant
under the iteration of f , if f(S) = S. We say S ⊂ X is
positively invariant under the iteration of f , if f(S) ⊂ S.

The importance of the invariant sets and the positively
invariant sets is well documented. See, for instance, [10] for an
extensive survey of the invariant set theory and its applications
to the control and automation theory.

Let us now turn our attention to the maximal invariant
set. The definition of the maximal invariant set differs from
one author to another. It had been defined as the intersection
of all the intersection of all the iterates of the whole space
([6], [13], for instance), the smallest (in terms of the set-
inclusion) set that includes all the invariant sets ([24], for
example), and the largest (again, in terms of the set-inclusion)
invariant set [3], [10], [16], [20], [21], [23], [26], [27], [28],
[29]. Each method has its advantages and disadvantages. The
first method is problematic in that the intersection of all the
iterates of the whole space is not invariant in general [17],

[19], [24]. The second method is difficult handle, because it
requires the axiom of choice (via Zorn’s Lemma) [15]. Also,
it is not obvious that the maximal invariant set defined as
such is indeed invariant. The third method is most popular in
engineering, but it is not always clear that such a set exists.
This issue becomes even more problematic if the control
system gets more complicated. In this paper, we follow the
method developed in the author’s earlier articles, [17], [18],
[19].

Definition II.2. Let X be a non-empty set (phase space) and
f : X → X be an endomorphism. We define the maximal
invariant set M(X) of f as the union of all invariant subset
of X . That is,

M(X) =
⋃
{S ⊂ X : f(S) = S}.

The existence of M(X) and its maximality are obvious
from the definition. WhetherM(X) is indeed invariant or not
is a potential problem. We will resolve this issue by proving
stronger theorem in Section V (Theorem V.2).

Note that we did not define the maximal positively invariant
set. The reason is because the maximal positively invariant set
is always the whole space X , and consequently not worthy
of new name. It makes sense to study the maximal positively
invariant sets, however, if appropriate localization is done.

A positively invariant set acts like a whole space of a sub-
dynamical system. Indeed, it is but a trivial observation to see
that the iterative dynamical system given by the endomorphism
f : X → X has a sub-dynamical-system f |Y : Y → Y if
and only if Y is positively invariant set. However, we must
often consider the dynamics within a set of all allowed states
Y ⊂ X , which is not positively invariant. In a flood-control
system, for instance, it is necessary that the water-level must
stay below the flood level all the time. In such a case, we
must find the orbits that stay within Y all the time (xk ∈ Y
for all k = 0, 1, 2, · · · ), and those that do not. The invariant
set theory in this case must also reflect this adjustment, which
we will call localization.

Definition II.3. Let X be a non-empty set (phase space) and
f : X → X be an endomorphism. Given non-empty subset
Y ⊂ X , we define the locally maximal invariant subset
M(Y ) of f |Y as the union of all invariant subsets of Y . That
is,

M(Y ) =
⋃
{S ⊂ Y : f(S) = S}.

Similarly, we define locally maximal positively invariant
subsetM+(Y ) of f |Y as the union of all positively invariant
subsets of Y . That is,

M+(Y ) =
⋃
{S ⊂ Y : f(S) ⊂ S}.

Definition II.3 has the same problem as Definition II.2.
It is obvious that M(Y ) and M+(Y ) contain all the in-
variant subsets and all the positively invariant subsets of Y ,
respectively. It is not so obvious, however, whether M(Y )
is invariant and M+(Y ) is positively invariant, respectively.
Again, we will resolve this difficulty by proving stronger
statement (Proposition VI.4).
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The final topic of this section is to establish the equivalence
between our definition of the locally maximal positively in-
variant set (Definition II.2) and another well known definition
[14], [21].

Proposition II.4. Let X be a non-empty set and f : X → X
be an endomorphism. Let Y be a non-empty subset of X .
Then, x0 ∈ M+(Y ) if and only if xk = fk(x0) ∈ Y for all
k = 0, 1, 2, · · · .

Proof. A stronger version of Proposition II.4 will be presented
in Section VI (Theorem VI.5).

III. DISCRETE TIME CONTROL DYNAMICAL SYSTEMS
WITH DISTURBANCE

WHEN there is disturbance, the control dynamical sys-
tem is not time-invariant in general. The disturbance

to a given state does not apply the same way all the time,
or it is not a disturbance at all. Consequently, in the control
dynamical system of form (II.1), neither

G : xk 7→ uk, G : X → U

nor
F : (xk, uk) 7→ xk+1, F : X × U → U

is well defined under the presence of the disturbance. That is,
xk does not always determine uk uniquely, and also (xk, uk)
does not determine xk+1 uniquely in general.

One way to overcome this difficulty is to bring in some
extra independent variables to perturb the dynamics F and the
feedback control G of the control system (II.1). As a result,
we get {

Fw : (xk, uk, wk) 7→ xk+1,

Gv : (xk, vk) 7→ uk,
(III.1)

where uk ∈ U and xk ∈ X are as in the time-invariant control
system (II.1), while vk ∈ V and wk ∈W are the disturbance
variables. This is slightly more expansive approach than the
traditional method considered in, say [20], [29], in that the
feedback control map G is also disturbed. Due to the presence
of the disturbance vk and wk, the system (III.1) is no longer
time-invariant. It still remains sequential, however.

Another well known method is to regard all the maps and
variables time-dependent. That is,{

Ft : (x(t), u(t), t) 7→ x(t+ 1),
Gt : (x(t), t) 7→ u(t).

(III.2)

See, for example, [26] for the approach similar to (III.2).
Again, we followed slightly more expansive approach than
the method considered in [26]. A part of the reason is because
we wish to present more general form of the time-dependent
control system. Another part is because we are not aiming to
do any optimization or computation, and thus no simplification
is necessary. The method given by (III.2) can be readily
extended to the continuous-time dynamics, which results in the
flow [2] in the phase space. We will not consider continuous-
time dynamics in this paper, however.

In this paper, we choose somewhat different path. We will
allow F , G, and consequently, f to be multiple valued, much

like the approach discussed in [3]. The precise definition of
the multiple valued map will be given in the next section
(Definition IV.1).

One of the main advantages of this approach is that we can
separate the dynamics part and the control part. The orbit of
the multiple valued dynamical system gives us the set of all
possible outcomes, for given initial state(s) and given iteration.
Naturally, we must consider the dynamics of the sets rather
than that of the states. The decision and control functions
will change the states, but only within the image sets of the
multiple valued dynamics.

IV. MULTIPLE VALUED ITERATIVE DYNAMICAL SYSTEMS

WE begin this section with the precise definition of the
multiple valued map.

Definition IV.1. Let X , Y be non-empty sets and P(X),
P(Y ) be their power sets. We say a set function f : P(X)→
P(Y ) is a multiple valued map (function) from X to Y if

f(S) =
⋃
{f(x) : x ∈ S}, (IV.1)

for all S ⊂ X . In particular, if X = Y , we will call
f : P(X) → P(X) that satisfies (IV.1), a multiple valued
endomorphism in X .

Note that we used the abbreviated notation f(x) instead
of f({x}) in the equality (IV.1). Indeed, it is customary to
identify the singletons and points, when dealing with the set
functions.

The idea of multiple valued map allows us to express a
discrete-time control dynamical system with disturbance (III.1)
to an iterative dynamics of a multiple valued endomorphism,
f : P(X) → P(X) in X , as we did in (II.2) for a time-
invariant system (II.1). Here, f(x) represents the set of all
possible outcomes, when the initial state is x. Let us elaborate
this idea as the following proposition.

Proposition IV.2. Let U , V , W and X be non-empty sets.
Then the set function f : P(X)→P(X) given by

f(S) = {F (x,G(x, v), w) : v ∈ V,w ∈W,x ∈ S},

where F : X × U ×W → X and G : X × V → X , is a
multiple valued endomorphism in X .

Proof. Given S ⊂ X , we have

f(S) = {F (x,G(x, v), w) : x ∈ S,w ∈W}

=
⋃
x∈S
{F (x,G(x, v), w) : w ∈W}

=
⋃
x∈S

f(x).

Hence, the equality (IV.1) follows.

Proposition IV.2 tells us that any control system given by
(III.1) can be expressed as an iterative dynamics of a multiple
valued endomorphism f : P(X)→P(X) in the phase space
X , consequently making the latter more general way to express
a control dynamical system with disturbance.
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We can do the same to the disturbed control dynamical
system modeled by (III.2).

Proposition IV.3. Let T , U and X be non-empty sets. Then
the set function f : P(X)→P(X) given by

f(S) = {F (x,G(x, t), t) : t ∈ T, x ∈ S},

where F : X × U × T → X and G : X × T → X , is a
multiple valued map from X to itself.

Proof. Given S ⊂ X , we have

f(S) = {F (x,G(x, t), t) : x ∈ S, t ∈ T}

=
⋃
x∈S
{F (x,G(x, t), t) : t ∈ T}

=
⋃
x∈S

f(x).

Hence, the equality (IV.1) follows as before.

From Proposition IV.2 and Proposition IV.3, we conclude
that the iterative dynamics of a multiple valued endomorphism
f : P(X)→P(X) provides more general method to model
the discrete-time control dynamical systems with disturbance.
Let us call it, the multiple valued iterative dynamical system
(MVIDS).

Furthermore, note that the MVIDS is not too general for our
purpose. Because each element of f(x) is a possible outcome
that we must account for, in a sense that each y ∈ f(x) can
be attained by a certain disturbance (v ∈ V and w ∈ W , or
the disturbance at a given time t ∈ T ). For the rest of this
paper, therefore, let us study the MVIDS as the model of the
discrete-time control dynamical systems with disturbance.

V. THE MAXIMAL INVARIANT SETS OF MULTIPLE
VALUED ITERATIVE DYNAMICAL SYSTEMS

FROM this point on, we concentrate ourselves only upon
the discrete-time control dynamical systems with distur-

bance, expressed as the multiple valued iterative dynamical
systems (MVIDS). First, we define the invariant set and the
maximal invariant set.

Definition V.1. Let X be a non-empty set and P(X) be its
power set. Let f : P(X) → P(X) be a multiple valued
endomorphism in X . We say S ⊂ X is invariant under f if
f(S) = S. We define the maximal invariant set M(X) of
f : X → X as the union of all invariant subsets of X . That
is,

M(X) =
⋃
{S ⊂ X : f(S) = S}. (V.1)

The following theorem supplements Definition V.1. It
proves thatM(X) defined in Definition V.1 is indeed invariant
and maximal.

Theorem V.2. Let X , P(X), f and M(X) be as in Defini-
tion V.1. Then,M(X) is the largest (in terms of the inclusion)
invariant set under f .

Proof. It is clear from the definition that M(X) contains all
the invariant subsets of X . We need only to prove thatM(X)
is indeed invariant. That is,

f(M(X)) =M(X). (V.2)

From IV.1, we must have

f(M(X)) =
⋃
{f(x) : x ∈M(X)}.

Therefore, for all y ∈ f(M(X)), there must be a certain
x ∈M(X) such that y ∈ f(x). Now, from the equality (V.1),
we get

x ∈ S, f(S) = S,

for some S ⊂M(X). Consequently,

y ∈ f(x) ⊂ f(S) = S ⊂M(X).

This holds for all y ∈ f(M(X)). Hence,

f(M(X)) ⊂M(X). (V.3)

This proves a half of the set equality (V.2).
We now turn our attention to the other half of the equality

(V.2). Choose any x ∈M(X). Then, from the equality (V.1),

x ∈ S = f(S),

for some S ⊂ X . Now, from the equality (IV.1), x ∈ f(z), for
some z ∈ S ⊂ M(X). Consequently, x ∈ f(M(X)). This
holds for every x ∈M(X). Hence,

M(X) ⊂ f(M(X)). (V.4)

This proves the other half of the equality (V.2).
Combining the equalities (V.3) and (V.4), we get the invari-

ance condition (V.2).

Note that Theorem V.2 supplements Definition II.2 as well.
Note also that Theorem V.2 justifies the naive definition of the
maximal invariant set, the invariant subset of X that includes
all other invariant sets, which appears in many engineering
papers [10], [16], [21], [27], [29].

VI. THE LOCALLY MAXIMAL POSITIVELY INVARIANT
SETS OF MULTIPLE VALUED ITERATIVE DYNAMICS

IN the control theory, positively invariant sets are often
more useful than the invariant sets, and consequently more

widely studied. In a positively invariant set S ⊂ X , the
iterative dynamics of the endomorphism f : X → X can be
regarded as the whole space of a sub-dynamical-system given
by the restricted map f |S : S → S. Let us establish the same
with respect to the MVIDS.

Definition VI.1. Let X , P(X) and f be as in Definition V.1.
We say S ⊂ X is positively invariant under the iteration of
f if f(S) ⊂ S.

In the viewpoint of the discrete-time control dynamical sys-
tems with disturbance, one can express the positive invariance
given by Definition VI.1 as follows.

Remark VI.2. S is positively invariant set of a discrete-time
control dynamical system with disturbance if and only if every
possible outcome of each state of S is contained in S.

This approach is useful in predictive control, where one
wished to ensure particular outcome(s) must be attained.
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The locally maximal invariant sets and the locally maximal
positively invariant sets of the MVIDS can be defined as
follows.

Definition VI.3. Let X , P(X) and f be as in Definition
V.1. Given non-empty subset Y of X , we define the locally
maximal invariant subset M(Y ) of Y as the union of all
invariant subsets of Y . That is,

M(Y ) =
⋃
{S ⊂ Y : f(S) = S}. (VI.1)

Similarly, we define the locally maximal positively invariant
subset M+(Y ) of Y as the union of all positively invariant
subset of Y . That is,

M+(Y ) =
⋃
{S ⊂ Y : f(S) ⊂ S}. (VI.2)

It is easy to see thatM+(Y ) = Y if and only if f(Y ) ⊂ Y .
In particular, M+(X) = X . It is when Y is not positively
invariant, the characterization ofM+(Y ) gets complicated and
meaningful.

The following proposition generalizes Theorem V.2 for
M(Y ) and M+(Y ), respectively.

Proposition VI.4. Let X , P(X), f and Y be as in Definition
II.3. Then, M(Y ) is the largest invariant set contained in Y ,
and M+(Y ) is the largest positively invariant set contained
in Y .

Clearly,M(Y ) andM+(Y ) include all the invariant subsets
and all the positively invariant subsets of Y , respectively. One
needs to prove the invariance and the positive invariance only.

The Proof of f(M(Y )) =M(Y ). This proof of analogous to
that of Theorem V.2. We have only to make sure x ∈ S ⊂ Y .
We leave the detail to the readers.

The Proof of f(M+(Y )) ⊂M+(Y ). This proof is also anal-
ogous to that of Theorem V.2. We need to prove only one
direction, using slightly weaker condition. That is,

x ∈M+(Y ) =⇒ x ∈ S ⊂ Y, f(S) ⊂ S ⊂M+(Y )
=⇒ ∀y ∈ f(x) ⊂ f(S) ⊂ S ⊂M+(Y )
=⇒ f(x) ∈M+(Y ).

Therefore, M+(Y ) ⊂ M+(Y ). Note that the weakened
condition, f(S) ⊂ S was used in the second line, in place
of f(S) = S of the proof of Theorem V.2.

The maximal positively invariant set can be characterized
alternatively as follows.

Theorem VI.5. Let X , P(X), f and Y be as in Definition
II.3. Then, x ∈ M+(Y ) if and only if fk(x) ⊂ Y for all
k = 0, 1, 2, · · · .

Proof. First, suppose that x ∈ M+(Y ). That is, there exists
a certain S ⊂ Y such that

x ∈ S ⊂ Y, f(S) ⊂ S. (VI.3)

Applying f to (VI.3), we get

f(x) ⊂ f(S) ⊂ S ⊂ Y. (VI.4)

In particular, f(x) ⊂ S. Applying f again, therefore, we get

f2(x) ⊂ f(S) ⊂ S ⊂ Y. (VI.5)

Continuing this process, we get

f3(x) ⊂ f(S) ⊂ S ⊂ Y, (VI.6)

f4(x) ⊂ f(S) ⊂ S ⊂ Y,
... ⊂

...

Hence, from (VI.3) – (VI.6), we conclude that fk(x) ⊂ Y for
all k = 0, 1, 2, · · · .

Conversely, let x ∈ Y such that fk(x) ⊂ Y for all k =
0, 1, 2, · · · . Define the subset S of Y by

S =
∞⋃
k=0

fk(x).

The elements of S consists of the elements of each fk(x).
That is,

y ∈ S ⇐⇒ y ∈ fk(x), ∃k ∈ {0, 1, 2, · · · }.

Therefore, for each y ∈ S,

f(y) ∈ f(fk(x)) = fk+1(x) ⊂ S,

for some k = 0, 1, 2, · · · . Therefore, f(S) ⊂ S. Consequently,
S ⊂M+(Y ). Hence, we must have

x ∈ f0(x) ⊂ S ⊂M+(Y ).

That is, the converse is also true.

Note that Theorem VI.5 is the multi-variable version of
Proposition II.4, and that the latter follows immediately from
the former as a corollary.

The definition of the positive invariant set and the maximal
positively invariant set in Definition VI.3 are sometimes a
little problematic for the multiple valued iterative dynamical
systems. We can have completely different results if we use
different notion of positive invariance. In this paper, we defined
the positive invariant set of the multiple valued map through
f(S) ⊂ S. That is, every state x in S must produce the
output in S, as we emphasized in Remark VI.2. It is possible
to consider an alternative notion of the positive invariance.
That is, every state x ∈ S can yield the outcome in S. That
is, f(S) ∩ S 6= ∅. In this paper, we consider only the first
case, primarily because it is easier. We will come back to this
discussion in Section IX.

VII. THE REACHABILITY PROBLEM OF THE MAXIMAL
AND THE LOCALLY MAXIMAL INVARIANT SETS

AS the applications of the MVIDS of the discrete-time
control dynamical system with disturbance, we study two

types of reachability problems. These reachability problems
are slightly different from the traditional reachablity problems.
Instead of looking for the set of reachable states from a given
set of initial states, or searching for the set of initial states
that produce the desired final states, we study the conditions
to design the control dynamical systems that the maximal,
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the locally maximal, and/or the locally maximal positively
invariant sets are reachable, possibly in infinite steps.

In this section, we provide a survey of the reachability prob-
lems of the maximal and the locally maximal invariant sets.
The reachability problems of the locally maximal positively
invariant sets will be discussed in the next section (Section
VIII).

The answers to the infinite-step reachability problems of
the maximal and the locally maximal invariant sets of a
single valued iterative dynamical system are known, if the
phase space X is compact and the map f : X → X is
continuous. First, let us state the classical result about the
maximal invariance.

Theorem VII.1. Let X be a non-empty compact topological
space and f : X → X be a continuous endomorphism. Then,

M(X) =
∞⋂
k=0

fk(X). (VII.1)

Proof. See [1]. See, also, [13], [19], [24].

The following theorem extends Theorem VII.1.

Theorem VII.2. Let X be a non-empty topological space and
let f : X → X be an endomorphism. Suppose that Y is a
non-empty compact subspace of X and f |Y : Y → X is
continuous. Then,

M(Y ) =
∞⋂
k=0

fk(Y ). (VII.2)

Proof. See [19].

Theorem VII.1 and Theorem VII.2 provide the theoretical
background of the finite-step approximate control problems
and their optimization, for the maximal, and the locally
maximal invariant sets. Because f(X) ⊂ X , the equality
(VII.1) can be rewritten in the following form,

X ⊃ f(X) ⊃ f2(X) ⊃ f3(X) ⊃ · · · →M(X), (VII.3)

which allows us to consider the finite-step approximation
problem,

fN (X) ≈ lim
n→∞

fn(X) =M(X). (VII.4)

Similarly, we can re-express (VII.2) as,

Y 0 ⊃ Y 1 ⊃ Y 2 ⊃ Y 3 ⊃ · · · →M(Y ), (VII.5)

where

Y 0 = Y, Y k = Y k−1 ∩ f(Y k−1). (VII.6)

Consequently, we get the following N -step approximation
problem.

Y N ≈ lim
n→∞

Y n =M(X). (VII.7)

The second approximate control problem (VII.5) – (VII.7)
and its variations are important research problems that are
being actively studied nowadays. See, for instance, [16], [20],
[27], [28], [29] and the references therein.

If we relax the continuity condition, however, the reach-
ability problems of the maximal, and the locally maximal
invariant sets get extremely complicated. It was discovered

first in [24] that the equality (VII.1) does not hold in general
if the dynamics is allowed to be discontinuous. Later, it was
discovered that it can take uncountable ordinal number of
iterations to reach the maximal invariant set, if the dynamics
is almost continuous (but discontinuous nonetheless) [17].

Theorem VII.3. Let X be a non-empty set and f : X → X be
an endomorphism. Then, there exists a unique ordinal number
ξ such that

X+
0 ) X+

1 ) · · · ) X+
ξ =M(X),

where

X+
0 = X,

X+
ξ =

∞⋂
k=0

fk(X+
ξ−1), if ξ is a successor ordinal,

X+
ξ =

⋂
η<ξ

X+
η , if ξ is a limit ordinal.

We call the ordinal number ξ, the maximal invariance order
of f : X → X .

Proof. See [17].

Theorem VII.4. Given ordinal number ξ, we can construct a
compact metric space X and a piecewise continuous endomor-
phism f : X → X with the maximal invariance order ξ, which
is almost continuous with respect to every Baire measure on
X .

Proof. See [17].

Theorem VII.3 tells us that the reachability problem of any
maximal invariant set is well posed, provided that we are
allowed to take trans-finite steps. Theorem VII.4, on the other
hand, tells us that the reachability problem of discontinuous
dynamics can be made to as complicated as one wishes to.
These theorems effectively block out any attempt to expand the
reachablity problems of the maximal and the locally maximal
invariant sets, by asserting that even the simpler, single valued
cases cannot be resolved in countable steps of iterations.

VIII. THE REACHABILITY PROBLEM OF THE LOCALLY
MAXIMAL POSITIVELY INVARIANT SETS

IN this section, we study the reachability problem of the
locally maximal positively invariant sets of the MVIDS.

This problem is notably simpler than that of the maximal
and the locally maximal invariant sets, at least for the single
valued iterative dynamical systems. It is known that any locally
maximal positively invariant set M+(Y ) is reachable from
Y , possibly in infinite steps, if the dynamics is single valued.
This result does not depend upon the topological structure of
X and/or f , in contrast to Theorem VII.1 and Theorem VII.2.
See, for example, [19]. See also, [10] for essentially the same
results stated in terms of control dynamical systems of form
(II.1).

In this paper, we establish an analogous result for the
multiple valued iterative dynamical systems.
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Theorem VIII.1. Let X , P(X), f : P(X) → P(X) and
Y ⊂ X be as in Definition VI.3. Then,

M+(Y ) =
∞⋂
k=0

f−k(Y ), (VIII.1)

where

f−k(Y ) =
⋃
{x ∈ X : fk(x) ⊂ Y }. (VIII.2)

Before proving Theorem VIII.1, let us examine its impor-
tance in control theory first. We can use the argument similar to
(VII.5) – (VII.7) to re-express Theorem VIII.1 in the following
fashion.

Y 0 ⊃ Y −1 ⊃ Y −2 ⊃ Y −3 ⊃ · · · →M+(Y ), (VIII.3)

where

Y 0 = Y, Y −k = Y −(k−1) ∩ f−1(Y −(k−1)), (VIII.4)

for k = 1, 2, 3, · · · . Consequently, we get the N -step approx-
imation problem,

Y −N ≈ lim
n→∞

Y −n =M+(Y ). (VIII.5)

Hence, we conclude that Theorem VIII.1 provides the theo-
retical background behind the finite-step approximate control
problems (VIII.3) – (VIII.5) and their optimization, for the
locally maximal positively invariant sets of the discrete-time
control dynamical systems with disturbance.

Proof of Theorem VIII.1. First, we show

M+(Y ) ⊂
∞⋂
k=0

f−k(Y ). (VIII.6)

Choose any y ∈ M+(Y ). That is, y ∈ S for some S ⊂ Y
such that

f(S) ⊂ S ⊂ Y. (VIII.7)

Taking the pre-image of f , we get

S ⊂ f−1(S) ⊂ f−1(Y ).

Hence, from (VIII.7), we get

f(S) ⊂ S ⊂ f−1(Y ).

Taking the pre-image again, we get

S ⊂ f−1(S) ⊂ f−2(Y ).

Therefore, from (VIII.7) again, we get

f(S) ⊂ S ⊂ f−2(Y ).

Repeating the same argument, we get

S ⊂ f−k(Y ), k = 1, 2, 3, · · · .

Consequently,

y ∈ S ⊂
∞⋂
k=0

f−k(Y ).

This holds for all y ∈ M+(Y ). Hence, the set inequality
(VIII.6) follows.

Now, lets us prove the other direction,
∞⋂
k=0

f−k(Y ) ⊂M+(Y ). (VIII.8)

It is sufficient to prove that the former set is positively
invariant, because the latter set includes all positively invariant
subsets of Y . Choose any element x such that

x ∈
∞⋂
k=0

f−k(Y ). (VIII.9)

Then,
fk(x) ⊂ Y, k = 0, 1, 2, · · · ,

and thus,

fk−1(f(x)) ⊂ Y, k = 1, 2, 3, · · · .

Consequently, we get

f(x) ⊂ f−k(Y ), k = 0, 1, 2, · · · .

This holds for every x that satisfies (VIII.9). Hence,

f

( ∞⋂
k=0

f−k(Y )

)
⊂
∞⋂
k=0

f−k(Y ).

This proves (VIII.8).

IX. CONCLUSION AND DISCUSSION

THE main purpose of this paper was to describe how
we can reduce the invariant set theory of the control

dynamical systems with disturbance to that of the multiple
valued iterative dynamical systems (MVIDS). This was done
in Section II - Section VI. As an application, we studied
the reachability problem of the locally maximal positively
invariant sets in Section VIII.

The reachability problem we studied in the last section is
still an on-going and constantly changing topic. The biggest
problem to the definitions we selected is that it is difficult
to track down the previous state that does not always yield
the desired outcome. That is, if we take the definition of the
pre-image (predecessor) set as

f−1(S) = {x ∈ X : f(x) ∩ S 6= ∅}, (IX.1)

instead of

f−1(S) = {x ∈ X : f(x) ⊂ S}, (IX.2)

as we did in Theorem VIII.1, the outcome of Theorem VIII.1
can become different.

The pre-image set defined by the equality (IX.1) represents
the set of all states x that may cause a certain output y ∈ S
(y ∈ f(x)∩S). The pre-image set given by the equality (IX.2),
on the other hand, stands for the set of all states x that must
yield the output in S (y ∈ f(x) ⊂ S). It is somewhat unclear,
at this moment, how to deal with the reachability problems for
the pre-image operation (predecessor operation), given by the
equality (IX.1). We conjecture, though, it is closely related to
the selection of the positive invariance, which we discussed at
the end of Section VI. We conclude this paper leaving this as
a challenge for the future research of the invariant set theory
for the control dynamical systems with disturbance.
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