

Abstract—This paper proposes Genetic Algorithms (GAs) for

path Autonomous Mobile Vehicle (AMV). This approach has an

advantage of adaptivity such that the GA works perfectly even if an

environment is unknown. First, we present a software implementation

GA path planning in a terrain. The results gotten of the GA on

randomly generated terrains are very satisfactory and promising .

Second, we discuss extensions of the GA for solving both paths

planning and trajectory planning using a Single Static Random

Access Memory (SRAM) for Field Programmable Gate Array

(FPGA). This new design methodology based upon a VHDL

description of the path planning has the two (02) advantages : to

present a real autonomous task for mobile robots, and being generic

and flexible and can be changed at the user demand. The results

gotten are promising.

Keywords—Autonomous Mobile Vehicle (AMV), FPGA

implementation, Genetic Algorithm (GA) , and VHDL Simulation.

I. INTRODUCTION

Autonomous robots which work without human operators are

required in robotic fields. In order to achieve tasks, autonomous

robots have to be intelligent and should decide their own action.

When the autonomous robot decides its action, it is necessary to plan

optimally depending on their tasks. More, it is necessary to plan a

collision free path minimizing a cost such as time, energy and

distance. When an autonomous robot moves from a point to a target

point in its given environment, it is necessary to plan an optimal or

feasible path avoiding obstacles in its way and answer to some

criterion of autonomy requirements such as : thermal, energy, time,

and safety for example. thermal, energy, time, and safety for

example. Therefore, the major main work for path planning for

autonomous mobile robot is to search a collision free path.

Many works on this topic have been carried out for the path

planning of autonomous mobile robot.

Motion planning is one of the important tasks in intelligent

control of an autonomous mobile robot . It is often

decomposed into path planning and trajectory planning. Path

planning is to generate a collision free path in an environment

with obstacles and optimize it with respect to some criterion.

Trajectory planning is to schedule the movement of a mobile

robot along the planned path . A wide variety of approaches

have been considered, but these can broadly be categorized

into on-line and off-line techniques. However, few algorithms

have been developed for on-line motion planning in a time-

varying or unknown.

Previous research on the path planning can be classified as

following one of two approaches: model-based and sensor –

based. In general, the model-base approach considers obstacle

avoidance globally it uses prior models to describe known

obstacles completely in order to generate a collision free path.

In contrast, the sensor-based approach aims to detect and

avoid unknown .

A robotic vehicle is an intelligent mobile machine capable

of autonomous operations in structured and unstructured

environment, it must be capable of sensing (perceiving its

environment), thinking (planning and reasoning), and acting

(moving and manipulating). But, the current mobile robots do

relatively little that is recognizable as intelligent thinking, this

is because:

1) 1) Perception does not meet the necessary standards.

2) 2) Much of the intelligence is tied up in task specific behavior

3) and has more to do with particular devices and missions than

4) with the mobile robots in general.

5) 3) Much of the challenge of the mobile robots requires

6) intelligence at subconscious level.

A robotic systems capable of some degree of self-

sufficiency is the overall objective of an AMR and are

required in many fields [2,3]. The focus is on the ability to

move and on being self-sufficient to evolve in an unknown

environment for example. Thus, the recent developments in

autonomy requirements, intelligent components, multi-robot

systems, and massively parallel computer have made the AMR

very used, notably in the planetary explorations, mine industry,

and highways [1,9,10,11,12,13].

This paper deals with the intelligent path planning of AMR

 in an unknown environment, by applying the principles of the

genetic algorithms. The aim of this paper is to develop an AMR

 for the AMR stationary obstacle avoidance to provide them

more autonomy and intelligence .This technology GA based

on intelligent computing as becoming useful as alternate

approach may be able to replace the classical approaches such

as: recognition, learning, decision-making , and action (the

principle obstacle avoidance problems). This approach can be

realized in efficient manner and has proved to be superior to

combinatorial optimization techniques, due to the problem

complexity.

Recently, applications of genetic algorithms to path

Planning or trajectory planning have been recognized. GA is a

search strategy using a mechanism analogous to evolution of

 The Proposed Genetic FPGA Implementation

 For Path Planning of Autonomous Mobile Robot

O.Hachour

A

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 151

life in nature. The GAs, which are evolutionary have recently

emerged from study of the evolution mechanisms and are

searching strategies suitable for finding the globally optimal

solution in a large parameter space. They are based on learning

mechanisms. It has widely been recognized that GA works

even for complex problems such that traditional algorithms

cannot find a satisfactory solution within a reasonable amount

of time.

To benefit from using such technology, another

technological advance in hardware has revealed the soft-

computing in order to give a high speed processing that could

be provided through massively parallel implementation

management and so more autonomy requirements such as

power, thermal and communication management are obtained

in real time. GA approach can be implemented either in

analogue or digital way. Analog circuits are sensitive to noise

and temperature changes and inter-chip variations make

manufacturing functionally identical circuits very difficult.

Digital integrated circuits, on the other hand, is easily

manufactured and are functionally identical. Nowadays, FPGA

are gaining momentum in digital design. They are used for a

wide range of application including rapid prototype, glue logic

for microprocessor, and hard–wired simulation. Moreover, the

FPGA circuit offers attractive features for hardware designer

in comparison with other VLSI techniques. Then, this new

design methodology of FPGA offers more performance than

the software implementation (an easiness of implementation,

shortest possible time, and rapid execution by AMR)

[9,10,11,12,13]. In this paper, we discuss the possibility to

deal with hurdle by proposing a new approach permitting the

mapping of an entire navigation approach (planning, intelligent

control for obstacle avoidance) into a single Xilinx’s.

II. ROBOTS AND MOTION PLANNING

A Necessity of Intelligent Autonomous Robot

A robot is a "device" that responds to sensory input by

running a program automatically without human intervention.

Typically, a robot is endowed with some artificial intelligence

so that it can react to different situations it may encounter. The

robot is referred to be all bodies that are modeled

geometrically and are controllable via a motion plan. A robotic

vehicle is an intelligent mobile machine capable of

autonomous operations in structured and unstructured

environment. It must be capable of sensing thinking and

acting. The mobile robot is an appropriate tool for

investigating optional artificial intelligence problems relating

to world understanding and taking a suitable action, such as ,

planning missions, avoiding obstacles, and fusing data from

many sources.

Industrial robots used for manipulations of goods; typically

consist of one or two arms and a controller. The term

controller is used in at least two different ways. In this context,

we mean the computer system used to control the robot, often

called a robot work-station controller. The controller may be

programmed to operate the robot in a number of way; thus

distinguishing it from hard automation. The controller is also

responsible for the monitoring of auxiliary sensor that detect

the presence, distance, velocity, shape, weight, or other

properties of objects. Robots may be equipped with vision

systems, depending on the application for which they are used.

Most often, industrial robot are stationary, and work is

transported to them by conveyer or robot carts, which are often

called autonomous guided vehicles (AGV). Autonomous

guided vehicles are becoming increasingly used in industry for

materials transport. Most frequently, these vehicles use a

sensor to follow a wire in the factory floor. Some systems

employ an arm mounted on an AGV.

Robot programmability provides major advantages over

hard automation. If there are to be many models or options on

a product, programmability allows the variations to be handled

easily. If product models change frequently; as in the

automotive industry, it is generally far less costly to reprogram

a robot than to rework hard automation. A robot workstation

may be programmed to perform several tasks in succession

rather than just a single step on a line. This makes it easy to

accommodate fluctuations in product volume by adding or

removing workstations. Also; because robots may be

reprogrammed to do different tasks; it is often possible to

amortize their first cost over several products. Robots can also

perform many applications that are poorly suited to human

abilities. These include manipulation of small and a large

object like electronic parts and turbine blades, respectively.

Another of these applications is work in unusual environments

like clean rooms, furnaces, high-radiation areas, and space.

Japan has led the world in the use of robots in manufacturing.

The two sectors making heaviest use of robots are the

automotive and electronics industries. Interest in legged

locomotion has been stimulated by application in traversing

rough terrain and in unmanned exploration of unknown

environment. Aside from electronic motivation, there are many

unanswered scientific question about how biological organism

produce the remarkable sensor motor behaviour that we

observe. Finally, the notion of simulating biological organism

has a certain instinctive reproductive appeal and offers the

possibility of satisfying our curiosity as to how come to be as

we are.

Robot programming is the mean by which a robot is

instructed to perform it task .The guiding for example, is the

process of moving a robot trough a sequence of motion to

“show it” what it must do. One guidance method is to

physically drag around the end effectors of the robot, while it

records joint position at frequent intervals along the trajectory.

The robot then plays back the motion just as it was recorded.

An alternative is a master-slave or teleoperation configuration.

Early systems of this type were first used or manipulate

radioactive material remotely. Teloperator techniques are now

employed to guide the space shuttle manipulator. Guiding may

also be applied using a teach pendant; which is a box keys that

are used to command the robot. Several modes of operation

are often available on the each pendant. Guiding is limited as a

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 152

robot-programming technique, because it does not provide

conditionality or iteration. Some systems provide called

extended guiding capability that include teaching in a

coordinate system that may be moved at run-time and

conditional branching between motion sequence.

 Robot programs must command robots to move: thus, the

way in which motion is specified is important. Also, the

program use information obtained from sensors. One way of

using sensory information is to monitor sensor until prescribed

condition occur and then perform or terminate a specified

action is to use feedback from sensors to modify the robots

behaviour continuously. A different approach is used to

describe the behaviour of the system in terms of relationships

that are to be maintained with respect to force, velocity,

position, and another measured and controlled quantities.

The issue of concurrent execution of program statements

has received widespread attention in computer science. In

robotics, the problem is computational processes. Many of the

considerations are very similar, but there are important

differences, too. Physical processes cannot; in general, be

suspended and resumed as computations can, because of

physical laws (like Newton’s laws) and the presence of

external force (like gravity). Concurrency is required for

speed, because it is highly undesirable to serialize a set of

mechanical task.

Nowadays, Intelligent Autonomous Vehicles (IAV) can

carry out task in various environments by themselves like

human. These intelligent autonomous systems are very useful

in many fields as industry and planetary explorations.

However, they are all semi-autonomous and need some human

operators. In fact, the future factory needs all flexible and

robust IAV.

Additionally, Intelligent Autonomous Vehicles (IAV) are

becoming more and more interesting for underwater,

terrestrial, and space applications. These mechanical systems

are constructed to respond any traditional working as in

construction and agriculture. Previously, certain industrial

operations required human skills may be tedious and

exceptionally hardly ever. Above all, repetitive operations can

result in reductions in quality control, as in visual inspections

tasks. Also, these repetitive actions may be hazardous health

risks as exposure to unsafe materials like radioactive and high

pressure in underwater applications. So, the presence of human

workers in these environments may be perilous which need the

necessity to be replaced by intelligent systems, these systems

can move, react, and carry out tasks in various environments

by themselves like human.These untethered systems become

then free of constraints than is currently used with remotely

operated systems. This involves that intelligence and sufficient

power must be integrated at a higher level while the robot

communicates with the environment. So, AMR must be able to

perform purposeful behaviours in the real-world. These

vehicles capable of coping with real dynamic worlds populated

by other robots and humans constitute powerful test-beds to

study and exercise the multi-faceted aspects of intelligence.

Using a robot, a Computer Aided Design (CAD) system is

typically used to model the robot workstation, arts, and

auxiliary equipment. Then the simulated robot is programmed

and its task executed in the simulated environment. Collisions

between object may be checked by using a collision-detection

algorithm. The utility of off-line programming for debugging

robot program is limited by the inability of most commercial

solid modelling program to include error tolerance information

in geometrical model. If a model does not include uncertainties

in part position, part dimensions, and robot position, the

simulation will succeeds in situations where a real application

would fail. Another difficulty with simulation is that force

sensing must be modelled by collision detection, which is

computationally expensive. This make it inconvenient to

model guarded moves and all but impossible to model force-

guided compliant motion such as surface following.

The environment force prevents the robot from moving and

turning towards obstacles by giving the user the distance

information between the robot and the obstacle in a form of

force. This force is similar to the traditional potential force

field for path planning of mobile robot. However, the

environment force is different from the potential force in some

aspects. First there is no attention to a goal since we assume

that the goal position is unknown. Secondly, only obstacles in

the “relevant” area (according to the logical position of the

interface) are consider, i.e. the obstacles that are far, or in the

direction opposite to the movement of the robot are not

relevant. In this context, a full range of advanced interfaces for

vehicle control has been investigated by the researchers. These

works demonstrate that obstacle detection and collision

avoidance is improved with good results.

Classical artificial intelligence systems presuppose that all

knowledge is stored in a central database of logical assertions

or other symbolic representation and that reasoning consist

largely of searching and sequentially updating that database.

While this model has been successful for disembodied

reasoning system, it is problematic for robots. Robots are

distributed systems; multiple sensory, reasoning, and motor

control processes run in parallel, often on separate processor

hate rate only loosely coupled with one another. Each of these

procure necessarily maintains its own separate, limited

representation of the world and task; requiring them to

constantly synchronize with the central knowledge base is

probably unrealistic. Automated reasoning systems are

typically built on a transaction-oriented model of computation

.knowledge of the world is stored in a database of assertion in

some logical language, indexed perhaps by predicate name.

For one problem discussed, for example, the robot should have

reflective pools that give the robot access to its own internal

state:

The behavioural pool

This one holds binding between tag and specific robot

behaviour. Each behaviour continually compare it tag to the

tag on a global call signal. Whenever a behavioural detects a

match, it activate itself. Active behaviour also drive a global

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 153

running signal with bit-vector of their tag. The signal therefore

hold the tag of all running behaviour, allowing any part of the

system monitoring the signal to determine whether the

behaviour bound to a given tag is running.

The proposition pool

The pool generates a true Signal comprised of the set of all

tag bound to proposition that are presently true. This allow one

component of the system to “pass” a signal to another

component by binding it to tag that has been agreed upon in

advance. The receiving component can then monitor the signal

by inspecting the appropriate bit of the true signal.

The predicate pool

The predicate pool generates vector of signal, indexed by

role, whose elements hold the extension of all bound

predicates – role 0 in element 0 , role 1 in element 1, etc.

again, this provides an indirection facility for passing signal

between components . In this context, we can include a

marker- passing semantic net. Node within the net can be

bound to role tag and then propagated a marker along links in

the net to perform retrieval and inference from long-term

memory.

It is important to understand that a given object or concept

might be represented in several of these pools simultaneously,

with each pool representing different aspect of the object. This

is supported in part by allowing element of different pool to

share a sing tag register. For example, the lexicon pool entry of

the word “show” , the behaviour SHOW, and the semantic net

node representing information about the behaviour all share a

common tag register. Therefore, when the parser bind “show”

to a role, the behaviour that can implement the verb is

automatically bound to the same role at the same time. A

several works were demonstrated in this domain, many

researchers have attended this problem to give successful

reasoning systems. They have discussed a lot of an alternate

class of architectures-tagged behaviour-based systems- that

support a large subset of the capabilities of classical artificial

intelligence architecture, including limited quantified

inference, forward and backward-chaining, simple natural

language question answering and command following,

reification, and computational reflection, while allowing object

representation, to remain distributed across multiple sensory

and representational modalities.

 B. Autonomy requirements

Several autonomy requirements must be satisfied to well

perform the tasks of AMR, this is summarized in some in the

following section.

Thermal

To carry out tasks in various environments as in space

applications, the thermal design must be taken into account,

especially when the temperature can vary significantly. At

ambient temperatures, the limited temperature -sensitive

electronic equipment on-board must be placed in a thermally

insulated compartments. The thermal environment of Mars

challenges the thermal control system. In the course of a

Martian day the temperature can vary from 140K to 300K.

Energy

For a specified period, AMR can operate autonomously, one

very limited resource for underwater and space applications

are energy. So, AMR usually carry a rechargeable energy

system, appropriately sized batteries on-board.

Communication Management

The components on-board the vehicle and on-board the

surface station must be interconnected by a two-way

communication link. As in both underwater and space

applications, a data management system is usually necessary to

transfer data from AMR to terrestrial storage and processing

stations by two-way communication link. Indeed, the data

management system must be split between components of the

vehicle and surface station. Thus, the vehicle must be more

autonomous and intelligent to perform and achieve the tasks.

Due to the limited resources and weight constraints, major data

processing and storage capacities must be on the surface

station. Although individual vehicles may have wildly different

external appearances, different mechanisms of locomotion, and

different missions or goals, many of the underlying

computational issues involved are related to sensing and

sensor modelling spatial data representation, and reasoning.

Mechanical design

The mechanical design of Intelligent Autonomous Robots is

the result of an integration approach considering several

criteria related with perception, control, and planning issues in

addition to structural design and other mechanical

requirements.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 154

C. Criteria to satisfy by vehicles to be autonomous and

intelligent

To evaluate the performance of AMR which are intelligent

and autonomous vehicle, the robot must perform the following

criteria:

Intelligence

A robotic system capable of some degree of self-sufficiency

is the primary goal of Intelligent Autonomous Vehicles . Thus,

the robot must achieve his task with more autonomy and

intelligence. Also, the vehicle reacts to unknown static and

dynamic obstacles with safety not to endanger itself or other

objects in the environment. Near Safety, the reliability is taken

into account in the field of robotics; it is the probability that

the required function is executed without failure during certain

duration.

Navigation

Navigation is the ability to move and on being self-

sufficient. The AMR must be able to achieve these tasks: to

avoid obstacles, and to make one way towards their target. In

fact, recognition, learning, decision-making, and action

constitute principal problem of the navigation. One of the

specific characteristic of mobile robot is the complexity of

their environment. Therefore, one of the critical problems for

the mobile robots is path planning, which is still an open one

to be studying extensively. Accordingly, one of the key issues

in the design of an autonomous robot is navigation, for which,

the navigation planning is one of the most vital aspect of an

autonomous robot. Therefore, the space and how it is

represented play a pivotal role in any problem solution in the

domain of the mobile robot, because:

• It provides the necessary information to do path

planning.

• It gives information for monitoring the position of the

robot during the execution of the planned path.

Several models have been applied for environment where

the principle of navigation is applied to do path planning. For

example, a grid model has been adopted by many researchers,

where the robot environment is dividing into many line squares

and indicated to the presence of an object or not in each

square. On line encountered unknown obstacle are modelled

by piece of “wall”, where each piece of “wall” is a straight-line

and represented by the list of its two end points. This

representation is consistent with the representation of known

objects, while it also accommodates the fact the only partial

information about an unknown obstacle can be obtained from

sensing at a particular location.

Many researches which have been done within this field,

some of them used a “visibility graph” to set up a

configuration space that can be mapped into a graph of

vertices between which travel is possible in a straight line. The

disadvantage of this method is time consuming. At the

opposite, some researches have been based on dividing the

world map into a grid (explained before) and assign a cost to

each square. Path cost is the sum of the cost of the grid squares

through which the path passes. A grid model has been adopted

by many authors, where the robot environment is divided into

many squares and indicated to the presence of an object or not

in each square[6,9]. A cellular model, in other hand, has been

developed by many researchers where the world of navigation

is decomposed into cellular areas, some of which include

obstacles. More, the skeleton models for map representation in

buildings have been used to understand the environment’s

structure, avoid obstacles and to find a suitable path of

navigation. These researches have been developed in order to

find an efficient automated path strategy for mobile robots to

work within the described environment where the robot moves.

In the figure 1 we present one example of navigation approach

using a square cellule grid for the movement. Another example

is presented in the figure 2 to find an optimal path to navigate

intelligibly avoiding the obstacles. This example shows the

way on which the scene of navigation is decomposed. The

figure 3 illustrates one model of navigation where the

polygonal model is used for the navigation.

Motion planning

The goal of the navigation process of mobile robots is to

move the robot to a named place in a known, unknown or

Fig. 1 an example of a square cellule grid navigation

 obs

Ci initial
position

obs

 Cf final
position

 Fig. 2 example of the navigation finding an optimal path

Fig. 3 Example of the polygonal model of navigation

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 155

partially known environment. In most practical situations, the

mobile robot can not take the most direct path from the start to

the goal point. So , path planning techniques must be used in

this situation, and the simplified kinds of planning mission

involve going from the start point to the goal point while

minimizing some cost such as time spent, chance of detection,

or fuel consumption.

Often, a path is planned off-line for the robot to follow,

which can lead the robot to its destination assuming that the

environment is perfectly known and stationary and the robot

can rack perfectly. Early path planners were such off-line

planners or were only suitable for such off-line planning.

However, the limitations of off-line planning led a researcher

to study on-line planning, which relies on knowledge acquired

from sensing the local environment to handle unknown

obstacles as the robot traverses the environment.

One of the key issues in the design of an autonomous robot

is navigation, for which, the navigation planning is one of the

most vital aspect of an autonomous robot. Therefore, the space

and how it is represented play a primary role in any problem

solution in the domain of mobile robots because it is essential

that the mobile robot has the ability to build and use models of

its environment that enable it to understand the scene

navigation’s structure. This is necessary to understand orders,

plan and execute paths.

Moreover, when a robot moves in a specific space, it is

necessary to select a most reasonable path so as to avoid

collisions with obstacles. Several approaches for path planning

exist for mobile robots, whose suitability depends on a

particular problem in an application. For example, behavior-

based reactive methods are good choice for robust collision

avoidance. Path planning in spatial representation often

requires the integration of several approaches. This can

provide efficient, accurate, and consistent navigation of a

mobile robot.

The major task for path-planning for single mobile robot is

to search a collision –free path. The work in path planning has

led into issues of map representation for a real world.

Therefore, this problem considered as one of challenges in the

field of mobile robots because of its direct effect for having a

simple and computationally efficient path planning strategy.

For path planning areas, it is sufficient for the robot to use a

topological map that represents only the different areas without

details such as office rooms. The possibility to use topological

maps with different abstraction levels helps to save processing

time. The static aspect of topological maps enables rather the

creation of paths without information that is relevant at

runtime. The created schedule, which is based on a topological

map, holds nothing about objects which occupy the path. In

that case it is not possible to perform the schedule. To get

further actual information, the schedule should be enriched by

the use of more up-to date plans like egocentric maps.

Topological path planning is useful for the creation of long

distance paths, which support the navigation for solving a task.

Therefore, those nodes representing for example, free region

space are extracted from a topological map, which connect a

start point with a target point. The start point is mostly the

actual position of the robot. To generate the path, several

sophisticated and classical algorithms exist that are based on

graph theory like the algorithm; of the shortest path. To give

best support for the path planning it could be helpful to use

different abstraction levels for topological maps. For example,

if the robot enters a particular room; of an employee for postal

delivery, the robot must use a topological map that contains

the doors of an office building and the room numbers.

Topological maps can be used to solve abstract tasks, for

example, to go and retrieve objects whose positions are not

exactly known because the locations of the objects are often

changed. Topological maps are graphs whose nodes represent

static objects like rooms, and doors for example. The edges

between the nodes are part’s relationships between the objects.

For example, an abstract task formulated

The navigation planning is one of the most vital aspects of an

autonomous robot. Navigation is the science (or art) of

directing the course of a mobile robot as the robot traverses the

environment. Inherent in any navigation scheme is the desire

to reach a destination without getting lost or crashing into any

objects. The goal of the navigation system of mobile robots is

to move the robot to a named place in a known, unknown, or

partially known environment. In most practical situations, the

mobile robot can not take the most direct path from start to the

goal point. So, path finding techniques must be used in these

situations, and the simplest kinds of planning mission involve

going from the start point to the goal point while minimizing

some cost such as time spent, chance of detection, etc. When

the robot actually starts to travel along a planned path, it may

find that there are obstacles along the path, hence the robot

must avoid these obstacles and plans a new path to achieve the

task of navigation.

Systems that control the navigation of a mobile robot are

based on several paradigms. Biologically motivated

applications, for example, adopt the assumed behavior of

animals. Geometric representations use geometrical elements

like rectangles, polygons, and cylinders for the modeling of an

environment. Also, systems for mobile robot exist that do not

use a representation of their environment. The behavior of the

robot is determined by the sensor data actually taken. Further

approaches were introduced which use icons to represent the

environment.

Several approaches for path planning exist for mobile

robots, whose suitability depends on a particular problem in an

application. For example, behavior-based reactive methods are

good choice for robust collision avoidance. Path planning in

spatial representation often requires the integration of several

approaches. This can provide efficient, accurate, and consist

navigation of a mobile robot. It is sufficient for the robot to

use a topological map that represents only the areas of

navigation (free areas , occupied areas of obstacles). It is

essential the robot has the ability to build and uses models of

its environment that enable it to understand the environment’s

structure. This is necessary to understand orders, plan and

execute paths.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 156

Path planning in spatial representation often requires the

integration of several approaches. This can provide efficient,

accurate, and consist navigation of a mobile robot. It is

sufficient for the robot to use a topological map that represents

only the areas of navigation (free areas, occupied areas of

obstacles). It is essential the robot has the ability to build and

uses models of its environment that enable it to understand the

environment’s structure. This is necessary to understand

orders, plan and execute paths [4].

In this paper, a simple and efficient navigation approach for

autonomous mobile robot is proposed in which the robot

navigates, avoids obstacles and attends its target. Note that, the

algorithm described here is just to find a feasible and flexible

path from initial area source to destination target area, flexible

because the user can change the position of obstacles it has no

effect since the environment is unknown. This robust method

can deal a wide number of environments and gives to our robot

the autonomous decision of how to avoid obstacles and how to

attend the target. More, the path planning procedure covers the

environments structure and the propagate distances through

free space from the source position. For any starting point

within the environment representing the initial position of the

mobile robot, the shortest path to the goal is traced. The

algorithm described here therefore is to develop a method for

path planning by using simple and computationally efficient-

way to solve path planning problem in an unknown

environment without consuming time, lose energy, un-safety of

the robot architecture. The shortest path is obtained by using

GA, this biological process has an advantage of adaptivity

such that the GA works perfectly even if an environment is

unknown. GAs combine survival of the littest among string

structures with a structured yet randomized information

exchange to form a search algorithm with some of the

innovative flair of human search.

III. THE PROPOSED GA FOR MOTION PLANNING OF AMR

GAs are search algorithms based on the mechanics of

natural genetics. A genetic algorithm for an optimization

problem consists of two major components. First, GA

maintains a population of individual corresponds to a

candidate solution and the population is a collection of such

potential solutions. In GA , an individual is commonly

represented by a binary string the mapping between solutions

and binary strings is called a “coding”. GA has been

theoretically and empirically proven to provide robust search

capabilities in complex spaces offering a valid approach to

problems requiring efficient and effective searching [7].

Before the GA search starts, candidates of solution are

represented as binary bit strings and are prepared. This is

called a population. A candidate is called a chromosome (in

our case: the path is a “chromosome” and positions are the

“genes”). Also, an evolution function, called fitness function,

needs to be defined for a problem to be solved in order to

evaluate chromosome. As fitness function, we should define

distance for each chromosome to give an evaluation function.

This evaluation is the goal of the GA search and goes as

follows: two (02) chromosomes are chosen randomly from

populations are mated and they go through operations like the

crossover (see the figure 4)to yield better chromosomes for

next generations. This is repeated until about twelve

populations with new chromosomes. To determine execution

of the GA, we must specify a stopping criterion, in our case; it

could be determined by a probabilistic function: as we have

four chromosomes and we choose randomly two

chromosomes, to combine and to compare one path with itself.

The crossover is the comparison operator. Therefore, after

several generations of GA search (The problem of mutation,

see the figure5), relatively low fitness of chromosomes

remains in a population and some of them are chosen as the

solution of the problem (the most preferable path.

GAs are search algorithms based on the mechanics of

natural selection and natural genetics. They combine survival

of the littlest among string structures with a structured yet

randomized information exchange to form a search algorithm

with some of the innovative flair of human search. An

occasional new part is tried for good measure avoiding local

minima. While randomized, GAs are no simple random walk.

They efficiently exploit historical information to speculate on

new search points with expected improved performance. In the

figure 6 we present genetic algorithm chart :

Crossover
POINT

Parent
CHILDREN

Fig. 4 Example of Crossover on singlepoint

Origin chromosome
1 0 1

1 1 1 New Chromosome

Fig. 5 Example of Mutation in the second bit

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 157

A. Crossover and Mutation process

We have designed an operator that swaps two substrings of

two genitors. However two children paths are generated which

inherit some of the properties (substrings) of their two parents.

Let two paths A1 and A2. Two points S1 ∈ A1 and S2 ∈A2 are

randomly selected, from which two new paths A3 and A4 from

start to goat are generated by using the linking and

concatenation operators (see the figure 5).

We note that: the path is chromosome and the positions are

genes. In theory any path of the SAB can be obtained by the

crossover operator. However, due to the chosen probabilistic

distribution in the calculus. The children have a great

probability of lying in the region bounded by the parents that

demonstrates the need of mutations to explore new regions..

Let us to explain more :

path A3 :

1- path A1 from A to S1.

2-New path from S1 to S2.

3- path A2 from S2 to B.

Path A4 :

1-path A2 from A to S2.

2-new path from S2 to S1.

3-Path A1 from S1 to B.

The selection is done according to a probability

proportional to the performance (« fitness » in the classical

literature). The selection is given by P :

m

n

p
2

42 −
= (1)

Where n is the code number of paths designed to be candidates

of selection of two paths, m is the code number of

all paths . At the beginning, a population of paths is created

by the mutation operator between A1 = A and A2= B . The

 size n of the population is a critical parameter of all the

genetic algorithms : if the number of individuals is small , the

region of the terrain explored at the beginning of the search are

limited and then the population iteratively generated for

optimizing a performance index may tend to include paths

neighboring a local minimum. On the other hand, a large

population allows the generation of many individuals covering

most of the terrain, and has a good chance to find all the

optimal and near – optimal solution, but

the population will also include less interesting solutions and

furthermore the computing time may be high. The better

chromosome which has less cost of path (the shortest path)

 yields after progenitor (several mutations and

generation).The criteria of progenitor is stopped after (2
n
-4) of

generations, where n is the number of paths, we substract

with number 4 because we cannot compare and combine a

path with itself. The fitness function for each path is the

number of pixels belonging to this path. (in the literature the

fitness function is the performance that evaluates and gives a

meaning of each chromosome). For improving iteratively the

performances of the individuals in the population, the best

individuals are preferred to serve as parents serve as parents

in the next crossover operations.

A. Path planning

Assume that path planning is considered in a square terrain

and a path between two locations is approximated with a

sequence of adjacent cells in the grid corresponding to the

terrain. The length A(α, β) from cell ״α ״ to its adjacent cell

 ״α״ is defined by the Euclid distance from the center cell ״ β״

of one cell to the center cell ״β״ of another cell. Each cell in

this grid is assigned of three states: free, occupied, or unknown

otherwise. A cell is free if it is known to contain no obstacles,

occupied if it is known to contain one or more obstacles. All

other cells are marked unknown. In the grid, any cell that can

be seen by these three states and ensure the visibility constraint

in space navigation. We denote that the configuration grid is a

representation of the configuration space. In the configuration

grid starting from any location to attend another one, cells are

thus belonging to reachable or unreachable path. Note that the

set of reachable cells is a subset of the set of free configuration

cells, the set of unreachable cell is a subset of the set of

occupied configuration cells. By selecting a goal that lies

within reachable space, we ensure that it will not be in

collision and it exists some “feasible path” such that the goal is

reached in the environment. Having determined the

reachability space, the algorithm works and operates on the

reachability grid This one specifies at the end the target area.

The detection of the three states is done by the different color

Fig. 6 genetic algorithm chart

Initialisation

Selection

Mutation

Crossover – over

t=t+1

NO

YES

END

New

Generation

Termination

condition

P(t)

P(t+1)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 158

of pixels of those belonging to the area obstacle. Generally, the

detected different colors of pixels have the same luminous

intensity for every free path (a less difference). The other color

neighbors are belonging to obstacle area. This detection is

based on the game of every detected color of pixel. We

separate between the set of luminous intensity of free path of

pixels with those belonging to the set of luminous intensity of

obstacle and unknown area. This separation is very useful to

get a meaning of segmentation.

A grid of (i X j) dimension of free path is denoted by “X,”

an occupy grid of (l X k) is denoted by “Y ” . An obstacle is

collection of hazardous cells in the “Y” grid .A path from start

cell “C” to destination cell “D” that the detected color of “X”

does not interest any detected color “Y”. the path is said to be

monotone of free cells “X” with respect to i-coordinates if no

lines parallel to k-axis cross the j-axis (see figure 8).

The proposed algorithm here relies on number of cells

 and iterates, as follows :

1) i by j grid, start cell a in the grid.

2) Detect free destination in the grid (free cells).

3) Detect the collection of cells in the grid corresponding to

 obstacle area (hazardous occupied cells area) and

 unknown cells.

4) A path from “C” to “D” such that the total of neighboring

 cells are detected free.

5) If the collection of free cells is continuous, detect all

neighboring on the same destination until the target is

reached.

6) If the collection of free cells is discontinuous, change the

direction and continue on another free continuous

collection of cells.

To maintain the idea ; we have created several environments

which contain many obstacles. The search area

(environment)is divided into square grids. Each item in the

array represent one of the squares on the grid, and its status is

recorded as walkable or unwalkable area (obstacle).The robot

can identify three colors inside our environment: dark, yellow

and green. The dark color is interpreted as an obstacle area;

whereas the yellow color represents the free trajectory to

attend the given target, and the green color refers to the area

target (this is the first part of the main project to be after

developed more, i.e., we start by this principle to give after

more intelligence to our AMR). The robot starts from any

position then it must move by sensing and avoiding the

obstacles. The trajectory is designed in form of a grid-map,

when it moves it must verify the adjacent case by avoiding the

obstacle that can meet to reach the target. We use an algorithm

containing the information about the target position, and the

robot will move accordingly. To determine the nature of space

of navigation, and as we have illustrated before, cells are

marked as free or occupied; otherwise unknown. We can

therefore divide our search area into free and occupied area .

note that all free space cells represent the walkable space and

unwalkable in occupied space. Each free cell is able of lying

all the neighbor free cell within a certain distance “d”. this

distance “d” is usually set to a value greater than or equal to

the size of cell. Note that the set of free cells is a subset of the

of free cells, which is in turn a subset of the set of free

occupancy cells. Thus, by selecting a goal that lies within free

space , we ensure that the free sub-path will not be in collision

with the environment, and that there exists some sub-paths to

get the target. We use probabilistic concept to select the sub

paths to get the target, given by :

α1: randomly probability of initial location space.

α2: randomly probability in free space area (walkable

area).

α3: randomly probability of intermediate sub-positions in

walkable area.

α4: randomly probability of final sub-positions in walkable

area .

α5: randomly probability of destination location in free space

area (walkable area).

Every αi belonging to occupied area (unwalkable area) is

removed. Note that these probabilities αi are done in order to

trace without collision the free trajectory and not to be in

unwalkable area stopped with inside obstacles. Note, we

determine the free resultant cells within free space to get a

Feasible path during navigation. For unwalkable space

(Occupied space) we just develop a procedure of avoiding

danger. The figure 9 shows an example of walkable or

unwalkable space .

A

A1

A2

B

New

path

S1

S2

k

l

i

j

Fig. 7 crossover operation

Fig. 8 an example of no intersecting in unknown

environment

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 159

For unwalkable space, we compute the total size of free

cells around danger (obstacle) area. This total may be at least

greater or equal than to the length of architecture of robot.

This is ensure the safety to our robot to not be in collision

with the obstacle, and that the path P has enough security SE

to attend it target where it is given by P+SE (S is size of

security). In principle, we generate a plan for reaching safety

area for every neighboring danger area. The safety distance is

generated to construct the safety area building to the

navigation process, to be near without collision within this

one.

C. Path planning based on GA

First, we need to choose a coding which maps a path from

start cell “C” to destination cell “D” into a binary string . We

can represent an arbitrary path by using a binary string of

“variable length” . To simplify the problem, we assume that a

path from C to D is either i-monotone or j-monotone (but not

necessarily both). Obviously, not all paths are monotone. The

path can be represented by a column-wise (or row-wise)

sequence of (i-1,j-1) pairs of direction and distance such that

each pair corresponds to each column (or each row,

respectively respectively) . Thus, the path can encode into a

binary whose length is proportional to j and fixed. The first bit

B1 indicates that path is x-monotone if B1 =1, and is y-

monotone if B1=0. A block of (n+1) bits represents distance

and direction on each column or row, where (n+1) are pairs of

distance and direction. In case of B1 =1 : the first 2 bits of a

block denote the direction ;e.g., 00(vertical), 01 (diagonal), 10

(horizontal). In the case of B1=0; we denote 00 (vertical), 10

(diagonal) and 01 (horizontal) (see figure 10). The aim of this

technique is clearly obvious when we see the figure 11 (the

sub- procedure for obstacle avoidance). The other bits of the

block denote the distance is denoted by 1 if free, 0 if it is

belonging to obstacle area. The population size is computed by

2
(n+1)

 bits. The likelihood of optimality which is the estimated

probability of finding an optimal solution within g generations

computed by : (2
(n)

/ 2
(g+1)

). The mutation rate is a=0,1

crossover rate b=0,9 and win

rate w=(1-a)---(1-b).this implies that GA can find an optimal

solution with high probability if it is executed respectively

and to a realized and b realized.

In order to evaluate, the average performance of our GA

over various environments, we observed simulation of the GA

for great number of environments. We can change the position

of obstacles so we get other different environments. These

environments generated .To find a new optimal path after

insertion of deletion of an obstacle, we measure the number

of generations of candidates. The coding of GA is to affect

label 0 for free cell and 1 for hazardous cell. This way of work

is very useful later if the substring is inherited to new

generations by genetic operators. We generate (04) four paths

and we detect the best one to be optimized between them. The

fourth are shown in the Fig.11 and Fig.12. These fourth paths

are called sub optimal paths. Every suboptimal is presented by

its fitness function (number of detected pixels of free path)

and is quite different from each other. Hence, a mobile robot

detects unknown hazardous obstacle on the path. The

generation of several paths gives at the end the best optimal

path with low fitness function (e.g. the shortest path).

V
d

n

A
B

Pg Pi

P1

ROBOT

Obstacle

Y

X

Fig. 9 an example of walkable space and walkable space

 Walkable area
 Unwalkable area

Fig. 10 an example of pairs of distance and

direction

Fig. 11 Vehicle obstacle avoidance-mode

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 160

IV A VLSI PATH PLANNING OF AMR

A. FPGA concepts

Field Programmable Gate Arrays (FPGAS) are digital

Integrated Circuits (ICs) that contain configurable

(programmable) blocks of logic (CLB) along with

configurable interconnects between these blocks. Depending

on the way in which they are implemented , some FPGAs may

only be programmed a single time, while others may be

reprogrammed over and over again.(SEE figure 13).Not

surprising, a device that can be programmed only one time is

referred to as “one-time-programmable OTP”. The” field

programmable” portion of the FPGA’s name refers to the fact

that its programming takes place “in the field” (As opposed to

devices whose internal functionality is hard-wired by the

manufactures”. If a device is capable of being programmed

while remaining resident in a higher –level system, it is

referred to as being In-system programmable (S P).the figure

14 presents the fourth class architectures of FPGAs in the

industrial site of microproducts. In the figure 15 and figure 16,

we present some CLB architectures (top down of CLB) of

some products of FPGA Xilinx these architectures illustrate

how it is the main body of some XILINX FPGA architecture.

Fig. 15 CLB Xilinx – familly XC3000 Architecture.

Bloc logique
configurable

 (CLB)

Interconnexion

Robot

 Obstacle

1st path

2nd path

3rd path

4th path

Symmetrical Array Row- Based

Sea – of- Gates
Hierarchical PLD

 F

LUT
G

QX

QY

 X
a
b
cc d

e

DIN

DX

DY

Y

Fig 16. CLB Xilinx Familly XC4000Architecure

DIN

LUTH

FF

X

Y

DIN

LUT

 G

LUTF

QY

QX

FF

Fig. 12 an example of generation of the fourth

paths

Fig. 13 FPGA Architecture

Fig. 14 the fourth class of FPGA

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 161

The complex issue of programming FPGA may be

approached in a wide range of ways. One extreme is to

consider that the designer hold only have to ketch his design in

an abstract way, leaving to automatic tools as much of the

implementation job as possible, with as little human

intervention as possible. This hands-off approach reduces

development time and costs, at their expense of the

performance of the implementation. At the other extreme,

when performance is critical, the designer has to intervene in

the whole design process. This may include low-level

implementation work and require important expert knowledge

and much longer development time. Usually the

implementation of a design on FPGA fall somewhere in the

middle of these two extremes. The tools, while increasingly

useful, still require a lot of technology-dependent knowledge

from the designer performance than the software

implementation (an easiness of implementation, shortest

possible time, and rapid). We can have the mapping of an

entire approach into a single Xilinx.

FPGAs. Implementation of some designs is very attractive

because of the high flexibility that can be achieved through the

reprogramability nature of these circuits. In addition, the

synthesis tools allow designers to realize the mainly reasons :

the need to get a correctly working systems at the first time,

technology independent-design, design reusability, the ability

to experiment with several alternatives of the design, and

economic factors such as time to market. This new design

methodology based upon VHDL description and using a

synthesis tool Galileo. More, the parallelism, performance,

flexibility and their relationship to silicon area are achieved by

this new technique.

B. VHDL Concepts

VHDL allows for the description of hardware behavior from

system to gate levels. The system level focuses on the

description of the functionalities of the system (what is does)

and tries to avoid it implementation description (how it is

constituted). The notion of time is essentially a notion of

causality: one action implies another. A constant is to forge

useless details, which would imply architectural choices too

early in the design methodology. Too detailed a system

description is a drawback for it restrict further architectural

choices or implies a given technology. Therefore, hiding the

information structure is desirable and the notion of

concurrency may not be necessary at this phase.

 To fit this level of description, the language has to offer

lager degrees of abstraction, a powerful algorithmic, wide

capabilities for merging different description levels, an easy

expression of causality, and also the possibility of introducing

non determinism, which may be an interesting feature. To date,

this level of description has not been synthesizable: no explicit

architecture is described and no tool on the market offer a real

and an efficient architectural synthesis (except for some

specific target architecture). The synthesizable level is the

potential input for synthesis tools. Here some implementation

choices have already been made:

-Architecture, or at least an architecture family is targeted

and is implied by the code structure.

-The widths of datapath are known.

-Time can be expressed in term of clock or sequentially (one

statement is executed after the previous one).

The language must allow a description of the model at this

level with a sufficient level of abstraction toward the physical

level. Clock, sequentiality, dataflows, and combinational art

have to be easily expressed. A large degree of

parameterization is also required. The netlist level is the

potential output of synthesis output of synthesis tool. It is

structural view appearing as a collection of model

instantiation. This kind of description involves the existence of

model libraries (see the figure17). The notion of time is often

present in the description of these models, from the notion of

propagation delay trough a gate to very sophisticate delays

(using slopes, temperature, etc.). These delays are either

provided by the library and are therefore only indicative, or are

relevant to a given technology and therefore more accurate.

They can even be deduced from the enlist using a back

notation mechanism (probably outside the VHDL world) .At

this step, the language has to offer an optimal flexibility in

terms of timing configuration or technology. These two aspects

are most often linked.

The notion of time

The notation of time, which is carefully described in the

LRM, is only related to simulation. This time is discrete: Only

event have a date. Indeed, the notion of time does not exist

between two of these date. The simulator is event driven: it kip

from one event to the following one without exploring what

happen in between. No synthesis semantic is defined in the

VHDL LRM. Therefore, it is not possible to directly express

implementation timing constraints using the language. The

only exiting notion is the delay: “this output takes this value

after this exact delay”. Moreover, no MIN / MAX simulation

mechanism is deduced in the language.

Modularity

A VHDL description is never monolithic, modularity is

everywhere. The first structuring level is the design unit. When

compiling a VHDL source file, this file notion does not exit

after compilation: each contained design unit once successfully

analyzed is independently stored within a VHDL library.The

only structuration of the original file which exists after

compilation in the VHDL world is the notion of design unit. A

VHDL source file is seen a collection of design units. A design

unit link between design units written in the same source files,

and there is no implicit link between design units written in the

same source file (see the figure 18).

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 162

Fig. 17 Different level of Description

There are five kinds of design unit. They can be roughly

split into two parts: those that describe the hardware hierarchy

(i.e. , the structure of the model) and those that are more of

software oriented. This operation is very important. An

orthogonal classification shows that three deign unit are the

external world. A secondary unit is the implementation

(internal view) of its primary. A varying number of design

unit, possible of different kinds, constitute a library each

design unit is self –compilable but may use objects of other

design unit, possibly stored in other libraries.

Portability

Portability was one of the main guidelines during the VHDL

language design phase. The widespread uses of this language

is mainly due to the fact that it is a standard. A standard is the

only way for users to be free of the potential precariousness of

a proprietary language. New prospect in the next new year;

new synthesis techniques will have more and more impact on

system design methodology. The synthesis process by itself is

not the source of such a modification. Synthesis is only of the

potential targets of a hardware description. Modeling (

“modelware”, that is the act to describe he behavior of a

system as a whole) , is really be changing design methods. The

remarkable points is that a single language. VHDL, is now

able to cover the entire design cycle from functional

specification to low—level structural design.

Figure. 18 Compiling source file into design units

Functional specification phase

The goal here is to translate the requirements into – a formal

description. These requirements may have multiple aspect,

document with text mixed with schemes references to

international standard (protocol), set of equations, algorithm.

Etc. even the completeness of the specification itself is not

always ensured. The need for a functional description as

reference model is therefore obvious. This model will be the

essential starting point of the design cycle and will allow, by

comparison of simulation result (and perhaps in the future

using well-known that such a functional model allows the

designer an in-depth understand of the problem to be solved.

Fundamental question, such as the completeness of data

transforms, arise during this phase.

Architecture choice phase

There is no universal tool for this phase. Experience and

designer know-how is the key to success. All the potential

targets must be taken into account. Their number is quite large:

from software to ASICs (Application specific Integrated

circuits), from programmable devices to standard circuits.

Indeed, synthesis description is also one of these targets. By it

very nature, is fuzzy and abstract. The goal of this book is to

help the designer achieve a better understanding of it and

therefore use it more efficiently study in the reference where

there is different ways of expressing hardware in VHDL.

Therefore, the designer will better understand the real

capabilities of today synthesis tool.

 As discussed in the previous section, the synthesis domain

is vast. At the highest level, it is possible to express a et of

interpedently treatments (dataflow graph) without any specific

control. The only requirement is to respect constraint if any.

System level

Synthesizable level

Netlist level

Specification

Technology

Dependent

Library

Architectural

Text file

Entity A is package P2 is

End A; end P2 ;

Architecture B of A is entity C is

End B; end C;

Package body P1 is architecture D of C is

END p1 end D;

Compilation

Approved compilation

A B C D P
1

P
2

P

3

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 163

This is the architectural synthesis domain. On the other hand,

logic synthesis requires the complete description of the control

and use of resources in time. Thus, by itself is to appear to be a

consistent continuation of the architectural synthesis process,

once the resource allocation has been performed. Beyond all

doubt, these two synthesis level (architectural and logic) will

in the future merge into one.

Consistency between simulation and synthesis

One of the main objectives of all methodology is to make

the transformation between two steps as safe as possible.

Checks can be provided for this. Synthesis consists of the

transformation of an initial description, as abstract as possible,

into a structural description using well-identified hardware

resources. Therefore, in terms of methodology, comp ring both

description is essential. The power of description of VHDL is

able, without any constraint, to support the two levels of

description. Indeed, there is no real problem at this stage, but

much more trouble I related to the transformation technology.

In other word, the way of interpreting VHDL text source for

synthesis purpose (the semantics for synthesis) is fundamental

and critical; and it determine the quality of the result.

Text source architecture

An entity is the external view of a model: ports

(inputs/outputs) and parameter (named generic), as well as

static check on parameter values (such a range or minimal

value verification) and dynamic check on port (such a set –up

or hold time verification) are described in this design unit.

The structure of a model, its behavior, or any mixture of both

structure and behavior are described within it architecture. The

syntax of such a design unit is

Architecture A of entity-b is

Architecture _Declarative_part

Begin

….

End;

More than one architecture can be associated with a given

but only is selected for each model instantiation at simulation

time. This selection is the main goal of the configuration

mechanism that is discussed below. Architecture is implicitly

dependent on it associated entity: all objects defined are

known within the architecture. form, a shown in the example

the ports are seen a signal and can be assigned within the

architecture. The architecture body description consists of a set

of concurrent statements.

Notion of component

This is a powerful VHDL notion. Unfortunately; the notion

of component is not natural for beginner. In a first approach,

we can seen that a model may be instantiated a certain number

of time: a nand gate model can be instantiated three time

Therefore, a single model, i.e. a single description, generates

different instantiation, each of them having it own behavior.

To be more general, VHDL offer a general and flexible

mechanism: the instantiation is applied to the idea we have of

a model, and not a in the case of direct instantiation to the

model itself. It is therefore possible, either to directly

instantiated a pair entity/ architecture or to initiate an

intermediate object called component. Indeed, this notion of

component represents the external view of a desired model.

This desire may be quite different from the actual external

view of the model we will finally use, and adaptation

mechanisms are provided. There is no behavior attached to he

notion of component, but it has on be great advantage: it allow

compilation. So, many static checks may be performed even if

the entity/ architecture pair that will finally be used is not

known (or does not even exist yet).

 This mechanism allows for a top-down methodology with

real decoupling between the component library (what is

desired) and the model library (what we have).Using the

notion of component implies three fundamental operations:

declaration, instantiation, and configuration of the component.

Fortunately, and especially in the logic synthesis domain, any

tool generate this source code automatically. Nevertheless,

considering the component declaration as a simple redundancy

of the entity declaration error. When using already exiting

libraries or design units written by some body else, the power

of the component notion appears obvious adaptation is

possible.

Component configuration

Associating entity/ architecture pairs to component

instances is the goal of this operation. It can be performed in

the architecture where components are instantiated or within a

specific design unit the configuration unit. In both cases, it

allows an adaptation of the component to the model (the pair

entity / architecture). This adaptation may consist in changing

the name of the ports or parameters, also called generics,

modifying their order, and even making some of them

disappear. Continuing our analogy, this operation can be seen

a plugging a circuit into a socket. Each socket corresponds to a

component instantiation. Adapting the socket to the circuit is

possible during this operation. The flexibility provided by the

notion of component is very powerful. Selecting an entity /

architecture pair is possible very late in the design cycle (just

before simulation or synthesis) and switching from one library

to another to change one model into another is a

straightforward operation.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 164

Mapping VHDL to hardware

The synthesis modeling style is mainly characterize by

reducing the VHDL possibilities to a subset in which

-delay expression (after clauses, wait for statement) are

ignored

-Certain restrictions on the writing of process statement occur

.

-Only a few types are allowed.

-Description is oriented towards synchronous styles by

explicating clocks.

The result of synthesis process is conceptually a netlist of

component. These component are predefined within a “

proprietary” model library. There is no standard here, and the

content of such libraries as well as their abstract level are

rather different. some vendors even propose different

libraries, such as the following :

1- Libraries accurately characterize and integrating a back-

annotation mechanism, they allow an expensive but accurate

simulation

2- Libraries more roughly described with timing value

(elementary time unit), they nevertheless allow a quick check

of the logical behavior of the model

C .The proposed GA hardware

The GA principle and work are tested in more unknown

environments. The creation starts with empty environment (no

intelligent navigation) and finishes until we get the high order

of dispositions (e.g. the maximum number of obstacles). The

operation examines the crossover and mutation operators and

various parameters values for each operator. Simulation results

in 16 or more unknown environments shown that after 2
4

generations the optimal path is gotten (4 is number of paths, 2

: is two paths). The parent (02 paths) are combined together

that crossover operator is applied regarding to their fitness

functions) (shortest path) is realized, then, the short one is

stored with low fitness function (low number of pixels). We

choose between two parents (two paths) and we combine

between them (regarding their fitness function) until we get the

best one suitable path to be taken into account to navigate

intelligibly in unknown environment.

V. DIGITAL IMPLEMENTATION OF GA

Configurable hardware is an approach for realizing optimal

performance by tailoring its architecture to the characteristics

of a given problem. FPGAs Implementation of GA is very

attractive because of the high flexibility that can be achieved

through the reprogramability nature of these circuits[9]. The

complexity of VLSI circuits is being more and more

complexes. Nowadays, the key of the art design is focused

around high level synthesis which is a top down design

methodology, that transform an abstract level such as the

VHDL language (acronym for Very High Speed Integrated

Circuits Hardware Description Language) into a physical

implementation level[5,6,8,9]. In addition, the synthesis tools

allow designers to realize the mainly reasons: the need to get a

correctly working systems at the first time, technology

independent design, design reusability, the ability to

experiment with several alternatives of the design, and

economic factors such as time to market. In this section, we

present a new design methodology of GA based upon a VHDL

description and using a synthesis tool Galileo. The result is a

netlist ready for place and root using the XACT. The intended

objective is to, realize architecture that taxes into account the

parallelism, performance, flexibility and their relationship to

silicon area. In this section, we discuss the possibility to

permitting the mapping of an entire GA into a single Xilinx’s

FPGA.

A. Design methodology

The proposed design method for the GA implementation is

illustrated in fig. 19 as a process to follow.This status is

followed by the VHDL description of the navigation approach.

Then the VHDL code is passed through the synthesis tool

Galileo. The result is a netlist ready for place and root using

the XACT tool. At this level, verification is required before

final FPGA implementation. The simplified model of GA is

presented in Fig.20. Thus, we can represent it in its hardware

equivalent model, and the top view of architecture is

represented in Fig.21.

B. VHDL Description of GA

Synthesis of this design is achieved by using the VHDL

language with Register Transfer Logic (RTL) style description.

The choice of VHDL comes from its emergence as an industry

standard. The RTL style is used because it is well adapted for

synthesis. The description of the GA approach begins by

creating the components; the flexibility of the design is

introduced by generic statement. Libraries that are functional

and that target potentially accelaratable primitives.

 Other option may be offered and are part of the usual

environment available on VHDL synthesis platforms. The

main synthesis issue with enumerated type is the encoding:

there is no consensus for encoding enumerated type. Very

often, the enumeration values are encoded by default into bit

vectors whose length is the minimum number of bit required to

code the number of enumerated value. This policy is applied to

he predefined enumerated type BOOLEAN; where FALE and

TRUE are respectively encoded a ‘0’ and ‘1’. The solution is

not systematically chosen, especially when the enumerated

type is used for defining the state of a finite state machine. In

that case, another way of encoding has to be chosen to

optimize the result.The use of enumerated type in modeling is

strongly recommended and is one way of remaining at an

abstract and relying one the synthesis tool to choose the right

strategy when optimizing and encoding. Some datatypes are

not useful for synthesis purposes (for example, all physical

type defined by the designers are not supposed). Predefine

physical type TIME is not expressed. Even timing constraint

for synthesis is not expressed in VHDL with time expressions.

They are external constraints give, to the synthesis tool using

attributes or proprietary mechanisms.

C. Tool dependency

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 165

Concerning tool dependency, one good point is that VHDL

code can be the same for many synthesis tools. However the

way to define a non synthesizable part of code tool dependent.

Moreover the constraint descriptions differ from one tool to

another one. Their syntaxes and also their semantic are defined

for only one synthesis context. In fact, except for the

architecture description written in VHDL, all information

concerning the hardware context is described according to the

interface provided by the synthesis tool. For example, if port

defined by the entity at the top level of hierarchy have to

become real inputs/output of the circuit, special hardware must

be provided. This kind of information is described to the

synthesis tool in it own language.

 When the desired hardware is synchronous, the main

constraint to be respected by the synthesis process is the period

of the clock. After describing the electrical characteristics of

the port (trough to drive, capacitance), the synthesis tool may

accept the period to be respected as a constraint. It is not

always the case, some tools do not support this data, and the

designer has to check the critical path delays. If the constraints

cannot be respected, the only solution, for a given library, is to

choose architecture to find improved optimizations.

Consequently a new VHDL code must be written and then

synthesized. If all constraints are accepted, the hardware result

of synthesis must be the smallest in terms of area.

D. Synthesis and implementation

The described methodology has been used for FPGA using

the synthesis tool Galileo. At this level, and depending on the

target technology, which is in our case, the FPGA Xilinx

XC4000 family, the synthesis tool proceeds to estimate area in

term of CLBs (Configurable Logic Blocs). The table I present

the best synthesis results for GA Approach (given by the

process). The output (XNF file) generated by the synthesis tool

is passed trough the XACT place and tool. The resulting

FPGA implementation of navigation approach of the whole

architecture has been into a single FPGA mapped. Using the

XACT, the netlist are placed and rooted and the area of

configurable logic blocs is almost occupied by the architecture

(the small juxtaposed squares)m the detail of this

Implementation will be explained more in next article where

the choice of Xilinx Family and satisfaction with silicon area. e

try several synthesis to get the best chip of this application, the

selection of the best is done automatically by he tool of

development. More, The tool of programming selects the best

circuit according the characteristics of the FPGA taking into

account the architecture which will be implemented.

Fig.19 Design methodology of the GA approach

Fig. 20 Architecture of GA

(i)

(ii)

 Fig.21: The Top view of GA structure

Table I : Synthesis results

VI. CONCLUSION

The theory and practice of AMV are currently among the

most intensively studied and promising areas in computer

science and engineering which will certainly play a primary

goal role in future. These theories and applications provide a

source linking all fields in which intelligent control plays a

dominant role. Cognition, perception, action, and learning are

essential components of such-systems and their use is tending

extensively towards challenging applications (service robots,

micro-robots, bio-robots, guard robots, warehousing robots).

In this paper, we have presented a hardware implementation of

navigation approach of an autonomous mobile robot in an

GA

Architecture

VHDL DESCRIPTION

Place and root tool

(XACT)

Logic

Synthesis

and

Optimisation

Verification

Verification

COUNTER

Full-adder

Register

MUX Comparator

Control Part

Optimisatio

n by GA
GA

work
RAM Best

Path

Design

AREA

(in term of CLBs)

GA 192

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 166

unknown environment. The proposed approach can deal a

wide number of environments. This system constitutes the

knowledge bases of GA approach allowing to recognize

situation of the target localization and obstacle avoidance,

respectively. Also, a new design methodology of GA is

introduced based upon a VHDL description and using a

synthesis tool Galileo. The top down of this design based on

logic synthesis has allowed a single chip FPGA

implementation. The proposed VHDL description has the

advantage of being generic and can be changed at the user

demand. Depending on the final performance requirements,

GA can be implemented using software tools supported by the

standard microprocessor or by the hardware tools using FPGA

technology, but the earlier offers more performance, flexibility

and high speed processing into hardware, using the VLSI

Technology FPGA (the concept of specification task and the

reduce time of treatment). The primary results of the digital

implementation show that the “intelligence-autonomy-

economy” is achieved. However in the future, it is necessary

to use a “micro-robot” in hostile environment and space

exploration or other applications by using advanced micro-

product control systems.

REFERENCES

 [1] D. Estrin, D. Culler, K. Pister, PERVASIVE Computing IEEE, 2002,pp.

 59-69.

[2] T. Willeke, C. Kunz, I.Nourbakhsh, The Personal Rover Project : The

 comprehensive Design Of a domestic personal robot, Robotics and

 Autonomous Systems (4), Elsevier Science, 2003, pp.245-258.

[3] L . Moreno, E.A Puente, and M.A. Salichs, : World modelling and sensor

data fusion in a non static environment : application to mobile robots, in

Proceeding International IFAC Conference Intelligent Components and

Instruments for control Applications, Malaga, Spain, 1992, pp.433-436.

[4] S.Florczyk, Robot Vision Video-based Indoor Exploration with

Autonomous and Mobile Robots, WILEY-VCH Verlag GmbH & Co.

KGaA, Weinheim, 2005.

[5] R. Airiau, J.M Berger, V. Olive, Circuit synthesis with VHD, Kluwer

Academic Publishers, 1994.

[6] S.D.Brown, R.J., J.Francis Rose, and Z.G. Vranesic : Field-

Programmable Gate Array, Kluwer Academic Publishers, 1997.

[7] A. Gonzalez and R. Perez. : SLAVE : A genetic learning System Based

on an Iterative Approach, IEEE, Transaction on Fuzzy systems, Vol

7, N.2, April 1999, pp.176-191.

[8] J. Legenhausen, R. Wade, C.Wilner, and B. Wilson,: VHDL for

programmable logic, Addison- Wesley, 1996.

[9]O. Hachour and N. Mastorakis, IAV : A VHDL methodology for

FPGA implementation, WSEAS transaction on circuits and systems,

Issue5, Volume3,ISSN 1109-2734, pp.1091-1096.

[10] O. Hachour AND N. Mastorakis, FPGA implementation of navigation

approach, WSEAS international multiconference 4th WSEAS robotics,

distance learning and intelligent communication systems (ICRODIC

2004), in Rio de Janeiro Brazil, October 1-15 , 2004, pp2777.

[11] O. Hachour AND N. Mastorakis, Avoiding obstacles using FPGA –a

new solution and application ,5th WSEAS international conference on

automation & information (ICAI 2004) , WSEAS transaction on systems

, issue9 ,volume 3 , Venice , italy15-17 , November 2004 , ISSN 1109-

2777, pp2827-2834 .

[12] O. Hachour AND N. Mastorakis Behaviour of intelligent autonomous

ROBOTIC IAR”, IASME transaction, issue1, volume 1 ISSN 1790-

031x WSEAS January 2004,pp 76-86.

[13] O. Hachour AND N. Mastorakis, Intelligent Control and planning of

IAR, 3rd WSEAS International Multiconfrence on System Science and

engineering, in Copacabana Rio De Janeiro, Brazil, October 12-

15,2004.www.wseas.org.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 2, 2008 167

