
 

 

  

Abstract— This paper presents a new on-line parametric 

identification and discrete optimal command algorithm for mono or 

multivariable linear systems. The method may be applied with good 

results to the automatic command of the flying objects’ move. The 

simulation results obtained with this real time algorithm, with 

parametric identification for the longitudinal and lateral move of an 

aircraft are also presented. This algorithm may be used, with good 

results, for identification and optimal command of an air-air rocket’s 

move in vertical plain regarding to target’s line [1]. 
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I. INTRODUCTION 

ECAUSE of fast flying parameters’ modify for the modern 

aircrafts and rockets, performing real time identification 

and optimal or adaptive command algorithms have to be made. 

The authors of this paper have made such an algorithm. First 

of all, an off-line parametric identification is made, without 

command, for obtaining the initial values of these parameters 

for the on-line identification process. 

Using the control system )A(  and model’s outputs, a 

discrete optimal command law is projected, using a quality 

quadratic criterion, which assures the convergence of the 

difference between control system and model’s outputs. The 

model’s parameters, obtained by the on-line identification, are 

used for calculus of the command law. For the algorithm 

validation one uses as examples the automatic command of an 

aircraft longitudinal and lateral move or the rocket’s move in 

vertical plain; time characteristics, representing evolution of 

state variables of A  and their estimate, are plotted. These 

variables’ stabilization and the convergence of the errors 

iii
xxe ˆ−=  happen in maximum 2 seconds. 

The proposed algorithm produces very good results in the 

case of lateral move’s stabilization for transport and fights 

aircrafts or in the case of parametric identification of an air-air 

rocket’s move in vertical plain regarding to target’s line. 
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II. CONTINUOUS AND DISCRETE MODELS FOR THE 

LONGITUDINAL AND LATERAL MOVE OF THE AIRCRAFT 

The control system (the move of A ) may be described by 

the input – output equations with general forms [2] 

 

 ,BuAxx +=&  (1) 

 

                                               ,cxy =  (2) 

 

where x  is the state vector −× un ,)1(  the command vector 

−× Am ,)1(  the system matrix −× Bnn ,)(  matrix ,)( mm ×  

−y  output vector −× Cp ,)1(  measurement system matrix 

.),( npnp ≤×  The estimated model is described by equations 

 

 ,ˆˆˆˆ uBxAx +=&  (3) 

 

 ,ˆˆˆ xCy =  (4) 

 

where x̂  is the estimation of the state vector, −ŷ  estimation 

of the output vector BAy ˆ,ˆ,  and −= CĈ  estimate matrices. 

The discrete variants of equations systems (1), (2), and (3), 

(4) are, respectively [3] 

 

 ),()()1( kuBkxAkx
dd

+=+  (5) 

 

 );()( kxCky
d

=  (6) 

 

 ),(ˆ)(ˆˆ)1(ˆ kuBkxAkx
dd

+=+  (7) 

 

 );(ˆˆ)(ˆ kxCky
d

=  (8) 

 

matrices 
ddd

CBA ,,  and 
ddd

CBA ˆ,ˆ,ˆ  are discrete variants of 

matrices CBA ,,  and .ˆ,ˆ,ˆ CBA  

Another description form for the estimated system A  ( A  

dynamics estimation) [4] is 

 

 )1(ˆ)(ˆ)1(ˆ)1(ˆ +++=+ kekbkxky T  (9) 

 

or 
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 ),1(ˆ)1(ˆ)(ˆ)1(ˆ +++=+ kekzkbky T  (10) 

 

where ),1(ˆ)1()1( +−+=+ kykyke  

 

 [ ],)(ˆ)(ˆ)(ˆ)(ˆ
1

kkbkkb TTT βα=  (11) 

 

with  

 

 
[ ]
[ ],)(ˆ)(ˆ)(ˆ)(ˆ

,)(ˆ)(ˆ)(ˆ)(ˆ

21
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kbkbkbk

kakakak

m

T
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T

K

K

=β

−−−=α
 (12) 

 

[ ];)1(ˆ),(ˆ),(ˆ
1

mpmmpbpnp ×−β××α  

 

 [ ],)()()(ˆ)1( kUkukYkz TTT =+  (13) 

 

with 

  

 
[ ]
[ ];)1()2()1()(ˆ

,)1(ˆ)1(ˆ)(ˆ)(ˆ

+−−−=

+−−=

mkukukukU

nkykykykY

T

T

K

K
 (14) 

 

[ ].1)1(),1(ˆ ×−× mmUnpY  

 

 
Fig. 1 The structure of the parametric estimation  

and discrete optimal command of the longitudinal move 

 

If ,pm =  then equation (10) becomes 

 

 );()(ˆ)()(ˆ)(ˆ)(ˆ)1(ˆ
1

kUkkukbkYkky TT β++α=+  (15) 

 

if ,pm ≠  then )(ˆ kTβ  matrix can not be multiplied wit )(kU  

vector because of their dimensions. That’s why, in equation 

(15) the last term is expressed for each concrete case (function 

of m  and p  values). So that, in the case presented below 

(longitudinal move) 1,4 == mn  and equation (15) becomes 

 

 ),()(ˆ)(ˆ)(ˆ)1(ˆ
1 kukbkYkky T +α=+  (16) 

 

where  

 
[ ]
[ ],)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ

,)3(ˆ)2(ˆ)1(ˆ)(ˆ)(ˆ

4321 kakakakak

kykykykykY

T

T

−−−−=α

−−−=
 (17) 

 

1b̂  is a )1( ×p  vector, ŷ  is a )1( ×p  vector and .)11()( ×−ku  

In the case of the lateral move of the aircraft ,)2,4( == mn  

equation (16) becomes 

 

 ),1()(ˆ)()(ˆ)(ˆ)(ˆ)1(ˆ
11

−++α=+ kUkbkukbkYkky T  (18) 

 

with Y  and α̂  having forms (17); 
1

b̂  and 
2

b̂  are vectors 

−× yp ,)2(  vector )1( ×p  and −u  vector .)12( ×  

For command law ( ))(ku  obtaining, one chooses the 

performance indicator 

 

 
[ ] [ ]

),()(

)1(ˆ)1()1(ˆ)1(

kRuku

kykyQkykyJ

T

T

+

++−++−+=
 (19) 

 

where )1( +ky  is the imposed output vector while )( ppQ ×  

and )( mmR ×  are symmetric and positive definite matrices, 

−R  nonsingular matrix; )1(ˆ +ky  has forms (15) or (18). The 

optimal command is obtained from optimum condition 

( ),0)(/ =∂∂ kuJ  

 

 [ ],)(ˆ)(ˆ)1()( kYkkyGku Tα−+=  (20) 

 

for 1=m  (longitudinal move) and  

 

 [ ])1()(ˆ)(ˆ)(ˆ)1()(
2

−−α−+= kukbkYkkyGku T  (21) 

 

for 2=m  (lateral move). 

 

 
Fig. 2 The structure of the parametric estimation  

and discrete optimal command of the lateral move 

 

Matrix G  from the above equations has the form 

 

 [ ] .)(ˆ)(ˆ)(ˆ
1

1

11 QkbkbQkbRG TT
−

+=  (22) 

 

Q  and R  matrices may be calculated using ALGLX, 

algorithm proposed by the authors of this paper or other 

algorithms [5], [6], [7]. 
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The structure of the parametric estimation and discrete 

optimal command is presented in fig. 1 (for the longitudinal 

move of the aircraft) and fig. 2 (for the lateral move of the 

aircraft).  

III. THE ALGORITHM ALGLDR FOR THE IDENTIFICATION OF THE 

LONGITUDINAL AND LATERAL MOVE’S PARAMETERS 

Below one presents the algorithm for the identification of 

the longitudinal and lateral move’s parameters. This algo-

rithm’s name is ALGLDR. 
 

Algorithm ALGLDR 

Step 1: First of all the off – line system A ’s parameters 

identification is made, using, for example, the least square 

method (LSM) [8], resulting the parameters vector ;)0(ˆˆ
0

bb =  

that refers to the coefficients narjb
ij

,1ˆ,,1,ˆ ==  of the dis-

crete transfer functions of the aircraft’s estimated model Â  (in 

fig.1 switch I has position 1, −e  disturbances and −=
a

uu  

the random input); )(ˆ ty  is then computed and the vectors 

)0(ˆˆ
0 YY =  and )0(0 UU =  are memorized. Also, the 

covariance matrix 
0P  (obtained at the end of identification 

)0(
0

PP = ) is also memorized. Then, matrices 
dddd

BABA ˆ,ˆ,,  

are computed and with these state vectors x  and x̂  are 

computed using equation (5); these vectors (at the end of iden-

tification) are memorized; 

Step 2: For simulation of time varying of A ’s parameters, 

the parameters of A  are modified (for example with 5%) and 

with the new coefficients 
d

A  and 
d

B  matrices are computed; 

Step 3: Switch I has now position 2 (on – line control); 

using algorithm ALGLX [9], matrices Q′  and R  matrices are 

obtained in rapport with 
d

Â  and 
d

B̂   as follows 

Step 3.1: One brings the system described by pair 

( ) ( )mnBnnA ×× ,  to Jordan form ( ),,BA  using transfor-

mation TxTx ;=  is a non singular linear transformation [10]; 

 

 [ ],0, 11
MmIBTBATTA === −−

 (23) 

 

where T  has the form [ ],~
TBT M=  with T

~
 random 

matrix ( )( )mnn −×  so that nT =rang  [6]. 

Step 3.2: Gain matrix K  for the optimal control of system 

( )BA,  is obtained so that closed loop system with matrix 

KBAG −=  has imposed stable eigenvalues. 

Step 3.3: Matrices K  and P  are partitioned as follows 

 

     [ ] ;,,, 22222112

2221

1211

21

TT PPPP
PP

PP
PKKK ==








== M  (24) 

 

1K  and 
11P  are sub matrices ( );mm ×  sub matrices 

221211 ,, PPP  and R  are calculated in rapport with sub matrices 

of matrix K  and with weight matrix RR =  

 

 ,,,
2222112111 mn

T IPKRPPKRP −====  (25) 

 

where mnI −  is the unity matrix ( ) ( );mnmn −×−  for 1=m  

 

 [ ] ]1[,2322211 == RkkkkK M  (26) 

 

and for 2=m  

 

 
( ) ,

22

21


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=

IKR

KRKR
P T

 (27) 

 

where 
1K  and 

2K  have forms  
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−
−

=
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




=









′′

′′
=








== M

 (28) 

 

Step 3.4: Matrices Q  and Q  are calculated 

 

 [ ],KBPPAAPQ
T −+−=  (29) 

 

 ( ) ;11 −−= TQTQ
T

 (30) 

 

then, knowing matrices QBA ,,  and ,R  one solves EMAR 

and obtains P  

 

 ;01 =+−+ − QPBPBRPAPA TT  (31) 

 

one calculates gain matrix with equation 

 

 .1
PBRK

T−=  (32) 

 

Step 3.5: One calculates the eigenvalues of matrix 

( );BKAG −=  if these are placed in left complex semi plane 

(matrix G  is stable), then gain matrix is the one already 

obtained; otherwise one returns to step 3.1 and chooses 

another matrix ,
~
T  of course another matrix T  and the 

calculus conform to algorithm’s steps is again achieved.  

Step 4: G  matrix from (22) is obtained with 
1

b̂  extracted 

from ;)(ˆ kb  

Step 5: Command )(ku  is computed with equation (20) or 

(21) using )(ˆ kY T  and )(ˆ k
Tα  with elements (17), )(ˆ

2
kb  
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extracted from )(ˆ kb  and component )1( −ku  of ;)(kU  

Step 6: The vectors )1(ˆ,)1( ++ kxkx  are obtained using 

(5), respectively (7);  )1( +ky  and )1(ˆ +ky  are calculated as 

bellow 

 

 .)1(ˆ)1(ˆ,)1()1( +=++=+ kCkykCky
dd

 (33)   

  

Vectors )1(ˆ +kY  and )1( +kU  are memorized and the 

error 

 

 )1(ˆ)1()1(ˆ +−+=+ kykyke  (34)  

 

is computed; 

Step 7: The actualization of covariance matrix is made with 

formula [4] 

 

 








+++λ
++

−=+ + )(
)1(ˆ)()1(ˆ

)1(ˆ)1(ˆ
)()1( kP

kzkPkz

kzkz
IkPkP

T

T

nm
 (35) 

 

and, with this, 

 

 ),1(ˆ)1(ˆ)1()(ˆ)1(ˆ ++++=+ kekzkPkbkb  (36) 

 

where )1(ˆ +kz  has the form (13); 

Step 8: 1+→ kk  and one returns to step 4; if ,
imposed

kk <  

the program stops; state variables )(txi
 and )(ˆ txi

 are plotted. 

IV. IDENTIFICATION AND OPTIMAL COMMAND OF THE 

AIRCRAFT LONGITUDINAL MOVE 

For the identification and discrete optimal command algo-

rithm’s validation, presented above, a simulation program was 

made in the MATLAB medium (the program is presented in 

Appendix). 

The longitudinal move of the aircraft is described by 

equation [11] 

 

 
.
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where 
x

V  is the longitudinal component of flight’s speed,  

−α  the attack angle, −θ  the pitch angle, −ωy
 the pitch 

angular velocity and −δ
p

 the elevator deflection 

Off–line identification of the longitudinal move is made and 

the vector associated to estimated model Â  is obtained 

 

[ ]070.0106.0096.0058.0017.1047.4042.6013.4)0(ˆˆ
0

−−−−== TT bb  

 

of the system ,A  whose vector is ,0b  
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and matrices 
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After switching of I, it begins the on – line identification 

regime; considering that A ’s parameters change with 5%, it 

results the vector 

 

[ ].109.1107.5108.5109.193.075.365.578.3 5555 −−−− ⋅−⋅−⋅⋅−−=Tb

  

 
Fig. 3 Dynamics of state variables and of their estimations for the 

longitudinal move 

 

 Using algorithm ALGLX, one calculates matrices Q  and 

R  [9]: 1,548.1 == RQ  and, with these, one obtains G  and u  

for each calculus step, vectors bPeyyxx ˆ,,ˆ,ˆ,,ˆ,  and one plots 

time characteristics ,ˆˆ,,ˆˆ,
2211

α∆=α∆=∆=∆= xxVxVx
xx

 

yy xxx ω=ω=θ∆= ˆˆ,,ˆˆ
443

 and 
pu δ=  (presented in fig. 3; the 

curves are −
i

x  blue, −
i

x̂  red). 
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V. IDENTIFICATION AND OPTIMAL COMMAND OF THE AIRCRAFT 

LATERAL MOVE 

One considers now the case of lateral move of a Boeing 744 

[12], which flies with, 8.0=M  and ;ft1040 3⋅=H  the lateral 

move’s state equation is 
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where β  is the sideslip angle, −ω
x

 the roll angular velocity, 

−ω
z

 the yaw angular velocity, −ϕ  the roll angle,  −δ
d

 the 

direction deflection whereas −δ
e

 the aileron deflection. 

For the lateral move of an aircraft  

 

 

,0,

0

0

0

1

,

010.0

031.0

031.0

010.0

,

001.0

004.0

004.0

001.0

,

00099.9

10098.3

01098.5

00199.3

,
01.003.003.001.099.098.398.599.3

000099.098.398.599.3
)0(

21112111

21112111

0

==



















==



















−

−
=



















−

−
=



















−

−
==









−−−−

−−
==

dd

T

d

T

d

dddd

TT

DDCC

BBAA

bb

 

 

 

.0ˆˆ,ˆˆ

,

101.0

263.0

136.0

013.0

ˆ,

092.0

236.0

109.0

004.0

ˆ,

00096.0

10090.3

01090.5

00196.3

ˆˆ

,
10.026.013.001.096.090.390.597.3

09.023.010.004.096.090.390.597.3
)0(ˆˆ

2111112111

21112111

0

====



















−

−
=



















−

−
=



















−

−
==










−−−

−−−
==

dd

T

d

T

d

T

d

dddd

TT

DDCCC

BBAA

bb

 

 

 
Fig. 4 Dynamics of state variables and of their estimations for the 

lateral move 

Considering that A ’s parameters change with 5%, it results 

the vector 
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Matrices Q  and R  are: .
1985.0

985.01
,0382.0 








== RQ   

State variables and their estimates are ,ˆˆ, 11 β∆=β∆= xx  

ϕ∆=ϕ∆=ω∆=ω∆=ω∆=ω∆= ˆˆ,,ˆˆ,,ˆˆ, 443322 xxxxxx xxzz
 

and [ ] .ed

Tu δδ=  Time variations of these variables are 

presented in fig. 4 (the curves are −ix  blue, −
i

x̂  red). 

VI. IDENTIFICATION AND OPTIMAL COMMAND OF THE 

ROCKET’S MOVE IN VERTICAL PLAIN 

One considers the case of a rocket move in vertical plain 

with lateral deviation y  in rapport with equal line signal line; 

it is directed by three points method (the co-linearity CP–R–T; 

CP – control point, R – rocket, T - target). Lateral deviation y  

in rapport with equal signal line is described by differential 

equation [13], [14] 

 

 ,
T

VfVy +ϑ=&  (37) 

 

where V  is the flight velocity, −ϑ  slope of the trajectory  

−
T

f  disturbance. ϑ  is defined by [14] 
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g
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Expressing the above equation in variables α  and ,θ  it 

becomes 
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g
TTT VVV
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or has the liniarised form 
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Flying object’s move in vertical plain is defined by equation 

(38) and the following one 
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Rocket’s move around mass centre in vertical plain is 

described by equation [14] 
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where 
z

J  is the inertia moment in rapport with lateral 

(horizontal) axis, −
θ&

m  dynamic damp moment coefficient, 

−αm  static stabilization moment coefficient, −δm  command 

coefficient moment. With ,α+ϑ=θ  (38) and (41) the above 

equation leads to linear form 
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where ξ  is the damp coefficient and −ω
0

 proper frequency 

of the rotation move in vertical plain; 

 

 

.
sin

,,
1

2

2

02

0

0

VzzV

V

VVzz

zVz

TJ

m

J

m

T

T

VT
g

TJ

m

J

m

J

m
k

TJ

m

θαθα

δ
δ

θ

+≅−
θ

++=ω

=+=ξω

&&

&

&
 (44) 

 

Equation (42) is equivalent with the following one 
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which, taking into account 
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leads to 

 

 .01 δ+α∆−θ=θ δkaa &&&  (47) 

 

By derivation of equation (37), one obtains [15]  
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T
W  is an equivalent disturbance having the significance of 

normal acceleration to equal signal line [16]. For calculus of 

above equations’ coefficients one uses calculus equations from 

[17] 
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where 
4321

,,, dddd  are read using diagrams or graphic 

characteristics for different rocket types at different flight 

seconds. For instance, for an Oerlikon rocket, in the 10
th

 flight 

second  
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For the 40
th

 flight second 
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For the 50
th

 flight second 
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Choosing the state vector [ ],θα∆= &&yyxT  system 

formed by equations (40), (47) and (48) becomes 
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If the input is δ=u  and the disturbances vector is 

[ ],~
T

T

p
Wu α=  the above equations system have the form 
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With flying parameters’ values from [17], for the 10
th
 

second of flight, following step by step the algorithm, one 

obtained successively the results 
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Fig. 5 – Time varying of 

ii xx ˆ,  and δ  for the 10th second of flight 

 

In fig. 5 state variables )(ˆ),( txtx
ii

 and )(tδ  (for the 10th 

second of flight) are presented ( )(txi
 with blue and )(ˆ txi

 with 

red). 

Similarly, for the 40th and 50th flight second, it results 
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respectively 
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Fig. 6 – Time varying of 

ii xx ˆ,  and δ  for the 40th second of flight 

 

In fig. 6 and fig. 7 state variables )(ˆ),( txtx
ii

 and )(tδ  (for 

the 40th and 50th second of flight) are presented ( )(txi
 with 

blue and )(ˆ txi
 with red). 

 

 
Fig. 7 – Time varying of 

ii xx ˆ,  and δ  for the 50th second of flight 
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VII. CONCLUSIONS 

The paper presents an on - line parametric identification and 

discrete optimal command algorithm for linear systems. For 

validation, it is used to the command of an aircraft’s longi-

tudinal and lateral move and for the case of a rocket move in 

vertical plain with lateral deviation y  in rapport with equal 

line signal line.  

Simulation programs, based on presented algorithm, were 

made in Matlab. The obtained graphics are time variation of 

the state variables associated to the control system and to the 

estimated model of the aircraft )(ˆ),( txtx
ii

 and the evolution 

of command .)(tδ  

APPENDIX 

clear all; close all; 

% Data presentation (step 0) 

A=[-0.0558 -0.9968 0.0802 0.04415;  

        0.598 -0.115 -0.0318 0; 

        0.305 0.388 -0.465 0; 

        0 0.0805 1 0]; 

B=[0.0073 0;-0.475 0.123; 0.153 1.063;0 0]; 

C=[0 0 1 0]; 

Ts=0.01; 

x=[0.08;0.02;0.03;0.3]*180/pi; 

xc=zeros(4,1); 

n=size(A,1); 

m=size(B,2); 

s=size(C,1); 

D=zeros(s,m); 

% Off-line identification 

%Step 1:Off-line identification(Switch on position 1) 

[num1,den1]=ss2tf(A,B,C,D,1); 

[num2,den2]=ss2tf(A,B,C,D,2); 

sysc1=tf(num1,den1);sysc2=tf(num2,den2); 

sysd1=c2d(sysc1,Ts);sysd2=c2d(sysc2,Ts); 

[numd1,dend1]=tfdata(sysd1,'v'); 

[numd2,dend2]=tfdata(sysd2,'v'); 

AA1=[dend1(1) dend1(2) dend1(3) dend1(4) dend1(5)]; 

BB1=[numd1(1) numd1(2) numd1(3) numd1(4) numd1(5)]; 

AA2=[dend2(1) dend2(2) dend2(3) dend2(4) dend2(5)]; 

BB2=[numd2(1) numd2(2) numd2(3) numd2(4) numd2(5)]; 

tho1=poly2th(AA1,BB1); 

tho2=poly2th(AA2,BB2); 

u=idinput(100,'rbs');e=randn(100,1);       

% run algldr_ee; 

y1=idsim([u,e],tho1);z1=[y1,u]; 

y2=idsim([u,e],tho2);z2=[y2,u]; 

th1=arx(z1,[4 4 1]); 

yc1=idsim([u,e],th1); 

th2=arx(z2,[4 4 1]); 

yc2=idsim([u,e],th2); 

subplot(211);t=1:length(y1); 

plot(t,y1,'b',t,yc1,'r');grid; 

subplot(212);t=1:length(y2); 

plot(t,y2,'b',t,yc2,'r');grid; 

[Adc1,Bdc1,Cdc1,Ddc1]=th2ss(th1); 

[Adc2,Bdc2,Cdc2,Ddc2]=th2ss(th2); 

[numdc1,dendc1]=th2tf(th1); 

[numdc2,dendc2]=th2tf(th2); 

[Ad1,Bd1,Cd1,Dd1]=th2ss(tho1); 

[Ad2,Bd2,Cd2,Dd2]=th2ss(tho2); 

Y=[yc1(length(yc1));yc1(length(yc1)-1); 

yc1(length(yc1)-2);yc1(length(yc1)-3)]; 

alf1=-(dendc1(2:length(dendc2)))'; 

alf2=-(dendc2(2:length(dendc2)))';alf=alf1;      

beta1=(numdc1(2:length(numdc1)))'; 

beta2=(numdc2(2:length(numdc2)))'; 

beta=[beta1 beta2]; 

b1=[beta1(1) beta2(1)]; 

b2=[beta1(2) beta2(2)]; 

bc=[alf' b1 b2]'; 

% Calculus of  x(k),y(k),xc(k),yc(k) 

ub=[u(length(u)-1);u(length(u)-1)]; 

u=[u(length(u));u(length(u))]; 

Ad=Ad1;Bd=[Bd1 Bd2]; 

Cd=Cd1;Dd=[Dd1 Dd2]; 

Adc=Adc1;Bdc=[Bdc1 Bdc2]; 

Cdc=Cdc1;Ddc=[Ddc1 Ddc2]; 

x=Ad*x+Bd*u;xc=Adc*xc+Bdc*u; 

x1(1)=x(1);x2(1)=x(2); 

x3(1)=x(3);x4(1)=x(4); 

xc1(1)=xc(1);xc2(1)=xc(2); 

xc3(1)=xc(3);xc4(1)=xc(4); 

% On-line identification (Switch on position 2) 

% Step 2:Time variaion of the system parameters 

numd1=numd1*(95/100); 

numd2=numd2*(95/100); 

for i=2:length(dend1)  

dend1(i)=(dend1(i))*(95/100); 

dend2(i)=(dend2(i))*(95/100); 

end 

% Calculus of matrices Ad,Bd 

AA1=[dend1(1) dend1(2) dend1(3) dend1(4) dend1(5)]; 

AA2=[dend2(1) dend2(2) dend2(3) dend2(4) dend2(5)]; 

BB1=[numd1(1) numd1(2) numd1(3) numd1(4) numd1(5)]; 

BB2=[numd2(1) numd2(2) numd2(3) numd2(4) numd2(5)]; 

tho1=poly2th(AA1,BB1); 

[Ad1,Bd1,Cd1,Dd1]=th2ss(tho1); 

tho2=poly2th(AA2,BB2); 

[Ad2,Bd2,Cd2,Dd2]=th2ss(tho2); 

Ad=Ad1;Bd=[Bd1 Bd2]; 

Cd=Cd1;Dd=[Dd1 Dd2]; 

% Step 3:Usage of algorithm ALGLX 

close all; 

Q=[100 0 0 0;0 1 0 0;0 0 100 0;0 0 0 10]; 

R=[1 -0.5;-0.5 1]; 

[K,P,E] = LQR(Adc,Bdc,Q,R); 

% Matrix T presentation 

N3=randn(4,2); 
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for i=1:4 

    for j=1:2 

        T(i,j)=Bdc(i,j); 

        T(i,j+2)=N3(i,j); 

    end 

end    

% Obtaining of matrices Ab,Bb,Kb,Rb 

Ab=(inv(T))*Adc*T; 

Bb=(inv(T)*Bdc); 

Kb=place(Ab,Bb,E); 

for i=1:2 

    for j=1:2 

        K10(i,j)=Kb(i,j); 

        K20(i,j)=Kb(i,j+2); 

    end 

end 

k11=K10(1,1);k12=K10(1,2); 

k21=K10(2,1);k22=K10(2,2); 

Rb=[1 (k12-k21)/(k11-k22);(k12-k21)/(k11-k22) 1]; 

ee=eig(Rb);N1=Rb*K20;N2=transpose(N1); 

Pb=[Rb*K10 Rb*K20;N2 eye(2)]; R=Rb; 

Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb); 

% Variant 2 

PPP=transpose(inv(T))*Pb*inv(T); 

KKK=inv(R)*transpose(Bdc)*PPP; 

EEE=eig(Adc-Bdc*KKK);m=rank(T); 

while real(ee(1))<0 | real(ee(2))<0 | real(EEE(1))>0 | 

real(EEE(2))>0 | real(EEE(3))>0 | real(EEE(4))>0 | m<4 

% Matrix T presentation 

N3=randn(4,2); 

for i=1:4 

    for j=1:2 

        T(i,j)=Bdc(i,j); 

        T(i,j+2)=N3(i,j); 

    end 

end    

% Obtaining of matrices Ab,Bb,Kb,Rb 

Ab=(inv(T))*Adc*T; 

Bb=(inv(T)*Bdc); 

Kb=place(Ab,Bb,E); 

for i=1:2 

    for j=1:2 

        K10(i,j)=Kb(i,j); 

        K20(i,j)=Kb(i,j+2); 

    end 

end 

k11=K10(1,1);k12=K10(1,2); 

k21=K10(2,1);k22=K10(2,2); 

Rb=[1 (k12-k21)/(k11-k22);(k12-k21)/(k11-k22) 1]; 

ee=eig(Rb); 

N1=Rb*K20;N2=transpose(N1); 

Pb=[Rb*K10 Rb*K20;N2 eye(2)]; R=Rb; 

Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb); 

% Variant 2 

PPP=transpose(inv(T))*Pb*inv(T); 

KKK=inv(R)*transpose(Bdc)*PPP; 

EEE=eig(Adc-Bdc*KKK);m=rank(T); 

end         

% Variant 1 

Q=transpose(inv(T))*Qb*inv(T); 

R=Rb;[K,P,E] = LQR(Adc,Bdc,Q,R);    

% Determination of matrices Q si R 

Q=(pinv(C'))*Q*(pinv(C));Q=Q(1,1); 

% Optimal command determination 

for k=1:100 

% Step 4:Calculus of matrix G 

Par=R+(b1')*Q*b1; 

G=(inv(Par))*(b1')*Q;  

yb=0;u=G*(yb-(alf')*Y-b2*ub); uu(:,k)=u; 

% Step 6: x(k+1),y(k+1),xc(k+1),yc(k+1) calculus 

x=Ad*x+Bd*u;y=Cd*x; 

xc=Adc*xc+Bdc*u;yc=Cdc*xc; 

x1(k+1)=x(1);x2(k+1)=x(2); 

x3(k+1)=x(3);x4(k+1)=x(4); 

xc1(k+1)=xc(1);xc2(k+1)=xc(2); 

xc3(k+1)=xc(3);xc4(k+1)=xc(4); 

z=[Y' u' ub']';     

Y=[yc;Y(1:length(Y)-1)];e=y-yc; 

% Step7 

lambda=0.95;P=100*eye(n+m); bc=bc+P*z*e;alf=bc(1:4); 

end 

subplot(321); 

plot(t,x1,'b',t,xc1,'r');grid; 

subplot(322); 

plot(t,x2,'b',t,xc2,'r');grid; 

subplot(323); 

plot(t,x3,'b',t,xc3,'r');grid; 

subplot(324); 

plot(t,x4,'b',t,xc4,'r');grid; 

subplot(325); 

plot(t1,uu(1,:),'r');grid; 

subplot(326); 

plot(t1,uu(2,:),'r');grid; 
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