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Abstract— The objective of this contribution is to demonstrate 

the utilization of algebraic controller design in an unconventional 
ring while control integrating processes with time delay. In contrast 
to many other methods, the proposed approach is not based on the 
time delay approximation. A control structure combining a simple 
feedback loop and a two-degrees-of-freedom control structures is 
considered. This structure can be also conceived as a simple feedback 
loop with inner stabilizing loop. The control design is performed in 
the ring of retarded quasipolynomial (RQ) meromorphic functions 
(RMS) - an algebraic method based on the solution of the Bézout 
equation with the Youla-Kučera parameterization is presented. Final 
controllers may be of so-called anisochronic type and they ensure 
feedback loop stability, tracking of the step reference and load 
disturbance attenuation. Among many possible tuning methods, the 
dominant pole assignment method is adopted. This approach is 
compared with the conventional polynomial LQ method using an 
illustrative simulation example.. 
 

Keywords— Time delay systems, algebraic control, Bézout 
identity, Youla-Kučera parameterization.  

I. INTRODUCTION 
INTEGRATING models appear while modeling mass or 
energy accumulation, a rotation of machineries, etc. and 

they contain undesirable pole which need to be shifted by 
suitable design of the feedback loop. As well, the great deal of 
technological and other processes, such as distributed 
networks, long transmission lines in pneumatic systems or 
neural networks [1], to name a few, own an input-output time 
delay. The presence of a delay entails problems with 
controllers design due to the fact that the delay significantly 
influences the dynamic properties of a feedback control 
system. The combination of integrating behavior of the system 
and delays makes controller design more difficult and it 
requires utilization of some advanced procedures.  

There have been recently investigated various principles for 

control of integrating processes with time delay. A group of 
methods utilizes standard PI or PID controllers in an effort to 
get a certain optimization and robustness, see e.g. [2]-[3]. In 
[4] allowable PI and PD controller gains have been 
investigated.  One type of a pole assignment approach in [5] 
was developed. Some ideas are based on generalized Smith 
predictor, e.g. [6]-[7] or  even more general control loops [8], 
designed mainly in order to obtained the satisfactory 
disturbance response. Last but not least, authors present 
predictive approaches mainly incorporating state-space 
description e.g. in [9].  
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One of the most significant approaches in modern control 
theory is a family of algebraic methods. Unlike some 
traditional state-space models, algebraic tools are based on 
fractional description of systems where a transfer function can 
be expressed as a ratio of two elements in an appropriate ring. 
From the historical point of view and the natural 
correspondence between time-domain description and the 
transformation for discrete-time systems, traditional transfer 
functions are represented by polynomial fractions. This idea 
was adopted for continuous-time systems as well. This 
description is employed for algebraic control strategy for 
integrating delayed systems in [10] where the control structure 
with two feedback controllers (Fig. 1) is considered. However, 
a transfer function can be written as a fractional field of more 
general algebraic structures – rings. One of basic requirements 
on a control system is that both a plant and a controller are 
proper and a control system is internally stable, which brings 
the possibility of introduction of another frequently used ring, 
RPS (the ring of Hurwitz stable and proper rational functions) 
[11], [12]. Algebraic control philosophy in this ring then 
exploits Bézout identity (Diophantine equation) along with the 
Youla-Kučera parameterization to obtain stable and proper 
controllers. Nevertheless, utilization of this ring is rather 
restrictive while dealing with time delay systems since 
requires rational approximation of exponentials expressing 
delays, usually via the first order Padé approximation. 

This contribution presents transfer function description 
avoiding any time delay approximation. The ring of stable and 
proper retarded quasipolynomial meromorphic functions 
(RMS) for this purpose is utilized. A term of this ring is a ratio 
of two so-called quasipolynomials where the denominator 
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quasipolynomial is stable and the whole ratio is proper with 
respect to highest s-powers. The only effort to design 
controllers in this ring for integration delayed systems is in 
[13] where a simple 1DOF control structure was utilized. 

In this paper, an algebraic approach based on Bézout 
identity and the Youla-Kučera parameterization using control 
system with two controllers is considered. The presented 
feedback system can be comprehend and solved in double 
meaning; first, one can take the system as a whole, which 
means that the overall input-output transfer functions for 
controllers design are utilized, and on the basis of this 
knowledge the appropriate controller structures are 
determined; second, the control system can be viewed as a 
simple control feedback with the inner (stabilizing) feedback 
loop. In this case, the inner loop is solved first and the main 
loop follows. Final controllers of the so-called anisochronic 
type ensure (in both cases) feedback loop stability, step 
reference tracking and load disturbance attenuation, and they 
are tuned by the pole assignment method described e.g. in 
[14]. Both approaches are tested and verified using an 
illustrative simulation example and they are compared with 
the linear quadratic (LQ) polynomial approach [10], which 
demonstrates the usefulness and applicability of the proposed 
method. 

II. SYSTEM DESCRIPTION IN RMS RING 

A. RMS Ring 
Algebraic control methods are based on input-output 

system formulation in the form of a transfer function. 
Conventional transfer functions in the form of a ratio of two 
polynomials are not directly applicable for models containing 
delays due to exponentials resulting from the Laplace 
transform of delays. In order to express the numerator and 
denominator in polynomials, the first order Padé 
approximation is then usually utilized; however, there it is 
also possible to use another way. Rational approximation can 
be avoided so that the transfer function can be performed in 
the ring of stable and proper RQ-meromorphic functions, RMS. 

Any function in this ring is a ratio of two retarded 
quasipolynomials y(s)/x(s), in general, where a denominator 
quasipolynomial is Hurwitz stable and the ratio is proper. 
Quasipolynomials, in contrast to polynomials, are formed not 
only by weighted sums of s-power but also by exponentials 
relating to delays. A denominator quasipolynomial x(s) of 
degree n means 
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where “retarded” refers to the fact that the highest s-power 

is not affected by exponentials. Quasipolynomial (1) is stable 
iff it owns no finite zero s0 such that Re {s0} ≥ 0, i.e., a term in 
RMS ring is analytic in the right half complex plane. Stability 
can be verified by the Michailov stability criterion, which can 
be used due to the validity of argument principle, see details 

e.g. in [15]. The numerator y(s) of an element in RMS can be 
factorized in the form ( ) ( ) ( ssysy )τ−= exp~ , where τ > 0 and 

( )sy~  is a retarded quasipolynomial of degree l 
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A quasipolynomial fraction is called proper iff l ≤ n.  

B. Integrating Delayed Plant in RMS  
RMS ring can be naturally utilized for description of systems 

with delays in both left and right sides of an appropriate 
differential equation. The transfer function of the plant or the 
controller is then expressed as a ratio of two elements in RMS 
ring. This contribution deals with integrating time delay 
systems inscribed with the transfer function 
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where m0(s) is an appropriate stable quasipolynomial of 
degree one. This quasipolynomial can not be of order higher 
than one because the transfer function factorization then 
would not be coprime; details about coprimeness for RMS are 
in [13]. The suitable form of m0(s) is discussed in the Section 
4 where algebraic controllers design is described. 

III. CONTROL SYSTEM 
Up to this day, the algebraic controller design principle in 

RMS (described further in Section 4) was employed for the 
simple feedback loop with one degree of freedom (1DOF) 
which is pictured in Fig. 1, and for the control system with 
two degrees of freedom (2DOF), see Fig. 2., and for the 
internal model structure (IMC) only, [13], [15]-[16]. 
However, this contribution deals with the control system with 
two controllers combining 1DOF and 2DOF structures, see 
Fig. 3. 
 

 
Fig. 1 1DOF control system structure. 
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Fig. 2 2DOF control system structure. 

 

 
Fig. 3 Proposed control structure with two controllers. 

 
In schemes, W(s) is the reference signal, D(s) is the load 

disturbance, E(s) refers to the control error, U0(s) is the 
controller output, U(s) is the plant input, and Y(s) means the 
plant output (controlled value) in the Laplace transform. The 
plant transfer function is depicted as , next, ( )sG ( )sGQ  and 

 are “feedback” controller transfer functions for 1DOF 
and 2DOF structures and for the control system with two 
controllers, respectively, and 

( )sGQ

( )sRG  or  represents 
“feedforward” controller in the appropriate scheme. 

( )sGR

Using this description, the following correspondence 
between the structures can be written: 

For 1DOF scheme holds: 
 
( ) ( ) ( ) 0, == sGsGsG QRQ  (4) 

 
For 2DOF scheme holds: 
 
( ) ( ) ( ) ( ) ( )sGsGsGsGsG RQQRR +== ,  (5) 

 
The advantage of the structure with two controllers rests in 

the possibility to satisfy decoupling of reference tracking and 
load disturbance rejection.  

The following transfer functions can be derived in the 
control system in general: 
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where controllers are 
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in which R(s), Q(s) and P(s) are from RMS and 
 

( ) ( ) ( ) ( ) ( ) ( )[ ]sQsRsBsPsAsM ++=  (8) 
 
corresponds to the characteristic (quasi)polynomial of the 
closed loop. Both external inputs, W(s) and D(s), are 
considered to be step functions, i.e.  
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where ( )smw  and ( )smd  are arbitrary stable polynomials of 
degree one and HW(s), HD(s), FW(s), FD(s) . MSR∈

IV. DIRECT ALGEBRAIC CONTROLLER DESIGN IN RMS RING 
The algebraic controller design presented in this 

contribution supposes that all transfer functions and signals in 
the control system are in the form of ratios of elements in RMS; 
thus, a field of fractions associated with the RMS ring is 
introduced. 

The control system scheme pictured in Fig. 3 can be 
grasped either as the whole system corresponding to transfer 
functions (6) or as an inner feedback loop with controller 
GQ(s) and outer loop with controller GR(s). Let us now 
describe the former, say “direct”, approach. 

Usual requirements on the control systems are these: 
closed-loop stability, asymptotical reference tracking and load 
disturbance attenuation. 

A. Control System Internal Stabilization 
It is natural to require that all signals in the control loop 

avoid impulse modes, which brings the notion of internal 
stability, see e.g. [12], [17]. Consider plant (3) where A(s) and 
B(s) are coprime elements in RMS. If there exist functions 
P0(s), T0(s) MSR∈  where 
 

( ) ( ) ( )sQsRsT 000 +=  (10) 
 
satisfying the Diophantine equation 
 

( ) ( ) ( ) ( ) 100 =+ sTsBsPsA   (11) 
 
then the set of all controllers that internally stabilize the 
control loop is deduced from the parameterization of the 
particular solution 
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The proof of the previous statement can be done 

analogously as, e.g. in [13], [17], applied to control system 
shown in Fig. 3. A free parameter Z(s) can be chosen properly 
to fulfill other control design requirements. Resultant 
controllers are given by (7) with respect to the distribution of 
the solution, (10). 

Concretely, the particular solution of (11) for plant (3) 
arises from the solution of the following equation 
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Without loss of generality, let T0(s) = α  and P0(s) = 1, 

and the remaining task is to find a suitable stable 
quasipolynomial . Hence, (13) results in 
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The requirement is α to be real; therefore the simplest m0(s) 
has to be of the form 
 

( ) ( ) ssKsm +−= τα exp0  (15) 
 

The essential feature of retarded quasipolynomial m0(s) is 
its stability which can be studied e.g. using the Michajlov 
criterion, [18]-[19]. Via a computational procedure analogous 
to the one described for unstable systems in [16], one can 
derive the stability condition as 
 

τ
πα
KAm 2

1
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where  is the gain margin ( correspondences to 
the stability border).  

1>mA 1=mA

B. Reference Tracking and Disturbance Rejection 
As was mentioned above, the convenient option of Z(s) in 

the parameterization (12) enables to find the solution of (11), 
so that requirements of reference tracking and disturbance 
rejection are accomplished. If both inputs are considered as 
step functions (9), it arises from transfer functions (6) that 
numerators of P(s) and Q(s) must have “derivative” pattern. In 
other words, unstable (zero) poles of FW(s) and FD(s) must be 
canceled by zero poles of P(s) and Q(s), i.e. their numerators 
must be either of the form 
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or, eventually for quasipolynomials 
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Both numerators (17) and (18) of P(s) and Q(s) ensures at 

least one zero root. For the plant (3) and the particular 
solution (13)-(15), the choice Z(s) = α in parameterization (12) 
yields 
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Obviously, P(s) and T(s) are from RMS and the form of P(s) 

ensures reference tracking and disturbance rejection. 

C. Parameterization of T(s) 
The solution of the Bézout identity (11) with 

parameterization (12) gives P(s) and T(s); however, the 
controller transfer functions involve Q(s) and R(s) and these 
elements are obtained by parameterization of T(s) according to 
(10). Hence, the last step in controller design is the 
“distribution” of T(s) onto P(s) and R(s) with respect to 
demand on the form of Q(s), see (17) and (18). 

Thus, function T(s) in (19), with respect to (10), (17) and 
(18) and taking a distribution parameter 10 ≤≤ γ , can be 
formulated as 
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which results in controllers 
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Hence, the proportional and generalized (delayed) 

proportional-integrative controllers are obtained. 

D. Alternative Choice of Z(s) 
The choice of a selectable element Z(s) = α as was proposed 

above, is not the only possibility how to find controllers 
satisfying simultaneous internal stability, reference tracking 
and disturbance rejection. To demonstrate this feature, let 
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instead of Z(s) = α. A selectable positive real parameter λ  
ensures that  and brings an additional degree of 
freedom. Then 
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The distribution of T(s) onto Q(s) and R(s) is in the form 
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Hence, the resulting set of controllers is the following 
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As can be seen, denominators of final controllers (25) are 

quasipolynomials, and this feature refers to so-called 
anisochronic form of the controllers. However, these types of 
controllers are as easy to implement either on PC or PLC, see 
[20], as the traditional PID controllers; which can be easily 
deducted from the Matlab-Simulink simulation block scheme 
of e.g. GR(s) displayed in Fig. 4. 

V. CONTROLLER DESIGN WITH THE PRE-STABILIZING INNER 
LOOP 

The controller design procedure presented in Section 4 was 
based on the control system description in the form of (the 
whole) closed loop transfer functions (6). However, one can 
conceive the scheme in Fig. 3 as a control system with an 
inner pre-stabilization loop containing controller GQ(s) and 
outer loop with controller GR(s) which provides disturbance 
rejection and setpoint tracking.  

To avoid the presence of input disturbance in the inner 
feedback for controllers design, let the control system scheme 
be rearranged as in Fig. 5. Obviously, all transfer functions (6) 
still hold; nevertheless, controllers design for the inner loop 
excludes the assumption of the input disturbance. The idea is 
that inner feedback pre-stabilizes the controlled process, i.e. 
zero pole is to be moved to the left, and the outer feedback 
controller ensures already mentioned requirements for pre-

stabilized system G0(s). 

 
Fig. 4 The structure of anisochronic controller GR(s) in (25). 

 

 
Fig. 5 Reconfigured control scheme. 

 

A. Inner Loop Pre-stabilization 
Let an integrating delayed plant (3) be pre-stabilized using 

a proportional controller GQ(s) = q0. The condition for closed-
loop stability, see e.g. [17], is then given by the Diophantine 
equation 
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The natural task is to find a suitable stable retarded 

quasipolynomial ( )sm0  which provides a coprime 
factorization of the plant transfer function. The solution of 
(26) gives 
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The requirement is q0 to be real; therefore, similarly as in 

(14) and (15), the simplest m0(s) has to be of the form 
 
( ) ( ) ssKqsm +−= τexp00  (28) 

 
where the stability of m0(s) is conditioned again by (16) in 
which q0 is placed instead of α. Thus, the transfer function of 
the inner pre-stabilized feedback loop is 
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B.  System Stabilization 
Now the task is to control the pre-stabilized loop G0(s) 

using a simple feedback with controller GR(s). However, the 
numerator and denominator in (29) are not from RMS and thus 
the transfer function must be factorized as 
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where  is a stable (quasi)polynomial. In order to have 
G0(s) as simple as possible, let 

( )sm1

 
( ) λ+= ssm1  (31) 
 

where 0>λ  is a selectable real parameter which brings an 
additional degree of freedom. Naturally one can take another 
m1(s); an example demonstrating it is presented in Section 5D. 

The outer closed-loop stability property is ensured by a 
solution of the Diophantine equation 
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whose a particular solution reads 
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This solution can be further parameterized according to (12) 

using the Youla-Kučera parameterization as 
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to fulfill other control requirements, i.e. reference tracking and 
disturbance rejection,  via an appropriate choice of the free 
element, Z(s). 

C. Reference Tracking and Disturbance Rejection 
Parameterization (34) enables to find the solution of (32), 

so that requirements of reference tracking and disturbance 
rejection will be accomplished. The requirement is that both 
denominators of Laplace forms of external inputs, FW(s) and 
FD(s), divide P(s). If both inputs, w(t) and d(t), are considered 

as step functions (9), P(s) must contain at least one zero pole. 
Let 
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then the outer feedback controller reads 
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Obviously, this controller is of anisochronic structure as in 

(25) again and its structure is similar to the one pictured in 
Fig. 4. 

Recall that the inner-feedback controller is proportional, 
GQ(s) = q0 ; however, in terms of algebraic philosophy it can 
be written also in factorization as 
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D. An Alternative Solution 
As was mentioned in Section 5B, stable (quasi)polynomial 

m1(s) can be chosen unlike in (31). Another natural choice is 
 
( ) ( ) ( )sKqssmsm τ−+== exp001  (38) 
 

which agrees with the denominator of the non-factorized 
inner-feedback transfer function. Thus the factorized one 
reads 
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In this case, the stabilizing Diophantine equation 
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has one of particular solutions 
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and by decision  in the Youla-Kučera 
parameterization, the final outer-feedback controller structure 
ensuring reference tracking and disturbance rejection is then 

( ) 10 −= qsZ

 

( ) ( )[ ]
s

sKqsq
sGR

τ−+
=

exp00  (42) 

 
which is a delayed PI controller of the same structure as in 
(21); however, one can notice that a proportional and an 
integral coefficients cannot be simultaneously the same as 
those in (21). The inner-feedback controller is GQ(s) = q0 
again. 

VI. TUNING OF CONTROLLERS 
The final sets of controllers, (21), (25), (36) and (42), still 

contain unknown parameters that have to be set properly. 
There are naturally plenty of approaches solving the problem 
of controller tuning.  

In this contribution, the well applicable and relatively 
simple tuning method called direct pole placement, which was 
described e.g. in [14], is utilized. This method enables to 
prescribe the desired set of dominant poles of the closed loop, 
the maximum number of which is given by the number, k, of 
unknown parameters in the characteristic quasipolynomial. If 
the dominant poles are denoted as kii ...1, =σ , the 
characteristic equation as m(s), and a vector of r unknown 
parameters as v, then the following system of k linear 
equations is obtained 

 
( ) kim i ...1,0, ==vσ  (43) 
 
For complex poles, one root from each complex conjugate 

pair is taken and (43) is divided into two equations of the form 
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 (44) 

 
The significant feature is that sets (43) and (44) are linear 

with respect to unknown parameters, which makes the 
solution easy to find. If r > k, the equations are solved using 
Moore-Penrose pseudo-inversion of non-squared matrix [21]; 
on the other hand, if r = k, the set is full rank and can be 
solved using as a common set of algebraic linear equations, 
i.e. pseudo-inversion become an inversion. 

In the particular case of delayed integrator, all sets of final 
controllers result in two disparate characteristic 
quasipolynomials 
 

( ) ( )[ ]
( ) ( )[ ]( )λτ

τ
+−+=

−+=
ssKqssm

sKqssm
exp
exp

0

2
0  (45) 

 
with unknown parameters (or α which has the same 
meaning) and 

0q
λ .  

Thus, let the first quasipolynomial in (45) be taken. Since 
there is a single parameter to be found, , the only multiple 
real dominant root or a conjugate pair of complex roots can be 
prescribed. Moreover, stability condition (16) cannot be 
omitted. In many real applications, oscillatory modes in the 
output signal are undesirable; therefore the optimal choice of 
prescribed poles in the form of the leftmost dominant real 
roots is suggested. We will propose here two ways how to 
derive the condition for the prescription of these optimal 
poles. 

0q

The first deduction arises from the observation of the value 
of computed from (43) and (45) for a prescribed stable real 
pole. Starting the pole position in the left neighborhood of the 
stability border (i.e. 

0q

01 =σ ) and continuing toward to 
negative infinity, the value of  initially rises up until its 
maximum value is reached and consequently slopes down 
behind this point. A concrete example of this behavior can be 
seen in Fig. 6. 

0q

Thus, there exist two distinct values of the chosen pole for 
the same value of the controller parameter, except the 
maximum point. This means that whenever a pole to the left 
of the maximum point is chosen, there must exist another pole 
to the right which is dominant. Therefore, the task of choosing 
the leftmost dominant pole is converted to the searching the 
maximum of q0, which indicates the position of the optimal 
real pole. 

 
Fig. 6 Dependence of on a prescribed dominant pole σ1; K 

= 1, τ = 5. 
0q

 
The pole placement condition combining (43) and (45) 

reads 
 
( ) ( )[ ] 0exp, 2

10101 =−+= τσσσ Kqqm  (46) 
 
The objective is to maximize the function q0(σ1),  σ1 < 0 
ℜ∈ , which is given by (46) as 
 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 4, Volume 2, 2008 255



( )1

1
0 exp τσ

σ
−

−
=

K
q  (47) 

 
The well-known procedure of analytic searching the 

maximum of continuous functions yields the optimal 
dominant pole choice 

 
1

OPT,1
−−= τσ  (48) 

 
which gives the optimal controller parameter 

 

eτK
q 1
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The interesting feature of this result rests in the fact that the 

derived closed-loop pole is triplicate, which is evident from 
the following statement 
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The second possibility how to derive the optimal controller 

parameter choice to obtain the leftmost real dominant pole is 
based on the solution of combination of (44) and (45). If 

iii ωασ j+= , the following set of equations holds 
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Consider one conjugate pair of prescribed poles, i.e. i = 1, 
then the solution of (51) by cancellation of the factor  
reads 

Kq0

 
( τωωα 111 arctan−= )  (52) 

 
which describes the dependence of a real and an imaginary 
parts of the root of (45). Calculation of limit 

 
( )[ ] 1

110
arctanlim

1

−

→
−=− ττωω

ω
 (53) 

 
leads to the same result as in (48).  

The polynomial factor in the second characteristic 
quasipolynomial in (45) is linear, thus, an additional stable 
root, λ− , can be prescribed. Obviously, if , then this 
pole becomes dominant and the influence of the 
quasipolynomial factor 

1−<τλ

)( sKqs τ−+ exp0  on the system 
dynamics is suppressed. In [10], the suggestion for the choice 
of λ  is 

 

τ
λ 2

=  (54) 

 
which, in comparison with (48), does not allow for the 
dominant pole. 

As can be seen from above sentences, roots of the 
characteristic quasipolynomial (real or complex) must be 
chosen carefully because some attempts to place them 
excessively to the left in the complex plane can lead into the 
following situation. Due to the fact that the quasipolynomials 
(45) has the infinity number of roots, the chain of complex 
roots can move to the right near to the stability border 
(imaginary axis) and thus these roots can take over the role of 
dominant poles of the system.  

Coefficient γ in (21) and (25) influences the feedback 
system behavior as well because it appears in the numerators 
of closed loop transfer functions; however, it does not impact 
the spectrum of the system. In the illustrative example below, 
various values of γ are set randomly. 

There are naturally other possibilities how to set the 
unknown parameters of controllers, e.g. in more 
computational way via artificial intelligence approaches based 
on genetic algorithms, [21]. 

VII. LQ POLYNOMIAL METHOD 
The methodology presented above in this contribution 

ought to be compared with another approach to demonstrate 
its usability. Take a method presented in [10] which is based 
on a rational approximation of exponentials in a plant transfer 
function followed by optimal pole-placement via minimization 
of a quadratic cost function.  

Look at a brief yet more detailed description of the LQ 
method. The control system is considered as in Fig. 3 again. 
The plant transfer function (3) is approximated using the first 
order Padé approximation 
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i.e. a rational fraction description is obtained. The ring of 
polynomials instead of RMS is thus used. In this ring, 
stabilizing equation 

 
( ) ( ) ( ) ( ) ( )sMsTsBsPsA =+  (56) 
 

is solved where M(s) is the characteristic polynomial and 
distribution (10) holds. Parameterization (12) is not used; on 
the other hand, P(s) is set directly in the form ensuring the 
asymptotic tracking and load disturbance attenuation, i.e. as in 
(17), whereas the solution T(s) is distributed according to 
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where coefficients γi divide a weight between R(s) and Q(s). 

The polynomial M(s) is considered as a product of two 
stable polynomials in the form 
 

( ) ( ) ( )sMsMsM 21=  (58) 
 

where M1(s) is a monic form of the polynomial 
( )sM 1

~ obtained by the spectral factorization 
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}
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where φ is the weighting coefficient and the asterisk denotes 
the spectral factor of an appropriate polynomial. Condition 
(59) holds for the minimization of the quadratic cost function 
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Finally, the second polynomial in (58) is suggested as 
 

( )
τ
2

2 += ssM  (61) 

 
which agrees with the choice (54). 

As can be seen, there is one selectable real parameter, φ > 
0, that influences the closed loop poles location. The final 
controllers for a plant (3) have the following forms of transfer 
functions 
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VIII. ILLUSTRATIVE EXAMPLE 
This simulation example composed in the Matlab-Simulink 

environment demonstrates the usability of the proposed 
controller design method in the RMS ring and it presents a 
benchmark test by comparison the simulation results with the 
polynomial LQ method. Two criteria as instrument for a 
quantitative comparison are implemented. 

The first one follows criterion (60) and thus it is expected 
that the optimal LQ method should perform the best results. 
Let us call the criterion simply as ISE (Integrated Squared 
Error) criterion. A selection of a positive real parameter φ 
enables to determine the impact of control signal derivation, 
i.e. the higher value of φ results in a smoother course of 

function, and let φ = 500 is chosen. )(tu&
The second ISTE (Integrated Squared Time Error) criterion 

is formulated as 
 

( ) ( ){∫
∞

+=
0

22 dttutetJ ISTE &ϕ }  (63) 

 
The significant feature of this criterion is that it handicaps 

latter signal values, i.e. its higher value indicates slower 
control response settlement. 

Let K = 1 and τ = 5. The reference signal is w(t) = 1 for 0 ≤ 
t < 100 and w(t) = 2 for 100 ≤ t < 300. The step input 
disturbance d(t) = -0.1 enters at time t = 200; hence, the 
process of restoration of zero control error due to the input 
disturbance influences ISTE criterion significantly. Simulation 
results for every single final controller are discussed 
independently. 

A. Results for Direct Controller Design 
First assume controllers (21) which comprise two 

adjustable parameters: γα , . The optimal value of α  is given 
by (49) as 0736.0=α  which ensures the triple leftmost real 
dominant system pole ( 2.03,2,1 −=σ ). For the sake of 
comparison, choose two complex conjugate dominant poles, 
according to (52), as j1.018.05,4 ±−=σ  and 

j2.013.07,6 ±−=σ  which gives 0835.0=α  and 125.0=α , 
respectively. Two different distribution parameters γ  are 
evenly chosen as 25.0=γ and 75.0=γ . The simulation 
results are in Fig. 7 - Fig. 10. A quantitative results collation 
in the form of values of ISE and ISTE criterions are in Table I. 

 

 
Fig. 7 Step setpoint and load disturbance responses of u(t) 

using controllers (21); K = 1, τ  = 5, γ =0.25, d = -0.1. 
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Fig. 8 Step setpoint and load disturbance responses of y(t) 

using controllers (21); K = 1, τ  = 5, γ =0.25, d = -0.1. 

 
Fig. 9 Step setpoint and load disturbance responses of u(t) 

using controllers (21); K = 1, τ  = 5, γ =0.75, d = -0.1. 
 

 
Fig. 10 Step setpoint and load disturbance responses of y(t) 

using controllers (21); K = 1, τ  = 5, γ =0.75, d = -0.1. 
 

Table I: Values of ISE and ISTE criterions when using 
controllers (21); K = 1, τ = 5 

 
γ α ISE ISTE 

0.25 0.0736 26.174 1528.9 
0.25 0.0835 22.645 1209.4 
0.25 0.125 17.873 887.1 

0.75 0.0736 20.671 1448.2 
0.75 0.0835 18.42 1153.8 
0.75 0.125 19.679 913.7 

 
The results in Table I indicate that dominant poles with 

appropriately small (but not zero) ratio of their imaginary and 
real parts can improve both criterions, especially for lower γ 
values. However, as can be seen from Fig. 7 - Fig. 10, 
complex conjugate poles naturally cause the propensity to 
oscillations and overshoots, which are undesirable in many 
applications. Fig. 9 and Fig. 10 in contrast to Fig. 7 and Fig. 8 
show also that increasing of the distribution parameter γ (i.e. 
parameters in the numerator of GR(s) rise) leads to faster 
changes of control signal u(t) and more apparent overshoots; 
on the other hand, control responses are faster. 

Consider now alternative controllers (25) comprising an 
additional parameter λ  which is set by (54) as 4.0=λ . 
Control system responses are in Fig. 11 – Fig. 14 and the 
numerical comparison in Table II. 

In contrast to controllers (21), Table II together with the 
figures above, evidently show that the alternative anisochronic 
controllers (25) are much convenient to control the plant (3). 
Both ISE and ISTE criterions are notably less, responses are 
faster and also undershoots caused by the input disturbance 
are reduced. Higher values of γ result in faster changes of 
control signal u(t) and more apparent overshoots again, which 
spoils the quality criterions; on the contrary, it reduces 
undershoots a little. 

 
Fig. 11 Step setpoint and load disturbance responses of u(t) 

using controllers (25); K = 1, τ  = 5, λ = 0.4, γ =0.25, d = -0.1. 
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Fig. 12 Step setpoint and load disturbance responses of y(t) 

using controllers (25); K = 1, τ  = 5, λ = 0.4, γ =0.25, d = -0.1. 
 

 
Fig. 13 Step setpoint and load disturbance responses of u(t) 

using controllers (25); K = 1, τ  = 5, λ = 0.4, γ =0.75, d = -0.1. 
 

 
Fig. 14 Step setpoint and load disturbance responses of y(t) 

using controllers (25); K = 1, τ  = 5, λ = 0.4, γ =0.75, d = -0.1. 
 

Table II: Values of ISE and ISTE criterions when using 
controllers (25); K = 1, τ  = 5, λ = 0.4 

 
γ α ISE ISTE 

0.25 0.0736 15.62 766.254 

0.25 0.0835 15.003 727.551 
0.25 0.125 14.727 705.407 
0.75 0.0736 22.21 765.6 
0.75 0.0835 22.307 736.061 
0.75 0.125 24.933 746.489 

 

B. Results for Controller Design with the Inner Loop 
Controller design utilizing the pre-stabilizing inner 

feedback loop and the outer loop gives e.g. controllers (36) 
and (37), and (42). Consider the former set of controllers first, 
which contains two selectable parameters: λand0q . The 
double dominant pole is given by q0 as for α in the previous 
section, see Fig. 15 - Fig. 18. The influence of a change of λ  is 
demonstrated in Fig. 19 and Fig. 20. The ISE and ISTE 
criterions valuation presents Table III. 

Fig. 15 – Fig. 18 clearly show that any change in q0 does 
not affect the setpoint response. Appropriately chosen 
parameter q0 corresponding to conjugate dominant poles 
improve particularly ISTE criterion, which reveals from Table 
III; however, there is a tendency to overshoots after the 
disturbance enters. Fig. 19 and Fig. 20 disclose that higher 
values of λ cause faster changes of the control signal yielding 
a deterioration of the ISE criterion. 

 

 
Fig. 15 Step setpoint and load disturbance responses of u(t) 

using controllers (36) and (37); K = 1, τ  = 5, λ = 0.2, d = -0.1. 
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Fig. 16 Step setpoint and load disturbance responses of y(t) 

using controllers (36) and (37); K = 1, τ  = 5, λ = 0.2, d = -0.1. 
 

 
Fig. 17 Step setpoint and load disturbance responses of u(t) 

using controllers (36) and (37); K = 1, τ  = 5, λ = 0.4, d = -0.1. 

 
Fig. 18 Step setpoint and load disturbance responses of y(t) 

using controllers (36) and (37); K = 1, τ = 5, λ = 0.4, d = -0.1. 
 

 
Fig. 19 Step setpoint and load disturbance responses of u(t) 

using controllers (36) and (37); K = 1, τ = 5, q0 = 0.835, d = -
0.1. 

 

 
Fig. 20 Step setpoint and load disturbance responses of y(t) 

using controllers (36) and (37); K = 1, τ = 5, q0 = 0.835, d = -
0.1. 

 
 
 
 

Table III: Values of ISE and ISTE criterions when using 
controllers (36) and (37); K = 1, τ = 5. 

 
λ q0 ISE ISTE 

0.2 0.0736 17.566 971.198
0.2 0.0835 16.931 890.314
0.2 0.125 15.823 748.452
0.4 0.0736 28.617 959.431
0.4 0.0835 28.353 725.04 
0.4 0.125 28.229 702.907
0.6 0.0835 65.814 724.13 

 
Look at the alternative solution (42) for which the 

parameter q0 is set as for controllers (36) and (37). The 
corresponding results are presented in Fig. 21, Fig. 22 and 
Table IV. 
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Fig. 21 Step setpoint and load disturbance responses of u(t) 

using controller (42); K = 1, τ = 5, d = -0.1. 
 

 
Fig. 22 Step setpoint and load disturbance responses of y(t) 

using controller (42); K = 1, τ = 5, d = -0.1. 
 
 
 
 

Table IV: Values of ISE and ISTE criterions when using 
controller (42); K = 1, τ = 5. 

 
q0 ISE ISTE 
0.0736 521.828 51453 
0.0835 518.887 51149 
0.125 515.967 50857 

 
Obviously, these results give the worst ISE and ISTE 

criterions, which stems from very slow control responses. On 
the other hand, only one controller parameter, q0, is to be set 
and the changes of control signal u(t) are slow, which 
contributes to a long working life of actuators. 

 

C. Results for LQ Controllers 
The methodology proposed in this paper is further 

compared with the polynomial LQ approach which serves as a 

benchmark for the method utilizing the ring RMS. 
 There are three selectable parameters, ϕλγ ,, . To obtain 

consistent results with those presented in Section 8A and 
Section 8B, let λ  = 0.4 in all cases, 25.021 == γγ  and 

75.021 == γγ  for the comparison. The weighting factor, ϕ , 
has three various values, 900,500,200=ϕ , to study its 
influence again. Graphic results are displayed in Fig. 23 – Fig. 
26, and ISE and ISTE criterions are evaluated in Table V. 

 

 
Fig. 23 Step setpoint and load disturbance responses of u(t) 

using controllers (62); K = 1, τ  = 5, d = -0.1, γ1 = γ2 = 0.25 
 

 
Fig. 24 Step setpoint and load disturbance responses of y(t) 

using controllers (62); K = 1, τ  = 5, d = -0.1, γ1 = γ2 = 0.25. 
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Fig. 25 Step setpoint and load disturbance responses of u(t) 

using controllers (62); K = 1, τ  = 5, d = -0.1, γ1 = γ2 = 0.75. 
 

 
 

Fig. 26 Step setpoint and load disturbance responses of y(t) 
using controllers (62); K = 1, τ  = 5, d = -0.1, γ1 = γ2 = 0.75. 

 
 
 
 
 
Table V: Values of ISE and ISTE criterions when using 

controllers (62); K = 1, τ  = 5. 
 

γ φ ISE ISTE 
0.25 200 22.831 863.89 
0.25 500 17.514 749.402 
0.25 900 16.887 764.729 
0.75 200 88.582 1062.2 
0.75 500 38.879 812.107 
0.75 900 26.652 789.973 

 
Since the ISE criterion (60) is calculated with φ = 500, one 

would expect that the LQ method using this option gives the 
best result. However, this does not hold as it arises from Table 
V. This is because of this method uses the linear 
approximation and thus the optimization (60) is made for an 

approximated plant transfer function instead of an original 
one. 

Looking at Table V, it can be affirmed that the algebraic 
method utilizing the ring RMS gives results reconcilable with 
the optimal polynomial LQ method for both, the direct 
solution and also for successive design of the inner and the 
outer controller. 

IX. CONCLUSION 
This paper developed the problem of algebraic control 

design in the ring of stable and proper RQ meromorphic 
functions for integrating time delay processes. The proposed 
method does not involve the delay approximation as it is 
customary; however, it utilizes transfer function 
parameterization without any loss of information. The 
controller structure was derived through the solution of the 
Bézout equation together with the Youla-Kučera 
parameterization. The methodology enables to find various 
controllers that satisfy requirements on the closed loop 
stability, step reference tracking and step load disturbance 
attenuation. The novel combination of this algebraic 
methodology and the control system structure combining 
conventional 1DOF and 2DOF schemes was proposed. The 
control structure is conceived in double meaning: either as a 
whole (one) system or a inner (pre-stabilizing) feedback loop 
plus the outer one. The final controllers were tuned using the 
dominant pole assignment method where the optimal setting 
yielding the leftmost dominant real poles was derived. The 
efficiency and usability of the proposed methodology was 
verified on a simulation example and compared with the 
polynomial LQ method. 
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